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DOUBLE COMPLEXES AND VANISHING

OF NOVIKOV COHOMOLOGY*

Thomas Hüttemann

Communicated by M. Domokos

Abstract. We consider non-standard totalisation functors for double com-
plexes, involving left or right truncated products. We show how properties
of these imply that the algebraic mapping torus of a self map h of a cochain
complex of finitely presented modules has trivial negative Novikov coho-
mology, and has trivial positive Novikov cohomology provided h is a quasi-
isomorphism. As an application we obtain a new and transparent proof that
a finitely dominated cochain complex over a Laurent polynomial ring has
trivial (positive and negative) Novikov cohomology.

Finiteness conditions for chain complexes of modules play an important
role in both algebra and topology. For example, given a group G one might
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ask whether the trivial G-module Z admits a resolution by finitely generated
projective Z[G]-modules; existence of such resolutions is relevant for the study
of group cohomology of G, and has applications in the theory of duality groups
[2]. For topologists, finite domination of chain complexes is related, among other
things, to questions about finiteness of CW complexes, the topology of ends of
manifolds, and obstructions for the existence of non-singular closed 1-forms [4, 5].

A cochain complex C of R[z, z−1]-modules is called finitely dominated
if it is homotopy equivalent, as a complex of R-modules, to a bounded com-
plex of finitely generated projective R-modules. Finite domination of C can be
characterised in various ways; Brown considered compatibility of the functors
M 7→ H∗(C;M) and M 7→ H∗(C;M) with products and direct limits, respec-
tively [2, Theorem 1], while Ranicki showed that C is finitely dominated if and
only if the Novikov cohomology of C is trivial [4, Theorem 2] (see also Defini-
tion 2.3 and Corollary 2.7 below).

Our approach to Novikov cohomology is elementary, and involves a non-
standard totalisation functor for double complexes. Rewriting mapping tori as
total complexes of suitable double complexes, cf. Remark 2.8 below, we prove a
vanishing result for Novikov cohomology (Theorem 2.5). As an application we
obtain a new proof of Ranicki’s necessary criterion for finite domination over
Laurent polynomial rings in one variable (Corollary 2.7). — The case of several
indeterminates is discussed in papers by Schütz [5], and by Hüttemann and
Quinn [3].

1. Truncated product totalisation of double complexes. Let
R be a ring with unit. A double complex D∗,∗ is a Z × Z-indexed collection
(

Dp,q
)

p,q∈Z
of right R-modules together with “horizontal” and “vertical” differ-

entials

dh : Dp,q - Dp+1,q and dv : Dp,q - Dp,q+1

which satisfy the conditions

dh ◦ dh = 0, dv ◦ dv = 0, dh ◦ dv = −dv ◦ dh.

Note that the differentials anti-commute. A “horizontal” cochain complex in the
category of “vertical” cochain complexes of right R-modules can be converted to
a double complex in this sense by changing the differential of the pth column by
the sign (−1)p. — We will in general consider unbounded double complexes so
that Dp,q 6= 0 may occur for |p| and |q| arbitrarily large.
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There are two standard ways to convert a double complex into a cochain
complex via “totalisation”, one involving direct sums, and one involving direct
products. The former results in a cochain complex Tot⊕D∗,∗ given by

(

Tot⊕D∗,∗
)n

=
⊕

p∈Z

Dp,n−p

with coboundary d = dh + dv, the latter is defined analogously with “
⊕

” above
replaced by “

∏

”.
In this paper, which was partially inspired by a preprint of Bergman

[1, §6], we will consider two non-standard totalisation functors formed by using
truncated products. Given a Z-indexed family of modules Mi we define the left
truncated product to be the module

lt∏

i

Mi =
⊕

i<0

Mi ⊕
∏

i≥0

Mi;

the elements of this truncated product are “sequences” (mi)i∈Z with mi ∈ Mi

such that mi = 0 for i ≪ 0, which we might also write in the form (mi)i≥k

or even
∑

i≥k miz
i with z being an indeterminate. The latter notation suggests

thinking of such a sequence as a formal Laurent series with coefficients in the
modules Mi. For emphasis and ease of notation we introduce special notation
for the case that all the Mi are the same module M ; we let M((z)) denote the
module of formal Laurent series with coefficients in M ,

M((z)) =
lt∏

M =
{

∑

i≥k

miz
i | k ∈ Z, mi ∈ M

}

.

Dually we define the right truncated product to be the module

∏rt

i

Mi =
∏

i≤0

Mi ⊕
⊕

i>0

Mi

of formal Laurent series which are finite to the right, and define M((z−1)) by
setting

M((z−1)) =
∏rt

M =
{

∑

i≤k

miz
i | k ∈ Z, mi ∈ M

}

.

Note that R((z)) and R((z−1)) are rings of formal Laurent series, also
known as Novikov rings; there is a natural identification

R((z)) = R[[z]][z−1] and R((z−1)) = R[[z−1]][z].
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The module M((z)) has the structure of an R((z))-module given by multiplication
of formal Laurent series. Similarly, M((z−1)) can be equipped with an obvious
R((z−1))-module structure.

Definition 1.1. Let D∗,∗ be a double complex. We define its left trun-
cated totalisation to be the cochain complex ltTot D∗,∗ which in cochain level n is
given by the left truncated product

(

ltTot D∗,∗
)n

=
lt∏

p

Dp,n−p;

the differential is given by d = dh + dv. — Dually, we define the right truncated
totalisation to be the cochain complex Totrt D∗,∗ which in chain level n is given
by the right truncated product

(

Totrt D∗,∗
)n

=
∏rt

p

Dp,n−p

with differential induced as above.

Proposition 1.2 ([1, Corollary 29]). Suppose the double complex D∗,∗

has exact columns. Then ltTot D∗,∗ is acyclic. Dually, if D∗,∗ has exact rows
then Totrt D∗,∗ is acyclic.

P r o o f. We prove the first statement only. Abbreviate ltTot D∗,∗ by C.
Suppose x ∈ Cn is a cocycle. We can write x = (xi)i≥k with xi ∈ Di,n−i, and
setting xj = 0 for j < k the condition d(x) = 0 translates into

(1) dv(xi) + dh(xi−1) = 0 for i ≥ k.

Set yj = 0 for j < k. Suppose by induction on i, starting with i = k, that we
have constructed yj ∈ Dj,n−j−1 for j < i such that

(2) dv(yj−1) + dh(yj−2) = xj−1 for j ≤ i.

This implies that
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dv
(

xi − dh(yi−1)
)

=
(

dv(xi) − dvdh(yi−1)
)

=
(

dv(xi) + dhdv(yi−1)
)

=
(

dv(xi) + dh(xi−1 − dh(yi−2))
)

(by (2))

= dv(xi) + dh(xi−1)

= 0 (by (1))

so that, by exactness of columns, there exists yi ∈ Di,n−i−1 with dv(yi) =
xi − dh(yi−1) or, equivalently, dv(yi) + dh(yi−1) = xi.

This completes the inductive construction. It remains to observe that
relation (2) is now satisfied for all j ∈ Z which precisely means that the element
(yi)i≥k ∈ Cn−1 is mapped to x under the coboundary map of C. Consequently,
x represents the trivial cohomology class in Hn(C) so that Hn(C) = 0. �

Remark 1.3. The Proposition does not hold for the totalisation functor
Tot⊕ in place of ltTot or Totrt . For example, let D∗,∗ be the double complex
defined by setting Dp,−p = Dp,−p−1 = Z and all other entries 0; the horizon-
tal and vertical differentials are given by −idZ and multiplication by 2 where
possible, respectively. This double complex has exact rows, but the element
1 ∈ D0,0 ⊂

(

Tot⊕D∗,∗
)0

is a cocycle representing a non-zero cohomology class in
H0 Tot⊕(D∗,∗). The same element represents a non-trivial cohomology class in
H0 ltTot (D∗,∗) as well.

2. Novikov cohomology of algebraic mapping tori.

Lemma 2.1. Suppose that M is a finitely presented right R-module.
There is a natural R((z))-linear isomorphism

ΦM : M ⊗R R((z))
∼=
- M((z)) , m ⊗

∑

i≥k

riz
i 7→

∑

i≥k

mriz
i,

and a similar isomorphism ΨM : M ⊗R R((z−1))
∼=
- M((z−1)).

P r o o f. We give the proof for ΦM only. First suppose that F is a free
module with basis e1, e2, · · · , et. Then every x ∈ F ⊗R R((z)) can be written
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uniquely in the form x =
∑t

j=1 ej ⊗ fj with fj ∈ R((z)). There exist elements

k ∈ Z and rij ∈ R with fj =
∑

i≥k rijz
i, and ΦF is given by setting

ΦF (x) =
∑

i≥k

(

t
∑

j=1

ejrij

)

zi.

This is a well-defined R-module homomorphism. It is injective since the ej form
a basis of F ; in detail, ΦF (x) = 0 means that

∑

j rijej = 0 for all i so that, by
linear independence of the ej , we have rij = 0 for all i and j. But this means
x = 0. — To prove surjectivity, let g =

∑

i≥k miz
i ∈ F ((z)) be given. Since the

ej generate F there are elements rij ∈ R with mi =
∑

j ejrij. Set fj =
∑

i≥k rijz
i

and x =
∑

j(ej ⊗ fj). Then ΦF (x) = y, by construction.

For the general case, choose a presentation G - F - M - 0 of M ,
with F and G both finitely generated free. The functor N 7→ N((z)) is certainly
exact (for a map f we let f((z)) denote the map f applied componentwise), so
we obtain a commutative diagram with exact rows

G ⊗R R((z)) - F ⊗R R((z)) - M ⊗R R((z)) - 0

0 - G((z))

ΦG
∼=
?

- F ((z))

ΦF
∼=
?

- M((z))

ΦM
?

- 0

(3)

where the dashed arrow is ΦM . In fact, every element x ∈ M ⊗R R((z)) can be
written (in at least one way) in the form x =

∑s
j=1 mj ⊗ fj, with mj ∈ M and

fj =
∑

i≥k rijz
i ∈ R((z)), and ΦM(x) =

∑

i≥k

(
∑s

j=1 mjrij

)

zi; commutativity
of (3) shows that this is well defined. By the Five Lemma, the map ΦM is an
isomorphism in general as claimed. �

Remark 2.2. The lemma fails for modules which are not finitely
generated. Specifically, if M is free of infinite rank one can still define a map
M ⊗R R((z)) - M((z)), essentially in the same way as above, and linear
independence of basis elements guarantees that this map is injective. Its image
consists precisely of those formal Laurent series

∑

i≥k miz
i which have the prop-

erty that the submodule of M generated by the set of coefficients {mi | i ≥ k} is
finitely generated. Using this and a diagram chase in (3) one can show that ΦM

is surjective whenever M is finitely generated; in that case ΦM is injective as well
if and only if M is finitely presented.
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Definition 2.3. Let B be a cochain complex of R[z, z−1]-modules. The
positive Novikov cohomology is the cohomology of the cochain complex B⊗R[z,z−1]

R((z)). The negative Novikov cohomology is the cohomology of the cochain
complex B ⊗R[z,z−1] R((z−1)).

Definition 2.4. Let C be a cochain complex of right R-modules, and let
h : C - C be a cochain map. The mapping torus T (h) of h is defined by

T (h) = Cone
(

C ⊗R R[z, z−1]
h⊗id−id⊗z

- C ⊗R R[z, z−1]
)

where the map “z” denotes the self map of R[z, z−1] given by multiplication by
the indeterminate z.

In this definition “Cone” stands for the algebraic mapping cone; if a
map of cochain complexes f : X - Y is considered as a double complex D∗,∗

concentrated in columns p = −1, 0 with horizontal differential f , and differential
of X changed by a sign −1, then Cone (f) = Tot⊕D∗,∗. Explicitly, we have
Cone (f)n = Xn+1 ⊕ Y n, and the differential is given by the following formula:

Cone (f)n = Xn+1 ⊕ Y n - Xn+2 ⊕ Y n+1 = Cone (f)n+1

(x, y) 7→
(

− d(x), f(x) + d(y)
)

Theorem 2.5. Let C be a (possibly unbounded) cochain complex of fi-
nitely presented right R-modules, and let h : C - C be an arbitrary cochain
map. Then the negative Novikov cohomology of the mapping torus T (h) of h

is trivial, i.e., the cochain complex T (h) ⊗R[z,z−1] R((z−1)) is acyclic. — If h is
a quasi-isomorphism, then the positive Novikov homology of T (h) is trivial as
well, i.e., the cochain complex T (h) ⊗R[z,z−1] R((z)) is acyclic in this case.

P r o o f. We deal with negative Novikov cohomology first. Since tensor
products are additive, we have an equality of cochain complexes

T (h) ⊗R[z,z−1] R((z−1)) = Cone
(

C ⊗R R((z−1))
h⊗id−id⊗z

- C ⊗R R((z−1))
)

.

Using Lemma 2.1 we identify the complex C ⊗R R((z−1)) with C((z−1)). We can
now write

(4) T (h) ⊗R[z,z−1] R((z−1)) = Totrt (D∗,∗)
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where D∗,∗ is defined as follows:

Dp,q = Cp+q+1 ⊕ Cp+q

dh : Dp,q - Dp+1,q

(x, y) 7→ (0,−x)

dv : Dp,q - Dp,q+1

(x, y) 7→
(

− dC(x), h(x) + dC(y)
)

Here dC denotes the coboundary map in the complex C. We have dh ◦ dh = 0,
and the pth column Dp,∗ of D∗,∗ is the pth shift of Cone (h) so that dv ◦ dv = 0.
Finally, the differentials anti-commute: for a typical element (x, y) ∈ Dp,q =
Cp+q+1 ⊕ Cp+q we have

dv ◦ dh(x, y) = dv(0,−x) =
(

0, dC(−x)
)

= −
(

0, dC(x)
)

= −dh
(

(−dC(x), h(x) + dC(y))
)

= −dh ◦ dv(x, y).

To complete the identification given in (4) we note that the pth column of D∗,∗

corresponds to the terms with coefficient zp in the formal Laurent series nota-
tion. — Now the rows of D∗,∗ are clearly exact so that Totrt (D∗,∗) is acyclic by
Proposition 1.2.

For positive Novikov cohomology we note that since C ⊗R R((z)) =
C((z)) we can identify T (h) ⊗R[z,z−1] R((z)) with ltTot (D∗,∗). If h is a quasi-
isomorphism then Cone (h) is acyclic so that the columns of D∗,∗ are exact. By
Proposition 1.2, ltTot (D∗,∗) is acyclic. �

Remark 2.6. Suppose h is the map Z - Z given by multiplica-
tion by 2, considered as a cochain map concentrated in cochain degree 0. Then
the D∗,∗ in the proof above is the double complex described in Remark 1.3 which
has the property that ltTot (D∗,∗) is not acyclic. This provides an example of a
map h whose mapping torus has trivial negative but non-trivial positive Novikov

cohomology.

The asymmetry stems from the fact that the definition of mapping tori
involves a choice. One could have defined the mapping torus of h as the mapping
cone of h⊗ id− id⊗z−1 in which case the roles of positive and negative Novikov

cohomology in Theorem 2.5 are reversed. This can be shown by identifying the
pth column of D∗,∗ in the proof above with the coefficients of z−p in the Laurent
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series notation, or by using double complexes with differentials going down and
left (in which case the roles of ltTot and Totrt are swapped in Proposition 1.2).

Corollary 2.7. Suppose that C is a bounded above cochain complex of
projective right R[z, z−1]-modules. Suppose further that C is homotopy equivalent,
as an R-module complex, to a bounded complex B of finitely generated projective
right R-modules. Then C has trivial positive and negative Novikov cohomology,
that is, the two cochain complexes C⊗R[z,z−1] R((z)) and C⊗R[z,z−1] R((z−1)) are
acyclic.

P r o o f. Let f : C - B and g : B - C mutually inverse R-linear
homotopy equivalences. There are R[z, z−1]-linear homotopy equivalences

C � T (zgf) - T (fzg)

where “z” denotes the self map given by multiplication by z; a proof can be found,
for example, in [3, §§2–3]. It follows that the Novikov cohomology of C and
of T (fzg) are the same. Now fzg is a homotopy equivalence as z acts invertibly
on C, and Theorem 2.5 assures us that T (fzg) has trivial positive and negative
Novikov cohomology. �

This Corollary is the “only-if” part of a result obtained by Ranicki [4,
Theorem 2] using different methods; the present proof has the advantage of being
completely elementary.

Remark 2.8. With D∗,∗ as in the proof of Theorem 2.5 we can identify
T (h) with Tot⊕D∗,∗. Note that D∗,∗ has exact rows, and has exact columns if
h is a quasi-isomorphism. In view of Remark 1.3 this does not imply that T (h)
is acyclic.

REFERE NC ES

[1] G. Bergman. On diagram-chasing in double complexes.
arXiv:1108.0958v1.

[2] K. Brown. Homological criteria for finiteness. Comment. Math. Helv. 50

(1975), 129–135.
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[5] D. Schütz. Finite domination, Novikov homology and nonsingular closed
1-forms. Math. Z. 252, 3 (2006), 623–654.

Thomas Hüttemann
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