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FREE BICOMMUTATIVE ALGEBRAS

A. S. Dzhumadil’daev, N. A. Ismailov, K. M. Tulenbaev

Communicated by V. Drensky

Abstract. Algebras with identities a(bc) = b(ac) , (ab)c = (ac)b is called
bicommutative. Bases and the cocharacter sequence for free bicommuta-
tive algebras are found. It is shown that the exponent of the variety of
bicommutaive algebras is equal to 2 .

Introduction. One of important problems of modern algebra is to study
free algebras satisfying some identities. To construct bases as vector spaces, to
find the cocharacter sequence, to construct multilinear components and to find
their dimensions or asymptotics of the growth are parts of this problem. From
this point of view varieties of associative algebras, varieties of associative and
commutative algebras and varieties of Lie algebras are well understood. For ex-
ample, free associative commutative algebras are polynomial algebras. Relations
between homogeneous polynomials and symmetric polynomials are used in many
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branches of mathematics and physics. The free associative algebra is a tensor
algebra, its multilinear components are isomorphic to the regular modules of the
corresponding symmetric groups. Free Lie algebras as Sn - and GLn -modules
were studied by Klyachko [9]. Besides these results there are many other in-
teresting classes of algebras for which problems on free algebras still remain a
difficult task. For example, very little is known about free alternative algebras,
free Malcev algebras, even about free commutative algebras.

Let com = t1t2 + t2t1 and acom = t1t2 − t2t1 be the commutative and
anti-commutative polynomials, respectively, and let

ass = (t1, t2, t3) = t1(t2t3) − (t1t2)t3

be the associator or the associative polynomial. An algebra with the identity
com = 0 is called anti-commutative. Commutative algebras are defined by the
identity acom = 0 and associative algebras by ass = 0 . As we already men-
tioned almost everything is known for free algebras in the associative case. Free
commutative and free anti-commutative algebras are less understood. For ex-
ample, the structure of the free anti-commutative algebra as a module of the
symmetric group is known only for degree ≤ 7 , [1].

Recently the following generalizations of the identities of commutativity
and associativity have become popular:

lcom = t1(t2t3) − t2(t1t3) (left-commutative),

rsym = ass(t1, t2, t3) − ass(t1, t3, t2) (right-symmetric).

Similarly one defines the non-commutative non-associative polynomials

rcom = (t1t2)t3 − (t1t3)t2 (right-commutative),

lsym = ass(t1, t2, t3) − ass(t2, t1, t3) (left-symmetric).

Algebras with identities lsym = 0 and rsym = 0 are called assosymmetric.
Bases for free assosymmetric algebras are found in [8]. Bases of free right-
symmetric algebras were described in [10], [2] and [4]. Bases of free right-
commutative algebras and right-symmetric algebras can be described in terms of
rooted trees. The cocharacter sequences of right-symmetric algebras and right-
commutative algebras are equal.

An algebra with identities lcom = 0 and rsym = 0 is called Novikov.
Free Novikov algebras were described in [4]. The structure of these algebras as
Sn - or GLn -modulesis not known. In [5] bases of free Novikov algebras in terms
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of Young diagrams are constructed (the frame is a Young diagram, but the filling
rule is different). The lexicographic order on Young diagrams induces an order
on such a base of the free Novikov algebra. This order induces a filtration and
a grading in free Novikov algebras. It seems that graded Novikov algebra satisfy
bicommutative identities. The connection between bicommutative algebras and
the filtration and the grading of free Novikov algebras gives a motivation to study
bicommutative algebras.

An algebra with identities lcom = 0 , rcom = 0 is called bicommuta-

tive. The aim of our paper is to find bases and the cocharacter sequence for
bicommutative algebras.

Let Bicom be the variety of bicommutative algebras. The codimension
sequence of the variety is defined as a sequence of dimensions of the multilinear
components cq = dim Fmulti

q , q = 0, 1, 2, . . . . The exponent of the variety is
defined as

ExpBicom = lim
n→∞

n
√

cn.

In our paper we construct bases for free bicommutative algebras. We
study Fmulti

q as an Sq -module and construct its decomposition into irreducible
components. We show that ExpBicom = 2 . The main results of the paper were
announced in [3]. Unfortunately, in [3] the formula for the dimensions (Theorem
2) was given in a non-correct form. Here we give the correction.

2. Statement of main results. Let F (X) be a free bicommutative
algebra over a field K of characteristic p ≥ 0 . For m = (m1, . . . ,mq) denote by
Fm(X) the space spanned by the products of the elements x1, . . . , xq , such that
x1 appears m1 times, x2 appears m2 times, etc., xq appears mq times. Let
Fmulti

n be the multilinear component of the free bicommutative algebra generated
by n elements, i.e., Fmulti

n = F 11···1
n (X) , with |X| = n .

Let Z+ be the set of non-negative integers and let Z
q
+ = Z+ ⊕ · · · ⊕ Z+

be the direct sum of q copies of Z+ . Let ǫi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z
q
+ , all

components except the i -th being equal to 0 .
Let F (q) be the vector space with base

V = {xi | i = 1, . . . , q} ∪
{

vα,β | α, β ∈ Z
q
+,

q
∑

i=1

αi 6= 0,

q
∑

i=1

βi 6= 0

}

.

We endow F (q) with multiplication ◦ given by the following rules:

xi ◦ xj = vǫi,ǫj
,
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xi ◦ vα,β = vα+ǫi,β,

vα,β ◦ xj = vα,β+ǫj
,

vα,β ◦ vγ,δ = vα+γ,β+δ.

Let S[n] be the trivial Sn -module, and let S[n−i,i] be the Sn -module
corresponding to the Young diagram with two rows with n − i and i boxes.

• · · · · · · •
• · · · •

In our paper we prove the following main result.

Theorem 2.1. Let X = {x1, . . . , xq} be a set of generators and let K
be a field of characteristic p ≥ 0 . Then the following statements are true.

a. The algebra F (q) is isomorphic to the free bicommutative algebra F (X) .

b. (p = 0) As a module of the symmetric group Sn

Fmulti
n

∼= (n − 1)S[n] ⊕
⌊n−1

2
⌋

⊕

i=1

(n − 2i + 1)S[n−i,i], n > 1,

where S[n] ∼= K is the trivial Sn -module, S[n−i,i] is the irreducible Sn -

module corresponding to the partition {n− i, i} ⊢ n and ⌊α⌋ is the integer

part of α .

c. The bicommutative operad is not Koszul.

Let In be the set of sequences of non-decreasing positive integers i =
i1i2 . . . in , i1 ≤ i2 ≤ · · · ≤ in . For i ∈ In we say that its content is m =
(m1, . . . ,mq) and write cont(i) = m , if among the components of i there are
mi elements equal to i , i = 1, 2, . . . , q .

Corollary 2.2. Let X = {x1, . . . , xq} be a set of generators. Then the

set of elements xs , where s = 1, . . . , q , and ei,j , where i ∈ Ik , j ∈ Il , k+l = n ,

and cont(i) + cont(j) = m , forms a base of Fm(X) .

P r o o f. The statement follows from Theorem 2.1, part a. �
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Corollary 2.3. (p = 0) The cocharacter sequence for bicommutative

algebras is given by

χn
∼=



















































ρ[n], if n = 1

(n − 1)ρ[n] ⊕
n−1

2
⊕

i=1

(n − 2i + 1)ρ[n−i,i], if n > 1 is odd

(n − 1)ρ[n] ⊕
n
2
⊕

i=1

(n − 2i + 1)ρ[n−i,i], if n is even,

where ρ[i,j] is the character of the irreducible representation corresponding to the

Young diagram with two rows with i and j boxes.

P r o o f. It follows from Theorem 2.1, part b. �

Corollary 2.4. For the Hilbert series

H(bicom, t1, . . . , tq) =
∑

m

dim Fm(X)tm

of F (X) the following formula holds

H(bicom, t1, . . . , tq) = 1 +

q
∑

i=1

ti +

q
∏

i=1

1

(1 − ti)2
− 2

q
∏

i=1

1

1 − ti
.

In particular,

dim Fm(X) = (m1 + 1) · · · (mq + 1) − 2 + δ|m|,1 + δ|m|,0

and

dimFn(X) =

(

n + 2q − 1

n

)

− (2 − δn,1)

(

n + q − 1

n

)

.

The codimension sequence is given by the formula

cq = dim F 1(X) = 2q − 2 + δq,1.

The exponent of the variety of bicommutative algebras is equal to 2 .

Here
Fn(X) =

⊕

|m|=n

Fm(X)
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is the homogeneous component of degree n of F (X) and δx,y denotes the Kro-
necker symbol. It is equal to 1 if x = y and is equal to 0 , if x 6= y .

Example. If n = 1 , then

H(bicom, t) =
t − t2 + t3

(1 − t)2
.

Example. Let n = 5 . Then dim Fmulti
5 = 30 . To construct the base

elements we need to construct the bicommutative diagrams

[5] = [41] =

[312] = [213] =

Below is the list of multilinear base elements of degree 5 :
[5] = {(((ab)c)d)e, (((ba)c)d)e, (((ca)b)d)e, (((da)b)c)e, (((ea)b)c)d} ,

[41] = {a(((bc)d)e), a(((cb)d)e), a(((db)c)e), a(((eb)c)d), b(((ca)d)e), b(((da)c)e),

b(((ea)c)d), c(((da)b)e), c(((ea)b)d), d(((ea)b)c)} ,

[312] = {a(b((cd)e)), a(b((dc)e)), a(b((ec)d)), a(c((db)e)), a(c((eb)d)), a(d((ea)b)) ,

b(c((da)e)), b(c((ea)d)), b(d((ea)c)), c(d((ea)b))},

[213] = {a(b(c(de))), a(b(c(ed))), a(b(d(ec))), a(c(d(eb))), b(c(d(ea)))} .

Example. Let n = 20 or n = 21 . Then

χ20 = 19ρ[20] ⊕
10
⊕

i=1

(21 − 2i)ρ[20−i,i]

= 19ρ[20] ⊕ 19ρ[19,1] ⊕ 17ρ[18,2] ⊕ 15ρ[17,3] ⊕ 13ρ[16,4] ⊕ 11ρ[15,5]

⊕9ρ[14,6] ⊕ 7ρ[13,7] ⊕ 5ρ[12,8] ⊕ 3ρ[11,9] ⊕ ρ[102],
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χ21 = 20ρ[21] ⊕
10
⊕

i=1

(22 − 2i)ρ[21−i,i]

= 20ρ[21] ⊕ 20ρ[20,1] ⊕ 18ρ[19,2] ⊕ 16ρ[18,3] ⊕ 14ρ[17,4] ⊕ 12ρ[16,5]

⊕10ρ[15,6] ⊕ 8ρ[14,7] ⊕ 6ρ[13,8] ⊕ 4ρ[12,9] ⊕ 2ρ[11,10].

Example. dim F 234(X) = 3 · 4 · 5 − 2 = 58 .

3. Multiplication in bicommutative algebras. In this section we
establish some properties of bicommutative algebras which we need in the proof
of Theorem 2.1, part a.

In Novikov algebras and in bicommutative algebras a base can be chosen of
elements that are right-bracketed products of left-bracketed elements. To denote
such products we shall use special notation. We write them as a sequence of rows
arranged one above the other. The rows corresponds to left-bracketed elements
and the columns to right-bracketed elements. The priority is given to the rows.
For example,

a(b(cd)) =
c d
b
a

,

((ab)c)d = a b c d

((ab)c)(((xy)z)(((de)f)g)) =
d e f g
x y z
a b c

So, we write the left-bracketed element ((a1a2) · · · )an as the row

a1 a2 · · · an ,

and the right-bracketed element a1(· · · (an−1an) · · · ) as the column

an−1 an

...
a1

,
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and the following hook

L(a1, . . . , ak; b1, . . . , bl) =

ak b1 · · · bl

ak−1
...

a1

will denote the element a1(· · · (ak−1

(

(· · · (akb1) · · · )bl

)

) · · · ) . For example,

L(a1; b1) = a1b1,

L(a1; b1, . . . , bl) = (· · · ((a1b1)b2) · · · )bl = L(L(a1; b1 . . . , bl−1); bl),

L(a1, . . . , ak; b1) = a1(· · · (ak−1(akb1)) · · · ) = L(a1;L(a2, . . . , ak; b1)).

Below notation of the form a
rel
= b will mean that a = b because of the relation

“rel”.

Lemma 3.1. For any permutations σ ∈ Sk , τ ∈ Sl , the following

equality holds in bicommutative algebras

L(aσ(1), . . . , aσ(k); bτ(1), . . . , bτ(l)) = L(a1, . . . , ak; b1, . . . , bl).

P r o o f. For σ ∈ Sk , τ ∈ Sl , such that σ(k) = k our statement is
evident in virtue of the bicommutative identities. Suppose now that σ(k) 6= k .
It is sufficient to consider the case when σ = (k − 1, k) is a transposition. To
prove that

a1(· · · ak−2(ak−1((· · · (akb1) · · · )bl)) · · · ))

= a1(· · · (ak−2(ak((· · · (ak−1b1) · · · )bl)) · · · ))
it is sufficient to establish the following relation

ak−1((akb1) . . .)bl) = ak((ak−1b1) . . .)bl).

We have

ak−1((akb1) . . .)bl)
lcom
= ((akb1) . . .)bl−1)(ak−1bl)

rcom
= ((ak(ak−1bl))b1) . . .)bl−1)

lcom
= ((ak−1(akbl))b1) . . .)bl−1)

rcom
= ((ak−1b1) . . .)bl−1)(akbl)

lcom
= ak((ak−1b1) . . .)bl). 2
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For the row

A = a1 a2 · · · an

we call

h(A) = a1 = the head of A

t(A) = a2 a3 · · · an = the tail of A

b(A) = a1 a2 · · · an−1 = the beginning part of A

e(A) = an = the end part of A

Lemma 3.2. Let

Ai = ai,1 ai,2 ai,3 · · · ai,ki

be left-bracketed elements, i = 1, . . . , n , and let

B =

A1

A2

A3
...

An

be their right-bracketed product. Then

B = L(h(A1), · · · , h(An); {t(A1), . . . , t(An)}).

In other words,

B = L(an,1, . . . , a1,1; a1,2, . . . , a1,k1
, a2,2, . . . , a2,k2

, . . . , an,2, . . . , an,kn
).

P r o o f. We use induction on n .

Let n = 2 and let

A1 = a1,1 a1,2 a1,3 · · · a1,k1
,

A2 = a2,1 a2,2 a2,3 · · · · · · a2,k2
.

Let

b(A2) = a2,1 a2,2 a2,3 · · · · · · a2,k2−1
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be the beginning part of A2 . Then

B = A2A1 = (b(A2)a2,k2
)((a1,1a1,2) . . .)a1,k1

)

rcom
= (b(A2)((a1,1a1,2) . . .)a1,k1

))a2,k2

lcom
= (((a1,1a1,2) . . .)a1,k1−1)(b(A2)a1,k1

))a2,k2

rcom
= (((a1,1a1,2) . . .)a1,k1−1)a2,k2

)(b(A2)a1,k1
)

lcom
= b(A2)((a1,1a1,2) . . .)a1,k1−1)a2,k2

)a1,k1
)

rcom
= b(A2)((a1,1a1,2) . . .)a1,k1−1)a1,k1

)a2,k2
)

rcom
= b(A2)(A1e(A2)).

We can repeat this procedure k2 − 1 times and obtain

B = A2A1 = b(A2)(A1e(A2)) = b(b(A2))((A1e(A2))e(b(A2)))

= · · · = a2,1L(A1; a2,k2
, a2,k2−1, . . . , a2,2).

Therefore, by Lemma 3.1,

B = L(a2,1, a1,1; a1,2, . . . , a1,k1
, a2,2, . . . , a2,k2

).

Our lemma is proved for n = 2 .

Suppose that our statement is true for n − 1 > 1 . Then

B = AnC,

where

C = An−1(· · · (A2A1) · · · ).
By the inductive assumption

C = L(h(An−1), . . . , h(A1); {t(A1), . . . , t(An−1)}).

Therefore,

B = AnC = L(an,1, h(C); {t(C), t(An)}).
Note that

h(C) = an−1, t(C) = L(an−2,1, . . . , a1,1; {t(A1), . . . , t(An−1)}).
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Therefore,

L(an,1, h(C); {t(C), t(An)}) = L(an,1;L(h(C); {t(C), t(An)}))

= L(an,1, L(an−1; {L(an−2,1, . . . , a1,1; t(A1), . . .), t(An)}))
= · · · = L(an,1, an−1,1, . . . , a1,1; {t(A1), . . . , t(An)}). 2

Lemma 3.3. Let k, l,m, n ≥ 1 . Then

L(a1, . . . , ak; b1, . . . , bl)L(c1, . . . , cm; d1, . . . , dn)

= L(a1, . . . , ak, c1, . . . , cm; b1, . . . , dl, d1, . . . , dn).

P r o o f. Set

Rk,l = L(a1, . . . , ak; b1, . . . , bl), Sn,m = L(c1, . . . , cm; d1, . . . , dn).

Then by the left-commutativity

Rk,lSm,n = c1(· · · (cm−1(Rk,l((· · · (cmd1) · · · )dn))) · · · ).

Further,
Rk,l((· · · (cmd1) · · · )dn)

= [a1(· · · (ak−1((· · · (akb1) · · · )bl)) · · · )]((· · · (cmd1) · · · )dn)

lcom
= ((· · · (cmd1) · · · )dn−1)[(a1(· · · (ak−1((· · · (akb1) · · · )bl)) · · · )dn]

rcom
= ((· · · (cmd1) · · · )dn−1)[(a1dn)(a2(· · · (ak−1((· · · (akb1) · · · )bl)) · · · ))]

lcom
= (a1dn)[((· · · (cmd1) · · · )dn−1)(a2(· · · (ak−1((· · · (akb1) · · · )bl)) · · · ))]

Lemma 3.2
= a1(· · · (ak(((· · · ((· · · (cmb1) · · · )bl)d1) · · · )dn) · · · ) · · · ).

So, by Lemma 3.1,

Rk,lSm,n = L(a1, . . . , ak, c1, . . . , cm; b1, . . . , bl, d1, . . . , dn). 2

4. Proof of Theorem 2.1, part a. First of all we shall see that the
algebra (F (q), ◦) is bicommutative. Let us check the left-commutative identity.
We have

(xi ◦ xj) ◦ xs = vǫi,ǫj
◦ xs = vǫi,ǫj+ǫs = (xi ◦ xs) ◦ xj .
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Further,

(xi ◦ xj) ◦ vα,β = vǫi,ǫj
◦ vα,β = vǫi+α,ǫj+β,

(xi ◦ vα,β) ◦ xj = vα+ǫi,β ◦ xj = vα+ǫi,β+ǫj
,

and

(xi ◦ xj) ◦ vα,β = (xi ◦ vα,β) ◦ xj .

Similarly,

(xi ◦ vα,β) ◦ vγ,δ = vα+ǫi,β ◦ vγ,δ = vα+γ+ǫi,β+δ = (xi ◦ vγ,δ) ◦ vα,β

and

(vα,β, vγ,δ) ◦ vµ,ν = vα+γ+µ,β+δ+ν = (vα,β, vµ,ν) ◦ vγ,δ.

The right-commutative identity can be checked in a similar way.

Now we shall prove that F (q) is isomorphic to the free bicommutative
algebra F (X) with generators X = {x1, . . . , xq} . For i ∈ Ik, j ∈ Il set

ei,j = L(xi1 , . . . , xik ;xj1 , . . . , xjl
) =

xik xj1 · · · xjl

xik−1

...
xi1

.

We use induction on n = |m| =
∑q

i=1 mi . For n = 1 the statement is
trivial: any homogeneous element of degree 1 is an element of the form xs .

Suppose that the statement is true for all m′ with |m′| < n . Let |m| =
n > 1 . We have to prove that Fm(X) is a linear span of elements eij such
that cont(i) + cont(j) = m , where i1 ≤ · · · ≤ ik , k ≥ 1 j1 ≤ · · · ≤ jl , l ≥ 1 ,
i1 + · · ·+ ik + j1 + · · ·+ jl = n . If n = 2 any element of content m with |m| = 2
is a linear combination of elements of the form xs′xs′′ = es′s′′ .

Suppose that n > 2 . If the monomial u ∈ F (X) of content m has the
form u = xseij , then u = esort({s,i})j , where sort({s, i}) means that the elements
of {s, i} are ordered in non-decreasing way. If the monomial u ∈ Fm(X) has
the form u = eijxs , then u = ei sort({s,j}) . If the monomial u ∈ Fm(X) has the
form ei′j′ei′′j′′ then by Lemma 3.3 u = esort({i′,i′′})sort({j′,j′′}) .

So, we have established that the map F (X) → F (q) , |X| = q , given by
the rules

xi 7→ xi, eij 7→ vcont(i)cont(j)

defines an isomorphism of the algebras F (X) and F (q) . �
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5. Cocharacter sequence. Let Mk,n−k be the linear span of the
multilinear base elements of shape [n− k + 1, 1k−1] The action of the symmetric
group Sn on Mk,n−k is natural:

σL(xi1 , . . . , xik , xj1, . . . , xjn−k
) = L(xσ(i1), . . . , xσ(ik), xσ(j1), . . . , xσ(jn−k)).

Recall that the irreducible modules of Sn are described by partitions
λ ∈ P (n) . Any irreducible Sn -module is isomorphic to the Specht module Sλ

constructed by Young tabloids of shape λ . Recall that the Young tabloid {t}
is a class of Young tableaux t under the equivalence relation given by t ∼ t′ if
the corresponding rows of t and t′ contain the same integers, maybe in different
order. For example,

1 3 6 7 4

2 4 5
∼ 7 3 4 1 6

2 4 5
6∼ 1 3 2 7 4

6 4 5

Let C(t) be the column-stabilizer of the Young tableau t . Then Sλ is the vector
space with base

vt =
∑

σ∈C(t)

sign σ {σ(t)},

where t runs on the standard Young tables of shape λ . It has the structure
of Sn -module. Moreover it is irreducible and any irreducible Sn -module is iso-
morphic to such a module. The Sn -module Sλ is called a Specht module. For
details see [6].

Lemma 5.1.

Mk,n−k
∼= S[n] ⊕

k
⊕

i=1

S[n−i,i], k ≤ n/2.

P r o o f. We use induction on k = 1, . . . , ⌊n/2⌋ .
Let k = 1 . The n -dimensional standard Sn -module is a direct sum of

a 1 -dimensional and an (n − 1) -dimensional irreducible submodule. Therefore,
since M1,n−1 is isomorphic to the standard n -dimensional Sn -module,

M1,n−1
∼= S[n] ⊕ S[n−1,1].

Now, suppose that our statement is true for k − 1 > 1 . By the hook
formula,

dim S[n−i,i] =
n!(n − 2i + 1)

(n − i + 1)!i!
.
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We see that
(

n

k

)

= 1 +

k
∑

i=1

n!(n − 2i + 1)

(n − i + 1)!i!
.

Therefore

dimMk,n−k = dim S[n] +

k
∑

i=1

dimS[n−i,i].

So, to prove our statement it is sufficient to find in Mk,n−k Sn -submodules
isomorphic to S[n], S[n−1,1], . . . , S[n−k,k] .

To any Young tabloid {t} we associate a bicommutative element f(t) by
the rule

t =
j1 j2 · · · · · · jl

i1 i2 · · · ik
7→ f(t) =

xi1 xj1 xj2 · · · · · · xjl

xi2
...

xik

.

Since the order of the entries in the rows of the Young tableau t is not essential
for the definition of the Young tabloid {t} , the element f(t) is an element
of bicommutative algebra which is equal to the base element ei,j , where i =
i1 . . . ik, j = j1 . . . jl . So, the map f is well-defined. Now we are able to extend
the map f to an imbedding of Sn -modules

f : S[n−k,k] → Mk,n−k

by

vt =
∑

σ∈Ct

sign σ{σ(t)} 7→ f(vt) =
∑

σ∈Ct

sign σ f(σ(t)).

For example, if

t =
1 3 4

2 5
,

then f(vt) is equal to

x1 x2 x4 x5

x3
− x1 x2 x3 x4

x5
− x2 x1 x4 x5

x3
+

x2 x1 x3 x4

x5
;

in other words,

f(vt) = e13 245 − e15 234 − e23 145 + e25 134.
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So, we have established that Mk,n−k contains an Sn -submodule isomorphic to
S[n−k,k] .

The following map is an Sn -module imbedding

Mk−1,n−k+1 → Mk,n−k, k ≤ n/2,

given by

ei,j 7→
n−k+1
∑

s=1

esort(i∪{s}) j(ŝ),

where i = i1 . . . ik−1 , j = j1 . . . jn−k+1 , j(ŝ) = j1 . . . js−1js+1 . . . jn−k+1 and
i ∪ {s} = i1 . . . ik−1s . So, the Sn -module Mk,n−k contains an Sn -submodule
isomorphic to Mk−1,n−k+1 .

By the inductive assumption

Mk−1,n−k+1
∼= S[n] ⊕⊕k−1

i=1 S[n−i,i].

Therefore, the following isomorphism is Sn -module isomorphism

Mk,n−k
∼= S[n] ⊕

k
⊕

i=1

S[n−i,i], k ≤ n/2.

The proof of the lemma is completed. �

6. Proof of Theorem 2.1, part b. Note that the following isomor-
phism is an Sn -module isomorphism

Mk,n−k
∼= Mn−k,k.

By Theorem 2.1, part a, the following isomorphisms are also Sn -module isomor-
phisms

Fmulti
1

∼= K, Fmulti
n

∼=
n−1
⊕

k=1

Mk,n−k, n > 1.

Let αk = [n − k + 1, 1k−1] be a hook.
Below we use Lemma 5.1.
If n > 1 is odd, then

Fmulti
n

∼= 2

n−1

2
⊕

k=1

Mk,n−k = 2

n−1

2
⊕

k=1

(

S[n]
k
⊕

i=1

S[n−i,i]

)
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= (n − 1)S[n] ⊕ 2

n−1

2
⊕

k=1

k
⊕

i=1

S[n−i,i]

= (n − 1)S[n]

n−1

2
⊕

i=1

(n − 2i + 1)S[n−i,i].

If n is even, then

Fmulti
n

∼= Mn
2
, n
2
⊕ 2

n−2

2
⊕

k=1

Sαk

= Mn
2

, n
2
⊕ 2

n−2

2
⊕

k=1

(S[n]
k
⊕

i=1

S[n−i,i])

= Mn
2
, n
2
⊕ (n − 2)S[n] ⊕ 2

n−2

2
⊕

k=1

k
⊕

i=1

S[n−i,i]

= Mn
2
, n
2
⊕ (n − 2)S[n] ⊕

n−2

2
⊕

k=1

(n − 2i)S[n−i,i]

= (n − 1)S[n]

n
2
⊕

i=1

(n − 2i + 1)S[n−i,i].

Theorem 2.1, part b, is proved. �

7. Proof of Theorem 2.1, part c. It is easy to see that the bi-
commutative operad is self-dual. In other words, the dual of the bicommutative
operad is defined by the identities lcom = 0 and rcom = 0 which are the same
as for the bicommutative operad. Let F be a free bicommutative algebra and
let G be a free algebra of the dual of the bicommutative operad. Then F ⊗ G
should be Lie-admissible (for details see [7]). The multilinear component of de-
gree 3 of the free bicommutative algebra F has dimension 6 and is generated
by the elements a(bc), a(cb), b(ca), (ab)c, (ba)c and (ca)b . The Jacobi identity
for a ⊗ u, b ⊗ v and c ⊗ w gives us several conditions for u, v,w ∈ G which are
equivalent to the bicommutative identities.
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First five dimensions of the multilinear components of the free bicommu-
tative algebra are 1, 2, 6, 14, 30 . Therefore the corresponding exponential gener-
ating function of the codimensions of bicommutative algebras has the form

f(x) =
∑

q≥1

(−1)qcq
xq

q!

= −x + 2x2/2 − 6x3/3! + 14x4/4! − 30x5/5! + O(x6),

and

f(f(x)) = x + x5 + O(x6) 6= x.

So, by the results of [7] the bicommutative operad is not Koszul.

8. Proof of Corollary 2.4.

Lemma 8.1. Let M be the set of compositions of n , i.e., the set of

non-negative integral solutions of the equation m1 + · · · + mq = n . Then

∑

(m1,...,mq)∈M

(m1 · · ·mq)
l =

(

n + q − 1

(l + 1)q − 1

)

if l = 0, 1 .

P r o o f. It is well known that number of solutions in non-negative integers
of the equation m1+· · ·+mq = n is

(

n+q−1
n

)

. Therefore, for l = 0 our statement
is true.

Let l = 1 . We use induction on q . If q = 1 , then statement is trivial.
Suppose that for q − 1 > 0 out statement is true. Then

∑

(m1,...,mq)∈M

m1 · · ·mq =
n
∑

mq=0

mq

∑

m1+...+mq−1=n−mq

m1 · · ·mq−1

=
n
∑

mq=0

mq

(

n − mq + q − 2

2q − 3

)

.

So, by the well-known formula

∑

i

(

a + i

k

)(

b − i

l

)

=

(

a + b + 1

k + l + 1

)
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we have
∑

(m1,...,mq)∈M

m1 · · ·mq =

n
∑

mq=0

(

mq

1

)(

n − mq + q − 2

2q − 3

)

=

(

n + q − 1

2q − 1

)

.

Our statement is proved also for l = 1 . �

Corollary 8.2.

∑

m1+···+mq=n

(m1 + 1) · · · (mq + 1) − 2 =

(

n + 2q − 1

n

)

− (2 − δn,1)

(

n + q − 1

n

)

.

P r o o f. Let n > 1 . By Lemma 8.1

∑

m1+···+mq=n

2 = 2

(

n + q − 1

n

)

.

and
∑

m1+···+mq=n

(m1 + 1) · · · (mq + 1) =
∑

m1+···+mq=n+q

m1>0,...,mq>0

m1 · · ·mq

=
∑

m1+···+mq=n+q

m1≥0,...,mq≥0

m1 · · ·mq =

(

n + q + q − 1

2q − 1

)

=

(

n + 2q − 1

n

)

.

Therefore,

∑

m1+···+mq=n

(m1 + 1) · · · (mq + 1) − 2 =

(

n + 2q − 1

n

)

− 2

(

n + q − 1

n

)

.

For n = 1 statement is evident. �

P r o o f o f C o r o l l a r y 2.4. In how many ways one can choose pairs
(α, β) such that α, β ∈ Z

q
+ , α + β = m , α, β 6= (0, . . . , 0) ? For αi there are

mi + 1 possibilities: αi may be equal to 0, 1, . . . ,mi . We have to exclude the
two extremal cases: α = (0, . . . , 0) and α = m . Therefore by the product rule
the base vectors vα,β such that αi + βi = mi , i = 1, . . . , q , can be chosen in
∏q

i=1(mi + 1) − 2 ways. So,

dim Fm(X) =

q
∏

i=1

(mi + 1) − 2 + δ|m|,1 + δ|m|,0,
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and

H(bicom, t1, . . . , tq) =
∑

m1≥0

· · ·
∑

mq≥0

q
∏

i=1

(mi + 1)tmi

i − 2

q
∏

i=1

tmi

i +

q
∑

i=1

ti + 1

=

(

q
∏

i=1

ti

)

∑

m1≥0

· · ·
∑

mq≥0

(

q
∏

i=1

tmi+1
i

)′

− 2

q
∏

i=1

tmi

i +

q
∑

i=1

ti + 1

=

q
∏

i=1

(
ti

1 − ti
)′ − 2

q
∏

i=1

1

1 − ti
+

q
∑

i=1

ti

=

q
∏

i=1

1

(1 − ti)2
− 2

q
∏

i=1

1

1 − ti
+

q
∑

i=1

ti + 1.

The other statements of Corollary 2.4 follow from Corollary 8.2. �
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