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Abstract. We show that the properties of dense subdifferentiability and
of trustworthiness are equivalent for any subdifferential satisfying a small
set of natural axioms. The proof relies on a remarkable property of the
subdifferential of the inf-convolution of two (non necessarily convex) func-
tions. We also show the equivalence of the dense subdifferentiability prop-
erty with other basic properties of subdifferentials such as a weak∗ Lipschitz
Separation property, a strong Compact Separation property and a Minimal
property for the analytic approximate subdifferential of Ioffe.

1. Introduction. In the sixties, E. Asplund [1] introduced spaces char-
acterized by dense differentiability properties of continuous convex functions.
Two notions of differentiability were privileged, that of Fréchet, giving rise later to
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the so-called Asplund spaces, and that of Gâteaux (equivalent to Dini-Hadamard
as the functions are locally Lipschitz), leading to weak Asplund spaces. In an
analogous manner, A. D. Ioffe [15] defined the so-called subdifferentiability spaces,
as spaces characterized by properties of dense subdifferentiability for lower semi-
continuous non necessarily convex functions. The chosen subdifferentials are the
ε-subdifferentials of Fréchet and of Hadamard (Dini), leading respectively to the
concepts of subdifferentiability space (S-space) and of weak subdifferentiability
space (WS-space).

Clearly, the property for a subdifferential of a lower semicontinuous func-
tion to be not empty at sufficiently many points of the underlying space (dense
subdifferentiability) is the minimal property we can expect from a subdifferential.
On the other hand, such a subdifferential should have good calculus properties to
be useful for analysis problems, at least it should satisfy an approximate sum rule
like “the subdifferential of the sum of two lower semicontinuous functions is con-
tained in the approximate sum of the subdifferentials of each function.” Spaces
possessing such a calculus rule are called trustworthy spaces by Ioffe [15]. Again,
the subdifferentials considered at the origin were the ε-subdifferentials of Fréchet
and of Hadamard (Dini), leading respectively to the notions of trustworthy space
(T-space) and of weak trustworthy space (WT-space).

The equivalence between the properties of dense subdifferentiability and
of trustworthiness, in some sense extreme, and other considerations of the same
nature, have been the object of much investigation. Ioffe [15] showed that if
X is a WT-space (respectively a T-space), then X is a WS-space (respectively
an S-space), Fabian [12] proved the reverse implications. Ekeland-Lebourg [11]
established that every S-space is an Asplund space, Fabian-Zhivkov [14] demon-
strated the inverse.

Then, the question arose whether the equivalences in those results remain
valid for the ‘exact’ subdifferentials of Fréchet and of Hadamard. Thanks to the
recently proved smooth variational principle of Borwein-Preiss [3], Fabian [13]
was able to give a positive answer to the question. Later, Ioffe [18] introduced
the concepts of subdifferentiability space and of trustworthy space for arbitrary
(exact) subdifferentials and announced the coincidence of both types of spaces in
the case of smooth (viscosity) bornological subdifferentials, but without giving a
detailed proof.

Our paper pursues the same line, its principal objective being to inves-
tigate the next natural question: does the equivalence between dense subdiffer-
entiability and trustworthiness hold for any subdifferential satisfying a small set
of natural axioms? The answer is positive (Theorem 3.2). The proof relies on a
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remarkable property (Theorem 2.1) of the subdifferential of the inf-convolution of
two functions, valid for analytic subdifferentials like the Clarke, the proximal and
the bornological ones. This property in fact enables us to prove the equivalence
of the dense subdifferentiability property with five other properties including a
weak∗ Lipschitz Separation property, a strong Compact Separation property and
a Minimal property for the analytic approximate subdifferential of Ioffe.

Notation and definitions. In what follows, X stands for a real Banach
space, BX for its closed unit ball, X∗ for its topological dual, and 〈., .〉 for the
duality pairing. All functions f on X are extended-real-valued and proper, i.e.,
they do not take the value −∞ and their effective domain domf := {x ∈ X :
f(x) <∞} is nonempty. For a function f on X, we define f− by f−(x) := f(−x),
and for S ⊂ X, we define fS by

fS(x) :=

{

f(x), if x ∈ S

+∞, if x 6∈ S.

We say that f is lower semicontinuous near a point x̄ ∈ X if there is a closed
neighborhood V of x̄ such that fV is lower semicontinuous, i.e., the sub-level sets
{x ∈ V : fV (x) ≤ λ} (λ ∈ R) are closed. We say that f is inf-compact near a
point x̄ ∈ X if there is a closed neighborhood V of x̄ such that fV is inf-compact,
i.e., the sub-level sets {x ∈ V : fV (x) ≤ λ} (λ ∈ R) are compact. A function
f : X → (−∞,+∞] is said to attain a strong local minimum at a point x̄ ∈ X if
there exists a neighborhood V of x̄ such that fV attains a strong minimum at x̄,
i.e., for every sequence {xn} ⊂ V , fV (xn) → inf fV implies xn → x̄.

2. Analytic subdifferentials and inf-convolution.

2.1. Analytic subdifferentials. We call analytic subdifferential any
subdifferential directly defined through an analytic formula. Typical in this cat-
egory are the Clarke, the proximal and the bornological subdifferentials.

The Clarke subdifferential, originally introduced by Clarke in his thesis
[5] via a geometric construction, was given the following analytic formulation by
Rockafellar [27]: for a proper function f on X and x̄ ∈ domf ,

∂Cf(x̄) :=











x∗ ∈ X∗ : 〈x∗, h〉 ≤ sup
δ>0

lim sup
tց0

x→f x̄

inf
h′∈Bδ(h)

f(x+ th′) − f(x)

t
, ∀h ∈ X











.
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The proximal subdifferential , introduced explicitly by Rockafellar [28] in connec-
tion with the Clarke subdifferential, is defined by

∂P f(x̄) :=

{

x∗ ∈ X∗ : lim inf
‖h‖ց0

f(x̄+ h) − f(x̄) − 〈x∗, h〉

‖h‖2
> −∞

}

.

We refer to the books by Clarke [6] and by Clarke et al. [7] for thorough study
of these subdifferentials.

A bornology on X is a family β of closed, bounded and symmetric sets
whose union is all of X and such that the union of any two members of β is
contained in some member of β. Each bornology β gives rise to a concept of
topology on X∗ and to a concept of differentiability for functions on X. The
topology of β-convergence on the dual space X∗, denoted by β∗, is the topology
generated by the family of semi-norms pS(x∗) := supx∗(S), S ∈ β. We say
that a function f on X is β-differentiable at a point x̄ ∈ domf , with β-gradient
x∗ = f ′β(x̄) ∈ X∗, provided that for any S ∈ β

lim
tց0

sup
h∈S

∣

∣

∣

∣

f(x̄+ th) − f(x̄)

t
− 〈x∗, h〉

∣

∣

∣

∣

= 0.

Further, we say that f is β-smooth at x̄ ∈ domf if f ′β exists in a neighborhood
U of x̄ and f ′β : U → (X∗, β∗) is continuous at x̄.

Now, the β-subdifferential of f at x̄ ∈ domf is defined by

∂βf(x̄) :=

{

x∗ ∈ X∗ : lim inf
tց0

inf
h∈S

(

f(x̄+ th) − f(x̄)

t
− 〈x∗, h〉

)

≥ 0, ∀S ∈ β

}

,

while the smooth (or viscosity) β-subdifferential of f at x̄ ∈ dom f is given by

∂−β f(x̄) := {ϕ′
β(x̄) : ϕ is locally Lipschitz, β-smooth at x̄,

and f − ϕ attains a local minimum at x̄}.

See, e.g., Borwein-Preiss [3], Borwein-Zhu [4], Deville et al. [10], Jules [21] and
Phelps [26] for more details.

Main examples of bornologies.

— The convex bounded or Fréchet bornology, denoted by F , consisting of
all convex, closed, bounded and symmetric sets; F ∗ is the strong (norm) topology
on X∗.
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— The convex weak-compact or weak-Hadamard bornology, denoted by
WH, consisting of all convex, weak-compact and symmetric sets; WH∗ is the
Mackey topology on X∗.

— The convex compact or Hadamard bornology, denoted byH, consisting
of all convex, compact and symmetric sets; H∗ is the bw∗ topology on X∗.

— The polyhedral or convex-Gâteaux bornology, denoted by CG, con-
sisting of all convex hulls of finite symmetric sets; CG∗ is the w∗ topology on
X∗.

— The finite or Gâteaux bornology, denoted by G, consisting of all finite
symmetric sets; G∗ is the w∗ topology on X∗.

2.2. Subdifferential of inf-convolution. We recall that the inf-con-
volution (also called the epi-sum) of two proper functions f1 and f2 on X is the
function f1▽f2 : X → R given by

(f1▽f2)(z) := inf{f1(x) + f2(z − x) : x ∈ X}.

The inf-convolution is said to be exact at z ∈ X if the infimum in the definition
of (f1▽f2)(z) is attained, that is, if there exists x ∈ X such that (f1▽f2)(z) =
f1(x) + f2(z − x).

The result below is well known in the case of convex functions (see, e.g.,
Laurent [23, Proposition (6.6.4)] or Zălinescu [31, Corollary 2.4.7]) and in the
case of the Fréchet subdifferential (Correa-Jofré-Thibault [9, Lemma 3.6]). We
show that it is actually valid for any of the above analytic subdifferentials.

Theorem 2.1. Let X be a Banach space, ∂ be any of the above analytic
subdifferentials, f1, f2 be proper functions on X, x ∈ dom f1 and y ∈ dom f2.
Suppose that (f1▽f2)(x+ y) = f1(x) + f2(y). Then

∂(f1▽f2)(x+ y) ⊂ ∂f1(x) ∩ ∂f2(y).

P r o o f. Let g := f1▽f2 and z := x+ y, so that g(z) = f1(x) + f2(z − x)
by hypothesis. We show that if z∗ ∈ ∂g(z), then z∗ ∈ ∂f1(x) and z∗ ∈ ∂f2(z−x).

1/ Case ∂ = ∂β. Let B ∈ β. By definition of ∂βg(z), we have

lim inf
tց0

inf
u∈B

(

g(z + tu) − g(z)

t
− 〈z∗, u〉

)

≥ 0.
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Since g(z+ tu) = inf{f1(v)+f2(z+ tu−v) : v ∈ X} and g(z) = f1(x)+f2(z−x),
this gives
(1)

∀v ∈ X, lim inf
tց0

inf
u∈B

(

f1(v) + f2(z + tu− v) − f1(x) − f2(z − x)

t
− 〈z∗, u〉

)

≥ 0.

Using (1) with v = x+ tu and v = x, we obtain respectively

(2) lim inf
tց0

inf
u∈B

(

f1(x+ tu) − f1(x)

t
− 〈z∗, u〉

)

≥ 0,

(3) lim inf
tց0

inf
u∈B

(

f2(z + tu− x) − f2(z − x)

t
− 〈z∗, u〉

)

≥ 0.

Since (2) and (3) are true for any B in β, we conclude that z∗ ∈ ∂βf1(x) and
z∗ ∈ ∂βf2(z − x).

2/ Case ∂ = ∂−β . By definition of ∂−β g(z), there exist ϕ : X → R locally
Lipschitz and β-smooth at z and λ > 0 such that

z∗ = ϕ′
β(z), (g − ϕ)(z) ≤ (g − ϕ)(z + u), ∀u ∈ λBX .

Since g(z) = f1(x) + f2(z− x) and g(z + u) = inf{f1(v) + f2(z+ u− v) : v ∈ X},
this gives

z∗ = ϕ′
β(z),(4)

f1(x) + f2(z − x) − ϕ(z) ≤ f1(v) + f2(z + u− v) − ϕ(z + u), ∀u ∈ λBX , v ∈ X.
(5)

Putting v = x+ u in (5) yields

(6) f1(x) − ϕ(z) ≤ f1(x+ u) − ϕ(z + u), ∀u ∈ λBX .

Consider χ : u ∈ X 7→ χ(u) = ϕ(z − x + u). Then, χ is locally Lipschitz and
β-smooth at x with χ(x) = ϕ(z), χ(x + u) = ϕ(z + u) and χ′

β(x) = ϕ′
β(z).

Rewriting (4) and (6) we get

z∗ = χ′
β(x), f1(x) − χ(x) ≤ f1(x+ u) − χ(x+ u), ∀u ∈ λBX ,

proving that z∗ ∈ ∂−β f1(x).
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Similarly, letting v = x in (5) gives

(7) f2(z − x) − ϕ(z) ≤ f2(z − x+ u) − ϕ(z + u), ∀u ∈ λBX .

Consider ψ : u ∈ X 7→ ψ(u) = ϕ(u+x). Then, ψ is locally Lipschitz and β-smooth
at z − x with ψ(z − x) = ϕ(z), ψ(z − x+ u) = ϕ(z + u) and ψ′

β(z − x) = ϕ′
β(z).

Rewriting (4) and (7) we get

z∗ = ψ′
β(z−x), f2(z−x)−ψ(z−x) ≤ f2(z−x+u)−ψ(z−x+u), ∀u ∈ λBX ,

proving that z∗ ∈ ∂−β f2(z − x).

3/ The cases ∂ = ∂C and ∂ = ∂P are similar, so the proofs are omitted. �

Corollary. Let X be a Banach space, ∂ be any of the above analytic
subdifferentials, f1, f2 be proper functions on X, x ∈ domf1 and y ∈ dom f2. If
(f1▽f

−
2 )(x−y) = f1(x)+f2(y) and ∂(f1▽f

−
2 )(x−y) 6= ∅, then 0 ∈ ∂f1(x)+∂f2(y).

P r o o f. Let z∗ ∈ ∂(f1▽f
−
2 )(x − y). It follows from the theorem that

z∗ ∈ ∂f1(x) ∩ ∂f
−
2 (−y). But, for any of the above analytic subdifferentials, we

have ∂f−2 (−y) = −∂f2(y), whence the conclusion. �

Remark. For convex functions, the reverse implication in the above
corollary is also true.

3. Characterizations of dense subdifferentiability. In this sec-
tion, we call subdifferential, any operator ∂ which associates a subset ∂f(x) of
X∗ with every function f defined on a Banach space X and every x ∈ X, such
that the following axioms are satisfied:

(A1) If f is convex lower semicontinuous, then ∂f(x) = {x∗ ∈ X∗ :
〈x∗, y − x〉 + f(x) ≤ f(y), ∀y ∈ X}.

(A2) If V ⊂ X is a neighborhood of x ∈ X, then ∂fV (x) = ∂f(x).

(A3) If (f1▽f
−
2 )(x − y) = f1(x) + f2(y) and ∂(f1▽f

−
2 )(x − y) 6= ∅, then

0 ∈ ∂f1(x) + ∂f2(y).
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Observe that (A3) with f2 = 0 reduces to the standard Fermat rule: If
x ∈ dom f1 is a minimum of f1, then 0 ∈ ∂f1(x). Indeed, in this case f1▽f

−
2 is

the constant function z 7→ inf{f1(v) : v ∈ X} = f1(x), hence ∂(f1▽f
−
2 )(z) = {0}

and ∂f2(z) = {0} for every z ∈ X by (A1).

In view of the corollary of Theorem 2.1, all the analytic subdifferentials
considered in Section 2 satisfy these axioms.

Before proceeding, we need to recall the definition of closure (of graphs)
of subdifferentials. Given a function f : X → (−∞,+∞], we denote by df the
associated graphical metric on domf defined by df (x, y) := ‖x−y‖+|f(x)−f(y)|
and write x →f x̄ to mean that x → x̄ with respect to df . Given a topology τ∗

on X∗ and a point x̄ in dom f , we define the closure of ∂f at x̄ with respect to
the topology df × τ∗ on domf ×X∗, briefly the τ∗-closure of ∂f at x̄, as the set

τ∗– lim sup
x→f x̄

∂f(x) := {x∗ ∈ X∗ : (x̄, x∗) ∈ df × τ∗– cl ∂f },

where df × τ∗– cl∂f denotes the closure of the graph of the mapping x 7→ ∂f(x)
in (dom f, df )×(X∗, τ∗). In other words, x∗ belongs to the above set if and only if

there is a net {(xν , x
∗
ν)} in domf×X∗ such that xν →f x̄, x∗ν

τ∗

→ x∗ and x∗ν ∈
∂f(xν).
This definition naturally extends to the closure of sums of subdifferentials.

The sequential version of this closure, denoted by

τ∗– lim sup
xn→f x̄

∂f(xn),

is defined by requiring the net {(xν , x
∗
ν)} to be actually a sequence {(xn, x

∗
n)} (in

case τ∗ is the norm topology on X∗, topological and sequential closures of course
coincide). A widely used such ‘limiting subdifferential’ is the weak∗ sequential
closure of the Fréchet subdifferential, see, e.g., the books by Mordukhovich [24]
in infinite dimensional spaces and by Rockafellar-Wets [29] in finite dimensional
spaces.

In the list of properties stated below, the operator ∂I
a plays a basic role.

This operator is actually a subdifferential on the class of Lipschitz continuous
functions, but not on the class of lower semicontinuous functions (it fails to
satisfy (A1)). It was considered by Ioffe [16, 17] in the first step construction
of his (geometric) approximate subdifferential (see also [2, 20, 19] for further
developments and variants). This operator, called Ioffe approximate analytic
subdifferential , is defined as follows: for f : X → (−∞,+∞] and x̄ ∈ domf ,
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∂I
af(x̄) :=

⋂

L∈F

w∗– lim sup
x→f x̄

∂Hfx+L(x),(8)

where F denotes the collection of all finite dimensional linear subspaces of X.
We may also express ∂I

af(x̄) in terms of the more familiar Fréchet subdifferential
(see, e.g., [21, Proposition A.5.]):

∂I
af(x̄) :=

⋂

L∈F

w∗– lim sup
x→f x̄

∂F fx+L(x).(9)

Given a subdifferential ∂ or any of its closures, we shall consider the
following six properties for a Banach space X with respect to ∂.

(DS) Dense Subdifferentiability. For any lower semicontinuous f : X →
(−∞,+∞] and x̄ ∈ dom f , there exists a sequence {xn} ⊂ X such that xn →f x̄
and ∂f(xn) 6= ∅.

(CS) Compact Separation. For any lower semicontinuous f : X → (−∞,+∞]
and any ϕ : X → R convex inf-compact near x̄ ∈ domf ∩ domϕ, if f +ϕ admits
a strong local minimum at x̄, then there exist xn →f x̄ and yn →ϕ x̄ such that

0 ∈ ∂f(xn) + ∂ϕ(yn).

(w∗-CS) w∗-Compact Separation. For any lower semicontinuous f : X →
(−∞,+∞] and any ϕ : X → R convex inf-compact near x̄ ∈ domf ∩ domϕ, if
f + ϕ admits a strong local minimum at x̄, then

0 ∈ w∗– lim sup
x→f x̄

y→ϕx̄

(∂f(x) + ∂ϕ(y)).

(w∗-LS) w∗-Lipschitz Separation. For any lower semicontinuous f : X →
(−∞,+∞] and any ϕ : X → R convex Lipschitz continuous near x̄ ∈ domf ∩
domϕ, if f + ϕ admits a strong local minimum at x̄, then

0 ∈ w∗– lim sup
x→f x̄

∂f(x) + ∂ϕ(x̄).

(w∗-MP) w∗-Minimality Property of ∂I
a. For any lower semicontinuous

f : X → (−∞,+∞] and x̄ ∈ X,

∂I
af(x̄) ⊂ w∗– lim sup

x→f x̄
∂f(x).
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(w∗-SR) w∗-Sum Rule. For any lower semicontinuous fi : X → (−∞,+∞],
i = 1, . . . , k, and x̄ ∈ X,

∂I
a

(

k
∑

i=1

fi

)

(x̄) ⊂ w∗– lim sup
xi→fi

x̄

k
∑

i=1

∂fi(xi).

F. Jules proved in [21] that, for any subdifferential ∂ satisfying (A1), one
has (w∗-CS)⇔ (w∗-MP) ⇔ (w∗-SR) (Theorem 6.5, loc. cit.) and (w∗-LS) ⇒
(DS) (Proposition 6.7, loc. cit.). It is easily seen that these results remain valid
for any closure ∂̂ of ∂. Since always (CS)⇒ (w∗-CS) and (w∗-SR) ⇒ (w∗-LS), to
get the equivalence of the above six properties it remains to prove that (DS) ⇒
(CS). This is the object of the next theorem.

Theorem 3.1. Let ∂ be any subdifferential or any of its closures, and let
X be a Banach space. Then, (DS) ⇒ (CS).

Slightly modifying definitions from Ioffe [15, 18], we say that, given a
subdifferential ∂ or any of its closures, a Banach space X is a ∂-subdifferentiability
space if the property (DS) is satisfied, and a ∂-trustworthy space if the following
property is satisfied:

(w∗-Tr) w∗-Trustworthiness. For any lower semicontinuous fi : X →
(−∞,+∞], i = 1, . . . , k, and x̄ ∈ X,

∂

(

k
∑

i=1

fi

)

(x̄) ⊂ w∗– lim sup
xi→fi

x̄

k
∑

i=1

∂fi(xi).

Theorem 3.2. Let ∂ ⊂ ∂I
a be any subdifferential or any of its clo-

sures, and let X be a Banach space. Then, (DS) ⇔ (w∗-Tr), that is, X is a
∂-subdifferentiability space if and only if X is a ∂-trustworthy space.

The proofs of the theorems are postponed to the next section. Here are
some comments on the properties considered and on the results obtained in this
section.

• Subdifferentiability spaces (that is, Banach spaces verifying (DS)) were
introduced by Ioffe, first for the ε-subdifferentials of Fréchet and Hadamard (Dini)
[15], then for arbitrary subdifferentials [18].

• Properties of Compact Separation type (CS) and (w∗–CS) were consid-
ered for the first time by Ioffe [15]. Their connections with (DS) were investigated
in Fabian [12, 13] and Ioffe [18].
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• Strong forms of the Lipschitz Separation property (LS) (with the norm
topology in X∗ instead of the weak∗ topology) were first considered in [15, 13]
for the ε-subdifferentials (ε ≥ 0) of Fréchet and Dini (Hadamard), and then in
[32, 18, 22, 21] for any subdifferential; in the latter papers, it is shown that
this property (called ‘basic fuzzy principle’ in [18]) is equivalent to many other
subdifferential rules involving the strong topology in X∗. The sequential weak∗

form of (LS) was considered in [30, 8]. The topological weak∗ property (w∗–LS)
stated here was studied in [21]. We don’t know whether this property is equivalent
to its sequential weak∗ variant, neither a fortiori to its strong variant.

• The w∗-Minimality Property of ∂I
a is discussed, e.g., in [17, 2, 19], for

Lipschitz continuous functions and bornological subdifferentials. The general
situation (lower semicontinuous functions, any subdifferential) is considered in
[21].

• The (mixed) w∗-sum rule (w∗–SR) was introduced in [21].

• Theorem 3.1 generalizes Fabian [13, Lemma 3] which focuses on the
Fréchet and Hadamard (Dini) subdifferentials (ε-subdifferentials were treated ear-
lier in Fabian [12]). The idea of using convolution for the proof is taken from this
paper. Ioffe [18, Theorem 4] states without proof the equivalence between (DS)
and a strong Compact Separation type property for the smooth β-subdifferentials.

• Theorem 3.2 generalizes results of Ioffe [15, 18] and Fabian [13] that
concerned only special subclasses of bornological subdifferentials.

To be complete, it is worth mentioning that the dense subdifferentiability
property for a subdifferential on the class of lower semicontinuous functions forces
the full subdifferentiability property for its w∗-closure on the class of locally
Lipschitz continuous functions. More precisely, we have:

Proposition 3.3. Let ∂ ⊂ ∂C be any subdifferential. Let X be a ∂-
subdifferentiability space and ϕ : X → R be Lipschitz continuous near x̄ ∈ X.
Then

w∗– lim sup
x→x̄

∂ϕ(x) 6= ∅.

Moreover, if the unit ball of X∗ is sequentially weak∗ compact, then

w∗– lim sup
xn→x̄

∂ϕ(xn) 6= ∅.

P r o o f. The arguments are standard. For ϕ locally Lipschitz continuous,
the mapping ∂Cϕ is locally bounded, hence also is ∂ϕ. By (SD), there exists
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a sequence {(xn, x
∗
n)} ⊂ ∂ϕ such that xn → x̄. The sequence {x∗n} is therefore

bounded, hence it admits a subnet {x∗ν} w
∗-convergent to some x̄∗. By definition,

x̄∗ ∈ w∗– lim supx→x̄ ∂ϕ(x), showing the nonemptyness of this set.
In the case where the unit ball of X∗ is sequentially weak∗ compact,

then the above sequence {x∗n} admits a w∗-convergent subsequence whose limit
of course belongs to the set w∗– lim supxn→x̄ ∂ϕ(x). �

4. Proofs of the theorems of Section 3.
P r o o f o f T h e o r e m 3.1. To prove (CS), let f : X → (−∞,+∞] be

lower semicontinuous, ϕ : X → R be convex inf-compact near x̄ ∈ dom f ∩domϕ,
and assume that f + ϕ admits a strong local minimum at x̄. Take λ > 0 so
that, on the closed ball x̄ + 2λBX , x̄ realizes the strong minimum of f + ϕ, f
is lower bounded by µ and ϕ is inf-compact (hence lower semicontinuous). Set
V := x̄+λBX and denote by fV the function equal to f in V and to +∞ outside
V . Then fV is lower semicontinuous and lower bounded, so the inf-convolution
g = fV ▽ϕ− is lower semicontinuous and exact at every point of X (see, e.g.,
Moreau [25, Proposition 4.e] or Laurent [23, Proposition (6.5.5)]). Notice that
g(0) = inf(fV + ϕ) = (f + ϕ)(x̄).

First consider the case of a subdifferential ∂ satisfying Axioms (A1)–
(A3). The property (DS) applied to the function g at point 0 ∈ dom g produces
a sequence {zn} ⊂ X such that zn → 0, g(zn) → g(0) and ∂g(zn) 6= ∅. The
inf-convolution fV ▽ϕ− being exact at every point, for every n ∈ N there exists
xn ∈ V such that

(10) g(zn) = f(xn) + ϕ(xn − zn).

We have f(xn) ≥ µ and f(xn) + ϕ(xn − zn) → g(0), hence, for n large enough,
the sequence {xn − zn} lies in the compact set

{z ∈ x̄+ 2λBX : ϕ(z) ≤ g(0) + 1 − µ} .

We may therefore suppose, without loss of generality, that the two sequences
{xn − zn} and {xn} converge to some point x0 ∈ x̄ + 2λBX , in fact x0 ∈ V
because {xn} ⊂ V . From the lower semicontinuity of f and ϕ on x̄ + 2λBX we
derive that

f(x0) + ϕ(x0) ≤ lim inf
n→∞

f(xn) + lim inf
n→∞

ϕ(xn − zn)

≤ lim
n→∞

(f(xn) + ϕ(xn − zn)) = g(0).
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Thus, (f + ϕ)(x0) = g(0) = inf(fV + ϕ), whence x0 = x̄ since x̄ is a strong
minimum of fV + ϕ. Finally, the sequences {xn} and {xn − zn} satisfy

xn → x̄, f(xn) → f(x̄),(11)

xn − zn → x̄, ϕ(xn − zn) → ϕ(x̄).(12)

On the other hand, g(zn) = f(xn)+ϕ(xn − zn) by (10) and ∂g(zn) is non
empty, so we may apply (A3) with x := xn, y := xn − zn, f1 := fV , f2 := ϕ, to
obtain

0 ∈ ∂fV (xn) + ∂ϕ(xn − zn).

Now, since xn → x̄, V is a neighborhood of xn for n large enough, hence
∂fV (xn) = ∂f(xn) for n large enough by (A2). This completes the proof in
the case of a subdifferential ∂.

Consider next the case of any closure ∂̂ of a subdifferential ∂ satisfying
Axioms (A1)–(A3). The property (DS) applied to g at 0 ∈ dom g produces
a sequence {z̄n} ⊂ X such that z̄n → 0, g(z̄n) → g(0) and ∂̂g(z̄n) 6= ∅. By
definition of ∂̂g, we can find a sequence {(zn, z

∗
n)} ⊂ ∂g such that, for every

n ∈ N, dg(z̄n, zn) ≤ 1/n, hence zn → 0, g(zn) → g(0) and ∂g(zn) 6= ∅. Thus
we have arrived at the same situation as above, so there are sequences {xn} and
{xn − zn} satisfying (11), (12) and

0 ∈ ∂f(xn) + ∂ϕ(xn − zn) ⊂ ∂̂f(xn) + ∂̂ϕ(xn − zn).

The proof is complete. �

P r o o f o f T h e o r e m 3.2. By the observation preceding Theorem 3.1,
the first six properties are equivalent for any subdifferential ∂ or any of its closures
∂̂. In particular, (DS) ⇒ (w∗-SR). Obviously, (w∗-SR) ⇒ (w∗-Tr) since ∂ ⊂ ∂I

a ,
hence also ∂̂ ⊂ ∂I

a . On the other hand, always (w∗-Tr) ⇒ (w∗-LS), and, thanks
again to the above equivalence, (w∗-LS) ⇒ (DS). This shows that (w∗-Tr) is
equivalent to the first six properties. �

REFERE NC ES
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