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Abstract

This paper reports the participation of the XLDB Group from the University of Lisbon at the
2007 GeoCLEF task. We adopted a novel approach for GIR, focused on handling geographic
features and feature types on both queries and documents, generating geographic signatures
with multiple geographic concepts as a scope of interest. Weexperimented new query expan-
sion and text mining strategies, relevance feedback approaches and geographic score metrics.
In the paper we introduce the new approach, discuss the experiments and analyse the obtained
results.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Information
Search and Retrieval; H.3.4 Systems and Software

General Terms

Measurement, Performance, Experimentation

Keywords

Evaluation, Geographic IR, Text Mining, Geographic Relevance, GeoCLEF

1 Introduction

This paper presents the participation of the XLDB Group fromthe University of Lisbon at the 2007 Geo-
CLEF task. We experimented novel strategies for geographicquery expansion, text mining, relevance feed-
back and geographic score metrics in a renewed GIR system. The motivation for this work derived from
the results obtained in last year’s participation, which revealed limitations on our previous GIR model [9]:

• We focused on capturing and handling placenames and associated features from queries and docu-
ments for our geographic reasoning, and ignored important geographic information, such as spatial
relationships andfeature types. Feature types, such ascities, mountainsor airports, play an im-
portant role on the definition of the geographic relevance criteria of queries. GeoCLEF topics also
convey this idea: 13 out of the 25 topics of the Portuguese subtask of the 2007 edition of GeoCLEF
contained feature types on the topic’s title.

• Typical GeoIR systems rely on text mining methods to captureand disambiguategeonamespresent
in the text, so that geographic scopes can be inferred for each document. These methods typically
involve geoname grounding intogeographic conceptsincluded in ageographic ontology, and disam-
biguation of hard cases through reasoning based on other geonames extracted from the text [14]. We
used this text mining approach in our past GeoCLEF participations [2, 9]. The mining process was
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finalized by a graph-ranking algorithm, that analysed the captured features and assigned one single
encompassing scope per document [10]. This strategy is derived from the «one scope per discourse»
assumption [7], spanned to a full document. The assumption of taking the unit of discourse to the
document level revealed to be too restrictive in some cases,and highly vulnerable to incorrectly as-
signed scopes. We observe that generic scopes were being assigned to documents with geonames that
do not correspond to adjacent areas. For example, a documentdescribing a football match between
Portugal and Hungary, may have the common ancestor node (Europe) as a very strong candidate final
scope.

This year, we decided to challenge some of the underlying assumptions of the GIR model used in the
previous year, and tested a new approach. We introduced significant changes in the assembled GIR system,
both on the query and on the document sides, to see if they could effectively tackle the limitations detected
on the past GIR system. The improvements have been introduced at three levels:

Query Processing: We have rebuilt the query processing modules so that all geographic information
present on a query is captured and subject to proper geographic query expansion. We gave special attention
to feature types and spatial relationships, as guides for the geographic query expansion [3].

Text Mining: We decided to narrow the discourse context to the sentence level. We now generate what
we call ageographic signaturefor each document, which is a list of geographic concepts that characterize
a document, allowing each document to have several geographic contexts.

Geographic Ranking: As the new text mining approach generates a geographic signature for each
document (DSig), and the geographic query expansion module generates a geographic signature for the
query (QSig), the geographic ranking step now has the burden of evaluating relevance considering queries
and documents that contain multiple geographic concepts asa scope. In 2006, our similarity metric
compared the (single) scope of a document against the (single) scope of a query. This year, we had to
handle each of the features in the geographic signatures as part of a scope and compute a metric accounting
for all concepts in the geographic signatures. We made some preliminary experiments to assess new
combination metricsfor computing relevance based on geographic signatures.

The rest of this paper is organised as follows: Section 2 depics our assembled GIR system, and describes
in detail each module of our prototype. Section 3 presents our experiments and Section 4 analyses the
results. Section 5 ends the paper with conclusions and directions for future work.

2 System Description

Figure 1 presents the architecture of the GIR system assembled for GeoCLEF 2007. The GeoCLEF topics
are automatically parsed by QueOnde and converted into<what, spatial relationship, where>triplets. The
QuerCol module performs term and geographic query expansion, producing query strings consisting of
query terms and a query geographic signature (QSig).

CLEF documents are loaded into a repository, becoming available to all modules. Faísca is a text min-
ing module specially crafted to extract and disambiguate geonames, generating geographic signatures for
each document (DSig). Sidra5, our index and ranking module, generates text indexes from the documents
and geographic indexes from their geographic signatures. Sidra5 also receives the queries generated by
QuerCol as input, and generates final GeoCLEF runs in thetrec_eval format. All these components rely
on a geographic ontology for geographic reasoning, createdusing our own geographic knowledge base,
GKB [5].

2.1 Geographic Ontology

The geographic ontology is a central component of our GIR system, providing support for geographic
reasoning for all modules. It models both geographic concepts and the relationships between concepts in



Figure 1: Architecture of the GIR system assembled for GeoCLEF 2007.
Physical Domain Administrative Domain

Island 205 Sea 5 Place 4023
Airport 107 Cathedral 3 ISO-3166-2 3976
River 86 Ocean 2 Administrative division 3212
Mountain 85 Mountain Range 2 Agglomeration 751
Lake 66 Strait 1 ISO-3166-1 239
Circuit 63 Channel 1 Capital city 233
Region 23 Planet 1 Total 12434
Continent 7 Total 657
Names 14408 Centroids 4204
Features 13091 Bounding boxes 2083
Feature Types 21 adjacentrelationships 11307

part-of relationships 13762

Table 1: Statistics of the geographic ontology.

an hierarchical scheme. The geographic data come from several public sources, and include names for
places and other geographic features, feature types, adjectives, relationships between concepts (adjacent
andpart-of), demographic data, spatial coordinates and bounding boxes [9].

The improvements made to the ontology for this year’s participation were twofold: i) update of the GKB
conceptual model to directly support multilingual names for geographic references, and ii) the addition of
new features that we found missing after inspecting the GeoCLEF topics for 2007. The GKB 2.0 model
now supports relationships between feature types, a betterproperty assignment for features and feature
types, and a better control of information sources [6]. Mostof the ontology enrichment was carried out
in the physical domain, with the addition of new feature types like airports, circuits and mountains, along
with their instances in the GKB. Table 1 presents the statistics of the ontology used in the evaluation.

2.2 QueOnde Query Parser and QuerCol Query Expansion

On the query side, we developed a new geographic query parsing module, QueOnde. The geographic query
expansion module, QuerCol, introduced for last year’s participation [4, 9], was improved for also handling
feature types and spatial relationships.

QueOnde automatically converts GeoCLEF topic titles into<what, spatial relationship, where>triplets
with the help of the geographic ontology and a set of manually-crafted context rules for capturing and
disambiguating spatial relationships, features and feature types. QueOnde also participated on the 2007
GeoCLEF Query Parsing subtask [16].

The QuerCol module is able to expand the thematic (what) and the geographic (where) parts of a query
separately. Thewhat is expanded through blind relevance feedback (RF) [13], while thewhereis expanded



by a new algorithm, which decides the geographic expansion strategy to be performed based on features
and feature types present on a query [3].

When feature types are present in the query, they may mean twothings: i) the user is disambiguating the
geoname, because it can be associated to other geographic concepts (e.g.,City of BudapestandBudapest
Airport); or ii) the user is designating a set of concepts as a scope ofinterest (e.g.,Airports of Hungary).
In case i), the feature type is disambiguating the geographic concept given by the featureBudapestas the
scope of interest, while in case ii), the feature type is designating a group of geographic concepts of the
scopes of interest, requiring additional geographic reasoning to obtain the corresponding concepts.

The geographic query expansion step of our GIR system is now guided according to the spatial rela-
tionship, features or feature types specified on the query. For instance, in the CLEF topic #74,Ship traffic
around Portuguese islands, QuerCol considersin as the spatial relationship,Portugalas a feature name and
islandsas a feature type, and it reasons that the scope of interest isall geographic concepts of typeisland
that are part of Portugal:São Miguel, Santa Maria, Formigas, Terceira, Graciosa, SãoJorge, Pico, Faial,
Flores, Corvo, Madeira, Porto Santo, DesertasandSelvagens.

2.3 Faísca

The text mining module Faísca parses the documents for geonames, generating geographic signatures for
each document. Faísca relies on pattern matching from a gazetteer generated from the geographic ontology,
containing all concepts represented by their names and respective feature types. Consider the following
(fictional) example for the geonameLisbon, which is associated to multiple geographic concepts in the
ontology. The gazetteer would have the following pattern entries:

city $ Lisbon: 1

Lisbon city: 1

district $ Lisbon: 2

Lisbon district: 2

Street $ Lisbon: 3

Lisbon Street: 3

(...)

Lisbon: 1,2,3,(...)
The left size of these entries contains the text patterns to be matched, in [<feature type>$ <feature>] and
in [<feature> <feature type>] formats (being the former one more common for Portuguese texts, and the
latter one for English texts), while on the right side there is anidentifierof the corresponding geographic
concept in the ontology. The character $ means that an arbitrary term or group of terms is allowed to be
present between the feature and the feature type, in order toavoid different stopword and adjective patterns.
This approach immediately captures and grounds all geonames into their unique concept identifiers, without
depending on hard-coded disambiguation rules. In the end, we have acatch-allpattern, which is used when
the geoname found in the document does not contain any kind ofexternal hints on its feature type. For
these cases, we assign all identifiers of geographic concepts that are associated with the geonameLisbon.

The geographic signatures (DSig) generated by Faísca consist on a list of concept identifiersand a
correspondingconfidence measure(Con f Meas) normalized to [0,1], that represents the confidence that
the feature is part of the document scope.Con f Measis obtained through an analysis of the surrounding
concepts on each case, in a similar way as described by Li et al. [8]. Geonames on a text are considered as
qualifying expressions of a geographic concept when a direct ontology relationship between the geonames
is also observed. For example, the geonameAdelaidereceives an higherCon f Measvalue on the document
signature if an ontologically related concept, such asAustralia, is nearby on the text. If so, the feature
Australia is not included in theDSig, because it is assumed that it was used to disambiguateAustralia, the
more specific concept. An excerpt of four document signatures (one per line) as generated by Faísca from
the GeoCLEF collection is given below:

LA072694-0011: 5668[1.00]; 2230[0.33]; 4555[0.33]; 4556[0.33]; 4557[0.33]
LA072694-0012: 5388[1.00]; 5389[1.00]; 5390[1.00]; 12097[1.00]; 6653[0.67]
LA072694-0013: 369[1.00]; 225[0.33]; 452[0.33]; 7[0.33]; 367[0.33]; 137[0.33]
LA072694-0014: 6653[1.00]; 6654[1.00]; 347[1.00]



Figure 2: Example of the calculation of the fourGeoScorecombination metrics.

2.4 Sidra5

Sidra5 is a text indexing and ranking module with geographiccapabilities based on Managing Gigabytes
for Java (MG4J) [1]. It uses a standard inverted term index provided by MG4J, and a geographic forward
index of [docid, DSig] that maps the id of a document to the correspondingDSig generated by Faísca.

To retrieve documents, Sidra5 first uses thewhatpart of the query and the term index to retrieve the top
1000 documents. Afterwards, theDSig of each document is retrieved with the help of the geographicindex.
Finally, the document score is obtained by combining the Okapi BM25 text score[12], normalized to [0,1]
(NormBM25) as defined by Song et al. [15], and ageographic scorenormalized to [0,1] (GeoScore) with
equal weights:

Ranking(query,doc) = 0.5×NormBM25(query,doc) +
0.5×GeoScore(query,doc)

(1)

The calculation ofGeoScorebegins with the computation of the geographic similarityGeoSimfor each
pair (s1,s2), wheres1 in QSig ands2 in DSig, through a weighted sum of four heuristic measures (discussed
in our 2006 GeoCLEF participation [9]): Ontology (OntSim), Distance (DistSim), Adjacency (Ad jSim)
and Population (PopSim) similarity measures.

GeoSim(s1,s2) =0.5×OntSim(s1,s2)+0.2×DistSim(s1,s2)+

0.2×PopSim(s1,s2)+0.1×Ad jSim(s1,s2)
(2)

Having geographic signatures with multiple concepts requires adding aggregation metrics toGeoScore
for handling the differentGeoSimvalues that a (query, doc) pair can generate. We experimented four
metrics: Maximum, Mean, Boolean and Null.

Maximum: GeoScoreis the maximumGeoSimvalue computed between a (query, doc) pair.

GeoScoreMaximum(query,doc) = max(GeoSim(s1,s2)×Con f Meas(s2)) ,s1 ∈ Qsig∧s2 ∈ Dsig (3)

Mean: GeoScoreis the averageGeoSimvalues computed between a (query, doc) pair.

GeoScoreMean(query,doc) = avg(GeoSim(s1,s2)×Con f Meas(s2)) ,s1 ∈ Qsig∧s2 ∈ Dsig (4)

Boolean: GeoScoreequals 1 if there is a commom concept in a (query, doc) pair, and equals 0 otherwise.

GeoScoreBoolean(query,doc) =

{

1 if ∃ s1 = s2, s1 ∈ Qsig∧s2 ∈ Dsig

0 otherwise
(5)

Null: GeoScoreNull is always 0, turning off the geographic scores. This is used as a baseline metric for
comparing results obtained with the other metrics.



Run Description
1 Geographic QEbeforeRF. Classical text retrieval.
2 Geographic QEbeforeRF, GIR withMean geoscore.
3 Geographic QEbeforeRF,Maximum geoscore.
4 Geographic QEafter RF,Mean geoscore.
5 Geographic QEafter RF,Maximum geoscore.

Table 2: Runs submitted to GeoCLEF 2007.

The computation of the fourGeoScoremetrics is illustrated in Figure 2, which presents a fictional query
(Hungary), and two document surrogates, along with theGeoSim×Con f Measvalues and finalGeoScore
values.

3 Runs

Table 2 summarises the submitted runs, a total of 10: five on the Portuguese monolingual subtask and five
on the English monolingual subtask. Our runs aimed to:

• evaluate if the current GeoIR approach of treating geonamesin a separate geographic ranking obtains
better results than treating geonames as terms in a standardIR approach;

• determine whichGeoScorecombination metrics is best. We experimented theGeoScoreMean and
GeoScoreMaximumon our runs. TheGeoScoreBooleanandGeoScoreNull metrics were later included in
post-hoc experiments;

• measure the importance of the geographic query expansion before or after the relevance feedback
step.

We generated initial queries from the topic titles to obtaininitial runs for the RF. We used 32 top-k
terms and 20 top-k documents as parameters for the blind relevance feedback [4]. The final query string
combines expansion terms by aggregating semantically related concepts with the help of the MG4J logic
operators, following the suggestions of Mitra et al. [11], and the concept identifiers from theQSig.

TheTerms onlyexperiment (run 1) uses early geographic reasoning to generate aQSig. Yet, it uses the
names of geographic concepts as standard terms in the generation of the initial and final runs, meaning that
this run uses only classical text retrieval.

The other runs use the text and geographic scores for rankingdocuments:Geographic QE before RF
experiments (runs 2 and 3) considers theQSig as thewherepart of the initial query, for initial run and
final run generation, while theGeographic QE after RFexperiments (runs 4 and 5) use only the captured
concepts on the topic title as thewherepart for the initial run generation, and theQSig on the final run
generation. TheTerms/GIRruns on these experiments differ by the use of the initial rungenerated in the
Terms onlyexperiment.

4 Results

Unfortunately, the runs submitted to GeoCLEF were hamperedby programming errors in our GIR proto-
type, and so the obtained poor MAP values did not allow us to draw any early conclusions regarding our
experiments. After some code revision, we managed to obtainmore significative MAP values and con-
ducted additional experiments with the fixed GIR prototype.The MAP values presented on Table 3 refer
only to the post-hoc experiments.

We observed that theGeoScoreMean produces poor MAP values, because long document signatures
tend to cause query drifting.GeoScoreMaximumandGeoScoreBooleanrevealed to be much more robust, and
the GeoScoreBoolean metric has the best MAP values for Portuguese. This is explained in part because
the GeoScoreMaximum is highly dependent on the heuristics used, and these are dependent on the quality
of the geographic signatures and the quality of the ontology, while theGeoScoreBoolean metric is more
straightforward on assigning maximum scores for geographically relevant documents. This difference also



GeoScore Terms only Geo. QE before RF Geo. QE after RF Terms/GIR
Initial run 0.210 0.126 0.084 0.210

Final Run
Maximum

0,233

0.125 0.104 0.205
Mean 0.022 0.021 0.048
Boolean 0.135 0.125 0.268
Null 0.115 0.093 0.021

a) Results for the Portuguese monolingual subtask.

Initial run 0,175 0.086 0.089 0.175

Final Run
Maximum

0.166

0.093 0.104 0.218
Mean 0.043 0.044 0.044
Boolean 0.131 0.135 0.204
Null 0.081 0.087 0.208

b) Results for the English monolingual subtask.

Table 3: MAP results obtained for the post-hoc experiments.

means that there are more irrelevant documents that are being scored higher than relevant documents being
scored lower by theGeoScoreMaximum.

Regarding the geographic query expansion before or after the RF, we found that early geographic
expansion results in a better generation of initial runs (0.126 versus 0.084), meaning that more relevant
documents are present on the top-k docs, thus improving the results from the RF step.

Using geonames as terms on the term index instead of geographic concepts still gets better results in the
initial run (0.210 versus 0.126). The final run obtained without performing geographic ranking improves
the MAP value to 0.233. We were intrigued with the consistentbetter results obtained with theTerms Only
experiment. The good MAP value obtained by its initial run (0.210) suggested an experiment with this
initial run, followed by a term and geographic expansion to generate a final query with a geographic signa-
ture, and ending in a GIR retrieval just like the other experiments. ThisTerms/GIRexperiment obtained an
MAP of 0.268 for theGeoScoreBooleanmetric, the highest MAP value of our post-hoc experiments.

Regarding the English experiments, we observe similar trends as in the Portuguese experiments. The
slightly lower values are consequence of the quality of the ontology, which is more complete with Por-
tuguese feature names. Also, we observe that theGeoScoreMaximum outperformed theGeoScoreBoolean

geoscope values for theTerms/GIRexperiment, which prompt us to make further analysis on the meaning
of the observed differences between these two metrics.

5 Conclusions

This year’s participation was a deception in terms of results for official runs, but we accept it as the conse-
quence of deciding to develop a totally renewed and untestedGIR system. Yet, the post-hoc experiments
drew some interesting results for understanding why the GIRapproaches are still outperformed by classic
IR approaches. OurTerms/GIRexperiments manage to obtain the highest MAP values, which might shed
some light on this problem and suggest that there may be more efficient ways to introduce geographic
reasoning in a GIR system.

The approaches of this year and last year’s participations are both very dependent of the quality of the
geographic ontology. 25% of the relevant documents contained geonames that were not in our ontology,
and we found that we have poor results when handling queries with unknown geonames. In addition, the
ontology is not comprehensive on coordinates and population data to serve the geographic heuristics. We
need to make further experiments with a more complete ontology, in order to better evaluate the fitness of
the geographic similarities.

We also believe that our results could be improved with a morerobust term query expansion module,
as the current query expansion through blind relevance feedback is basic and does not produce significant
improvements. We are also aware that some of the blame may be on the query construction step, as the
readaptation for the MG4J syntax was overlooked. Our post-hoc experiments used RF parameters of eight
top-k terms and five top-k docs, and used different logic operations for query construction. These changes



resulted in significant improvement of the results, showingthat we still have some tuning to do in the term
query expansion step.

Finally, we conclude that this new GIR approach has its merits, and may be further improved to produce
good results. Yet, it is still on its early steps, so our next work is to mature the approaches and develop a
stable GIR prototype for further experiments.
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