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ABSTRACT. Algebras with identities a(bc) = b(ac), (ab)e = (ac)b is called
bicommutative. Bases and the cocharacter sequence for free bicommuta-
tive algebras are found. It is shown that the exponent of the variety of
bicommutaive algebras is equal to 2.

Introduction. One of important problems of modern algebra is to study
free algebras satisfying some identities. To construct bases as vector spaces, to
find the cocharacter sequence, to construct multilinear components and to find
their dimensions or asymptotics of the growth are parts of this problem. From
this point of view varieties of associative algebras, varieties of associative and
commutative algebras and varieties of Lie algebras are well understood. For ex-
ample, free associative commutative algebras are polynomial algebras. Relations
between homogeneous polynomials and symmetric polynomials are used in many
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branches of mathematics and physics. The free associative algebra is a tensor
algebra, its multilinear components are isomorphic to the regular modules of the
corresponding symmetric groups. Free Lie algebras as S, - and GL,-modules
were studied by Klyachko [9]. Besides these results there are many other in-
teresting classes of algebras for which problems on free algebras still remain a
difficult task. For example, very little is known about free alternative algebras,
free Malcev algebras, even about free commutative algebras.

Let com = tity + tot; and acom = tity — tot; be the commutative and
anti-commutative polynomials, respectively, and let

ass = (tla t2, t3) = tl(t2t3) - (tth)tg

be the associator or the associative polynomial. An algebra with the identity
com = 0 is called anti-commutative. Commutative algebras are defined by the
identity acom = 0 and associative algebras by ass = 0. As we already men-
tioned almost everything is known for free algebras in the associative case. Free
commutative and free anti-commutative algebras are less understood. For ex-
ample, the structure of the free anti-commutative algebra as a module of the
symmetric group is known only for degree <7, [1].

Recently the following generalizations of the identities of commutativity
and associativity have become popular:

lcom = ty(tats) — ta(t1ts) (left-commutative),

rsym = ass(ty, ta, t3) — ass(ty, ts, t2) (right-symmetric).

Similarly one defines the non-commutative non-associative polynomials
recom = (tita)ts — (t1t3)ts (right-commutative),

Isym = ass(t1,ta, t3) — ass(ta, t1,t3) (left-symmetric).

Algebras with identities [sym = 0 and rsym = 0 are called assosymmetric.
Bases for free assosymmetric algebras are found in [8]. Bases of free right-
symmetric algebras were described in [10], [2] and [4]. Bases of free right-
commutative algebras and right-symmetric algebras can be described in terms of
rooted trees. The cocharacter sequences of right-symmetric algebras and right-
commutative algebras are equal.

An algebra with identities lcom = 0 and rsym = 0 is called Novikov.
Free Novikov algebras were described in [4]. The structure of these algebras as
Sy - or GL,-modulesis not known. In [5] bases of free Novikov algebras in terms
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of Young diagrams are constructed (the frame is a Young diagram, but the filling
rule is different). The lexicographic order on Young diagrams induces an order
on such a base of the free Novikov algebra. This order induces a filtration and
a grading in free Novikov algebras. It seems that graded Novikov algebra satisfy
bicommutative identities. The connection between bicommutative algebras and
the filtration and the grading of free Novikov algebras gives a motivation to study
bicommutative algebras.

An algebra with identities lcom = 0, rcom = 0 is called bicommuta-
tive. The aim of our paper is to find bases and the cocharacter sequence for
bicommutative algebras.

Let Bicom be the variety of bicommutative algebras. The codimension
sequence of the variety is defined as a sequence of dimensions of the multilinear
components ¢, = dim qu“m, qg = 0,1,2,.... The exponent of the variety is
defined as

Exp Bicom = lim {/c,.

n—oo
In our paper we construct bases for free bicommutative algebras. We
study F;n‘ﬂti as an S, -module and construct its decomposition into irreducible
components. We show that Exp Bicom = 2. The main results of the paper were
announced in [3]. Unfortunately, in [3] the formula for the dimensions (Theorem
2) was given in a non-correct form. Here we give the correction.

2. Statement of main results. Let F(X) be a free bicommutative
algebra over a field K of characteristic p > 0. For m = (my,...,mq) denote by
F™(X) the space spanned by the products of the elements 1, ..., x,, such that
x1 appears mjp times, xp appears mg times, etc., x, appears m, times. Let
F™lt be the multilinear component of the free bicommutative algebra generated
by n elements, i.e., Fut = pl-1(X) with | X|=n.

Let Z be the set of non-negative integers and let 2% =Z, & --- § Zy
be the direct sum of ¢ copies of Z, . Let ¢ = (0,...,0,1,0,...,0) € Z% | all
components except the i-th being equal to 0.

Let F(q) be the vector space with base

q q
V = {xz; ]izl,...,q}u{vawg |, B € 22, Zai%o, Zﬂi;«éO}.
i=1 i=1
We endow F'(q) with multiplication o given by the following rules:

i © ;CJ = v€i7€j7
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T © Vo, = Vate;,Br
’Ua’ﬂ o x] - va’ﬂ+6j7

Va,3 © Uy, = Vaty,B+6-

Let S[ be the trivial S, -module, and let S~ be the S, -module
corresponding to the Young diagram with two rows with n — ¢ and 4 boxes.

In our paper we prove the following main result.

Theorem 2.1. Let X = {x1,...,24} be a set of generators and let K
be a field of characteristic p > 0. Then the following statements are true.

a. The algebra F(q) is isomorphic to the free bicommutative algebra F(X) .

b. (p=0) As a module of the symmetric group Sy,

125+
Fénulti (] (TL _ 1)5[”] (&) @ (7’L — 2 + 1)S[n_i7i], n > 17
=1

where S =~ K s the trivial Sy, -module, Sl s the irreducible S -
module corresponding to the partition {n—i,i} b n and |«| is the integer
part of a.

c. The bicommutative operad is not Koszul.

Let I, be the set of sequences of non-decreasing positive integers i =

109 .. lp, 11 < iy < -+ < 4,. For i € I,, we say that its content is m =
(m1,...,my) and write cont(i) = m, if among the components of i there are
m; elements equal to 7, i =1,2,...,q.

Corollary 2.2. Let X = {z1,...,24} be a set of generators. Then the
set of elements x,, where s =1,...,q, and €5, where i€ I, je I;, k+l=mn,
and cont(i) + cont(j) = m, forms a base of F™(X).

Proof. The statement follows from Theorem 2.1, part a. O
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Corollary 2.3. (p = 0) The cocharacter sequence for bicommutative
algebras is given by

( Pl if n=1
n—1
2
) =Dp e @ 20+ Dppuiy,  if n>1 s odd
Xn = i=1

n

(n—1)pp @® @(n = 2i+ 1)pp_iq, if n is even,
i=1

where py; 5 is the character of the irreducible representation corresponding to the
Young diagram with two rows with i and j bozes.

Proof. It follows from Theorem 2.1, part b. O
Corollary 2.4. For the Hilbert series

H(bicom,ty,...,t;) = Zdim F2(XxX)em

of F(X) the following formula holds

q q q
. 1 1
H(blcom,tl,...,tq)zl—i—'g tz+Hm—2H1_tz

In particular,

dimFm(X) = (m1 + 1) e (mq +1) -2+ (5|m|71 + 5|m|70

dim 1 (30) = <n+2q—1) _(2_6n71)<n+q—1)'

n n

and

The codimension sequence is given by the formula
cg =dim FY(X) =27 -2+ §,1.

The exponent of the variety of bicommutative algebras is equal to 2 .

Here

Fu(X) = @ F7(X)

|m|=n
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is the homogeneous component of degree n of F'(X) and ., denotes the Kro-
necker symbol. It is equal to 1 if x =y and is equal to 0, if x # y.
Example. If n =1, then
t—t2+¢3
H (bicom,t) = e
(1—-1t)

Example. Let n = 5. Then dim anum = 30. To construct the base
elements we need to construct the bicommutative diagrams

= LTI g T

Below is the list of multilinear base elements of degree 5:

5] = {(((ab)c)d)e, (((ba)e)d)e, (((ca)b)d)e, (((da)b)c)e, (((ea)b)e)d} ,

[21°] = {a(b(c(de))), a(b(c(ed))), a(b(d(ec))), a(c(d(eb))), b(c(d(ea))) } -
Example. Let n =20 or n =21. Then

10

X20 = 19p[20] S¥ @(21 - 21‘)0[204,1’]
=1

= 19p120) @ 19p119,1] © 17pp18.2)  15p117,3) B 13p116,4) S 11p[15 5
®9p114,6) D Tpps,7) D O5p2,8) D 3P[11,9] D P1102]5
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10
X21 = 20p[21) & @(22 = 2i)pla1—i)
i=1

= 20p121) @ 20p(20,1] © 18p119,2) 1618 3] B 14p[17,4) S 12[16 5)

©10p15,6) D 8p[14,7) © 6p113,8) © 4pp12,9) D 20011,10]-

Example. dim F?3(X)=3-4-5-2=58.

3. Multiplication in bicommutative algebras. In this section we
establish some properties of bicommutative algebras which we need in the proof
of Theorem 2.1, part a.

In Novikov algebras and in bicommutative algebras a base can be chosen of
elements that are right-bracketed products of left-bracketed elements. To denote
such products we shall use special notation. We write them as a sequence of rows
arranged one above the other. The rows corresponds to left-bracketed elements

and the columns to right-bracketed elements. The priority is given to the rows.
For example,

c d
a(bled)) = b ,
((ab)e)d= a b ¢ d
d e [ g
((ab)e)(((xy)z)(((de)f)g)) = = ?; 2

So, we write the left-bracketed element ((ajasz)---)a, as the row
a az -+ Qap ,
and the right-bracketed element aq(--- (ap—1a,)---) as the column

Gp—1 QAn

aq
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and the following hook

ag bl bl
k-1
L(al,...,ak;bl,...,bl):

a
will denote the element aj(--- (ax_1 <( < (agby) - - - )bl>) -++). For example,
L(a1;b1) = a1by,
L(ay;b1,...,0) = (- ((a1b1)b2) -+ )by = L(L(ay; b1 ..., bj—1); by),

L(al, ey Ay bl) = al(- N (ak,l(akbl)) s ) = L(al; L(ag, ey Ay bl))

Below notation of the form a el b will mean that a = b because of the relation
“rel” .

Lemma 3.1. For any permutations o € Sy, T € S;, the following

equality holds in bicommutative algebras

L(ag(rys -« Qo(k); br1)s - - - 0ry) = Lla1, .-y ap; b1, ..o, by).

Proof. For o € S, 7 € S, such that o(k) = k our statement is
evident in virtue of the bicommutative identities. Suppose now that o(k) # k.
It is sufficient to consider the case when o = (k — 1,k) is a transposition. To
prove that

a1 (- ap—s(ap_1((--~ (agbr) -~ b)) ++))
= al(' .. (ak72(ak((' .. (akflbl) c. )bl)) ... ))
it is sufficient to establish the following relation
ak_l((akbl) .. )bl) == ak((ak_lbl) .. )bl)

We have
ak,l((akbl) .. )bl) lcgm ((akbl) .. .)blfl)(akflbl)

"= ((ar(ap—1b))b1) .. )bi—1) i ((ax—1(arbi))b1) - - )br-1)

T (ag_1br) - b)) (arby) 2 ag((ak_1b1) . . )br). -
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For the row
A= a1 ay - ap

we call

h(A) = a1 = the head of A

t(A)= ay ag --- a, = the tail of A
b(A)= a1 ay -+ anp—1 = the beginning part of A
e(A) = a, = the end part of A

Lemma 3.2. Let
Ai= a1 a2 a3 -0 Qg
be left-bracketed elements, i =1,...,n, and let

Ay
A
B= A3
Ap
be their right-bracketed product. Then

B = L(h(Al)v T 7h(An); {t(Al)v cee 7t(An)})

In other words,

B = L(an,lv s 1150125 -0 5 A1 k50225 - -+ A2 Koy - -+ 5 An 2,

Proof. We use induction on n.
Let n =2 and let

A= a1 a2 arz -0 Al

Ay = a1 G22 a3 - - A2ky -
Let
b(A2) = az1 ag2 a3 - v A2 ky—1

ey Ok, )-
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be the beginning part of A, . Then
B = A2A1 = (b(AQ)agka)((aLlaLQ) .. .)al’kl)
T (b(A2)((a11012) - Jar g, ))agk,

tom (((a1,101,2) - - a1 k1) (b(A2)a k, ) )az k,

"2 (((a,101,2) - - a1 —1)a2,6,) (B(A2)ar g, )

lcom
2 b(A2)((a11a12) -+ )1 ky—1)02. k0 ) O 1y

"2 b(A2)((a1,1a1,2) - - )1k —1)a1 k)2 k,)
rc;m b(AQ)(Ale(AQ))
We can repeat this procedure ks — 1 times and obtain

B = Ay A1 = b(Az)(Are(Az)) = b(b(A2))((Are(Az))e(b(Az)))

= =ag 1 L(Ai; a2k, Q2 ky—1,---,022).
Therefore, by Lemma 3.1,
B = L(a2’1, CL171; al’g, e ,a17k1,a272, e ,a27k2).

Our lemma, is proved for n = 2.
Suppose that our statement is true for n — 1 > 1. Then

B=A,C,

where

C=Ap (- (AsA1) ).
By the inductive assumption
C = L(h(An-1),-.., h(A1); {t(A1),. ... t(An-1)}).

Therefore,
B=A,C= L(an,b h(C), {t(C), t(An)})

Note that

h(C) = an_l,t(C) = L(an_271, ceey Q115 {t(Al), .. ,t(An_l)}).
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Therefore,
L(an1, M(C);{t(C), t(An)}) = Llan,1; L((C); {t(C), t(An)}))
= L(an,1, L(an—1;:{L(an—2,1,...,a1,1;t(A1),...),t(An)}))
== L(an1,an-11,---,a1,1;{t(A1),..., t(An)}). O
Lemma 3.3. Let k,l,m,n>1. Then
L(ay,...,ag;b1,...,0))L(c1y ... cmidy, ..., dy)

=L(a,...,0k,Cly. yCm3 b1y dpydy, .. dy).

Proof. Set
Rk,l = L(al, vy Ay bl, e 7bl)7 Sn,m = L(Cl, c ooy Cmy dl, N 7dn)-
Then by the left-commutativity

Ry 1Smn = 1 (Cm1 (B ((-- - (emdr) -+ )dn))) - -).-

Further,
Ria((-++ (comdy) -+ )dy)

= [a1(++ (@1 (o ada) - Jo) -+ (- (emedy) - )o)
(- (emdn) -+ o)1+ (@ (- (agby) b))
(e (emdy) Y1) [(a1dn) @z (a1 (o (b)) )]
2 (@ d)[( Cmds) -+ 1) (@ (@t (- (arby) -+ b)) -+-))]

Lemma 82 0 (ap (G (- (emby) - )b)dy) - V) - ) -+ -).
So, by Lemma 3.1,

Ri1Smn = L(a1,...,ak,c1,. .., cm3b1, ..., 0, d1, ... dy). O

4. Proof of Theorem 2.1, part a. First of all we shall see that the
algebra (F(q),o) is bicommutative. Let us check the left-commutative identity.
We have

(T5025) 0 s = Ve, O Ts = Vejejte, = (Ti ©Ts) O T4
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Further,
(z;0 xj) O Va,B = Vej,e; © Vo, = Ve;+a,e;+08s
(1:1' © er,ﬁ) O Xj = Vate;,8 CTj = Vate;,B+e;
and
(xioxj) oveg = (x;0v4,3) 0 x;.
Similarly,

(i © Va,p) © Vy5 = Vartes, 5 0 V1,6 = Vartybes, 46 = (Ti 0 Vy.6) © Vs

and
(Va, 35 V7,6) © Vpp = Varrytp,f+5+v = (Va,8 Vpw) © Uy -

The right-commutative identity can be checked in a similar way.
Now we shall prove that F'(q) is isomorphic to the free bicommutative

algebra F(X) with generators X = {z1,...,x4}. For i€ I;,j € I; set
I, l‘jl e l‘j

k l

Lip_q
€ij = L(acil,... s Lig s Ljpy e 7$jz) =

.I'Z‘l

We use induction on n = |m| = Y7, m;. For n =1 the statement is
trivial: any homogeneous element of degree 1 is an element of the form =z .

Suppose that the statement is true for all m’ with jm’| <n. Let |m| =
n > 1. We have to prove that F™(X) is a linear span of elements e;; such
that cont(i) + cont(j) = m, where iy < --- <ip, k>1 jy <---<j, 1 >1,
i1+ +ix+j1+---+5 =n. If n=2 any element of content m with |m| =2
is a linear combination of elements of the form zgyzgr = egyr .

Suppose that n > 2. If the monomial u € F(X) of content m has the
form u = zsej5, then u = egopp((s,iy)j » Where sort({s,i}) means that the elements
of {s,i} are ordered in non-decreasing way. If the monomial v € F™(X) has
the form u = ejjz5, then u = ejgorq({s,4}) - If the monomial u € F™(X) has the
form eyj ey then by Lemma 3.3 u = egorg({i/,i7})sort({j,j"}) -

So, we have established that the map F(X) — F(q), |X| = ¢, given by
the rules

Ty = T,  €ij = Ucont(i)cont(j)

defines an isomorphism of the algebras F'(X) and F(q). O
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5. Cocharacter sequence. Let My, be the linear span of the
multilinear base elements of shape [n — &+ 1,1¥7!] The action of the symmetric
group S, on Mj ,_j is natural:

O'L(l‘il, . 7$ikv$j17 . 7$jn7k) = L(xa(il)v e ,l‘a(ik),l‘a(jl), e 7$U(jn—k))'

Recall that the irreducible modules of S,, are described by partitions
A € P(n). Any irreducible S, -module is isomorphic to the Specht module S*
constructed by Young tabloids of shape A. Recall that the Young tabloid {t¢}
is a class of Young tableaux ¢ under the equivalence relation given by ¢ ~ ¢’ if
the corresponding rows of ¢ and ' contain the same integers, maybe in different
order. For example,

7 4

1 3 6 7 4 7
2

4 1 6
2 4 5 )

1 3 2
76645

Let C(t) be the column-stabilizer of the Young tableau . Then S* is the vector
space with base
w=Y" simo{o(t)},
oeC(t)

where t runs on the standard Young tables of shape \. It has the structure
of S, -module. Moreover it is irreducible and any irreducible S, -module is iso-
morphic to such a module. The S, -module S* is called a Specht module. For
details see [6].

Lemma 5.1.

k
My, = SM & @ S, k<n/2.
=1

Proof. We use induction on k=1,...,[n/2].

Let K = 1. The n-dimensional standard S,, -module is a direct sum of
a 1-dimensional and an (n — 1) -dimensional irreducible submodule. Therefore,
since Mj ,—1 is isomorphic to the standard n-dimensional S, -module,

M1 n—1 = S[n] D S[n_l’l].

Now, suppose that our statement is true for £k — 1 > 1. By the hook
formula,
nl(n —2i+1)

. [n—1,i] _ e 2
dim 5 (n—i+ 1)l
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We see that
— (n—d+ 1)l
Therefore i
dim Mp5— = dim S >~ dim St* =,
i=1

So, to prove our statement it is sufficient to find in My, S, -submodules
isomorphic to S, Sr=11  gn—kkl

To any Young tabloid {t} we associate a bicommutative element f(t) by
the rule

£’L’1 ‘/L‘jl ‘/'UJQ .« .. “ e $]l
L gy - - i
t=1 Iy =
acl-k

Since the order of the entries in the rows of the Young tableau t is not essential
for the definition of the Young tabloid {¢}, the element f(¢) is an element
of bicommutative algebra which is equal to the base element e;;, where i =
. i, = J1---J1- So, the map f is well-defined. Now we are able to extend
the map f to an imbedding of S, -modules

fosnmkk My ok

by
Z signo{o(t)} — f(vy) Z signo f(o(t)).

ceCy oeCy

For example, if

N[ —

then f(v;) is equal to

1 T2 T4 x5 Tr1 T2 XT3 X4 o T1 T4 I5 + T2 I1 XT3 X4 .
T3 Is T3 I5 ’

in other words,

f(vt) = €13 245 — €15 234 — €23 145 T €25 134-
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So, we have established that M}, ,_; contains an S, -submodule isomorphic to
S[nfk‘:k] .

The following map is an 5, -module imbedding
My—1n—p+1 — Mgp—r, k<n/2,

given by
n—k+1

€ij— Z Csort(iu{s}) j(3)
s=1

where i = il . ik—l y _] = j1 .. -jn—k+1 s J(§) = jl .. .j571j5+1 .. -jn—k+1 and
iu{s} =1i1...i4_15. So, the S, -module Mj,_j contains an .S, -submodule
isomorphic to Mjy_1 p—k+1 -

By the inductive assumption

My—1 k1 = ST @ @bl glh=l,

Therefore, the following isomorphism is S, -module isomorphism

k
My = SMe P sl k<n/2
=1

The proof of the lemma is completed. O

6. Proof of Theorem 2.1, part b. Note that the following isomor-
phism is an .S,, -module isomorphism

My = My k-

By Theorem 2.1, part a, the following isomorphisms are also .S, -module isomor-

phisms
n—1

e g e B My, n> 1
k=1

Let ax = [n —k+1,1%71] be a hook.
Below we use Lemma 5.1.
If n>1 is odd, then

n—1

2

n—1
2
Ft e oD My g, = 2
k=1

(S[n] é S[niﬂ'])
i=1

k=1
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Lo
— (- 1S & 2 DD s

k=1 i=1
n—1

= (n—1)S"Pn - 2i +1)8"+1,

=1

If n is even, then

n—2

multi ~ o
Fr = My y o 2(D s
k=1

n—2
R k
= Mn n [n] [n—id]
B M§7§ ®2 @(S @ S )
k=1 i=1

2@ (n-2) S[”1@2€B€BS[” ul

k=1 1=1

M\:

= My 2 & (n—2)sl" @EB 24)gln—i

n

2
= (n—1)SM P n - 2i + 1)sH,

=1

Theorem 2.1, part b, is proved. O

7. Proof of Theorem 2.1, part c. It is easy to see that the bi-
commutative operad is self-dual. In other words, the dual of the bicommutative
operad is defined by the identities lcom = 0 and rcom = 0 which are the same
as for the bicommutative operad. Let I be a free bicommutative algebra and
let G be a free algebra of the dual of the bicommutative operad. Then F ® G
should be Lie-admissible (for details see [7]). The multilinear component of de-
gree 3 of the free bicommutative algebra F' has dimension 6 and is generated
by the elements a(bc),a(cbh),b(ca), (ab)c, (ba)c and (ca)b. The Jacobi identity
for a®@u,b®v and c® w gives us several conditions for u,v,w € G which are
equivalent to the bicommutative identities.
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First five dimensions of the multilinear components of the free bicommu-
tative algebra are 1,2,6,14,30. Therefore the corresponding exponential gener-
ating function of the codimensions of bicommutative algebras has the form

= —x +22%/2 — 623/3! + 142 /4! — 3025 /5! + O(2),

and

f(f(2) =2 +2° + 0@°) # .

So, by the results of [7] the bicommutative operad is not Koszul.

8. Proof of Corollary 2.4.

Lemma 8.1. Let M be the set of compositions of n, i.e., the set of
non-negative integral solutions of the equation my + ---+mg =n. Then

Z (ml...mq)l = <(7++1§q—_11>

if 1=0,1.

Proof. It is well known that number of solutions in non-negative integers
of the equation m;+---+my =n is (”Jrg_l) . Therefore, for [ = 0 our statement
is true.

Let [ =1. We use induction on ¢. If ¢ =1, then statement is trivial.
Suppose that for ¢ —1 > 0 out statement is true. Then

n
E ml...mq: E mq E ml...mqil

(m1,....,mq)EM mg=0 mi+...4+mg_1=n—mgq
- n—mg+q—2
=2 ml gy )
mq=0 q

So, by the well-known formula

()0 -G

1
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we have

— - mQ)<n_mq+q_2>
(Tm»-%lzq)EM T quzo ( 1 2q — 3
_ (n +q— 1)
2qg -1
Our statement is proved also for [ =1. O

Corollary 8.2.

Yo 1) (mg 1) 2= <n+2q_1>—(2—5n71)<n+q_1>.

n n
mi+---+mqg=n

Proof. Let n > 1. By Lemma 8.1

Z 2:2(n+g—1).

mi+---+mg=n

and
Y A Dem =Y meem,
mi—+--+mg=n mi+-+mg=n+tgq
mq>0,..., mgqg>0
n+q+qg-—1 n+2q—1
D R - ,
B 2g—1 n
m1+-+mg=n+q
mq>0,..., mg>0
Therefore,

S A1) (mg 1) —2= (”+2nq_l)—2(”+s_l).

mi+---+mg=n

For n =1 statement is evident. [
Proof of Corollary 2.4. In how many ways one can choose pairs
(a, 8) such that o, € Z%, a+ B8 =m, «a,8 # (0,...,0)? For «a; there are

m; + 1 possibilities: «a; may be equal to 0,1,...,m;. We have to exclude the
two extremal cases: « = (0,...,0) and o = m. Therefore by the product rule
the base vectors v, g such that o; + 3; = m;, ¢ = 1,...,q, can be chosen in

[T, (m; + 1) — 2 ways. So,

q
dim F™(X) = H(mi +1) =2+ 6jm|1 + Ojml0;
i=1



and
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q
H(bicom, ty,... tg) = » -+ [J0mi+ 0t =2 [t +> ti+1

=1 =1 =1
q 1 q 1 q
:H(l—t)2 —2H1_t' +> i+ 1
i=1 i=1 =1

The other statements of Corollary 2.4 follow from Corollary 8.2. O

1]
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