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ABSTRACT. An estimation of the growth of a non-contracting semigroup
Z; = expitA where A is a non-dissipative operator with a two-dimensional
imaginary component is given. Estimation is given in terms of the functional
model in de Branges space.

Contracting semigroup Z; = exp{itA} generated by a dissipative operator
A has a well-studied functional model [6]. In the case of non-dissipativity of
operator A, construction of the corresponding functional model is based on the
use of the L. de Branges technique [6, 7]. In this case, the semigroup Z; is not
dissipative and its character of growth is exponential [2, 4]. Problem of calculation
of the growth index of the semigroup Z; in terms of functional model seems to
be natural. The present paper is dedicated to the solution of this problem.
An explicit estimation of the character of the growth of Z; in terms of channel
elements of functional model realized in L. de Branges space is obtained.

2010 Mathematics Subject Classification: 4TA45.
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1. Preliminary information.

I. Recall [6] that set of bounded linear operators acting from Hilbert H
into space G is standardly denoted by [H, G].

Family of Hilbert spaces H, E and operators A € [H, H], ¢ € [H, E],
J € |E, E], where J is an involution, J = J* = J~!, is said to be [1] a local
colligation

(1) A= (AHp E,J),
if condition
(2) A— A" =ip*Jy

is true. Operator A is said to be the main operator of colligation, ¢ — the channel
operator, and J — the metric operator of colligation A [3]. Space H is said to be
the inner and E — the outer spaces of colligation A.

Suppose that the outer space E of the colligation A (1) is finite-dimensional,
dim E = r < co. And let {f,}] be an orthonormal basis in F, then the vectors

ga:@*fa (1§a§7")
in H is said to be the channel vectors [6], and the colligation relation (2) can be
written as follows:
A— A* Z
(3) - = Z <'>goc> Ja,ﬂgb’v

i
a,B=1

where J, 3 = (J fa, f3) are matrix elements of the matrix J corresponding to the
operator J in the basis {fa}]-
Family

(4) A= (A H{ga}1,J)

is said to be an operator complex [3] if condition (3) holds where J = J* = J 1.
Complex (4) is said to be simple [6] if H; = H, where

Hy =span{A"g,:1 <a<randn>0}.

On the linear manifold of continuous on [0,[] vector-functions f(x) =
(fi(x),..., fr(x)) with values in the Euclid space, define the hermitian non-
negative bilinear form

l
(5) / J(@)dFog (x
0



On the character of growth of a non-contracting semigroup 287

where F} is a matrix-valued non-decreasing function on [0, ] for which tr F} = t.
Denote by L%l (F,) the Hilbert space obtained as a result of the closure of the
introduced linear manifold of vector-functions f(z) with regard to metric (5) for
which (f, f)r < oo with due factorization by the kernel of metric (5). Define in
Lg,l (Fy) the operator

l
(© (4 1) @) = cut@) +3 [ Fe)aF,
where a4 is a real non-decreasing bounded on [0,1], 0 <[ < oo, function.

Theorem 1 [6]. Simple operator complex A (4), when the spectrum of
A is real, is unitarily equivalent to the simple part of complex

o

A= (jca L72~,l (Fx) ’ {606}71“ ’J> ’

where e, = (0, ..., 0 1 0 ,..., 0) is the standard basis in the Euclid space
a—1 a a+l

of vector-rows E".
Consider a local colligation
A= (AH o E,J)

0 ¢
-t 0
where {e,}7 is the orthonormal basis in E. Then we obtain the operator complex

such that dimE = 2 and J = Jy = [ ]; and let g, = ¢*eq (@ =1, 2)

1

(7) Az(A,H,{gl,gg},JN:[_O. SD

Let the spectrum of operator A be concentrated at zero, c(A) = 0. Then, in view
of Theorem 1, the simple complex A (7) is unitarily equivalent to the simple part
of the model operator complex

(5) So= (Ae g m) (vt v = | 0 1)),

]

where :Zlc in L%,l (Fy) acts by the formula

l

Q (c £) @) =i [ rearedy.

T
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and the non-decreasing on [0, /] matrix-valued function

Fx:|:/8x Yo

is such that tr I}, = x.

II. Denote by M,(A) the matrix-function which is the solution of the
integral equation

(10) Ma(2) + iA / M\ dE Iy = 1,
0

where x € [0,1], A\ € C, which in the case of dF} = a;dt is equivalent to the
Cauchy problem

d
M, (V) + I (Nag Ty = 03
Mo(X) = I.

Consider the vector-row
L,(A) =[1,00M,(N) = [Az(N), Bx(N)],

which, in virtue of (10), is the solution of integral equation
X

(11) L,(\)+ i)\/Lt()\)dFtJN = [1,0].
0

Let 2Py = I 4+ Jy, then P = PL = P}; P,P_=0; P, + P_ = I. Single
out the following important properties of the vector-row L,(z):

Lo(MPy = E;(VNL§, Lo(\NP- = E,(\) Ly,

1 1
where Ly = LoPy, L = 5[1,1’], L, = 5[1,—2’] (Lo = [1,0]), and the functions
E.()\) and E,()\) are given by
(12) Ex(A) = Aa:()‘) - ZBx(A)v Ea:()‘) = Aa:(A) + ZBx()‘)
Function E,()) is said to be the adjoint function to E,()) (since in the case of
the real matrix-function F; we have E,(\) = E, (\) [3, 6]).
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The following theorem [6] is true.

Theorem 2. The vector-function Ly(\) = [Az(X\), Bz(N\)], which is the
non-trivial (L;(X) # [1,0]) solution of the integral equation (11), is such that

1) Ly(\) € L3, (Fy), for all a € [0,1] and X € C;

2) functions Ey(\) = Az(A) —iBy()\) and Ey(\) = Ay(\) +iBy(\) do not
have roots in the semiplanes Im A\ > 0 and Im A < 0 correspondingly, besides,

~ >0, ImA>0;
B0 - [E0)| =4 =0, mA=0;
<0, ImA<O0;

and E,(0) = E,(0) = 1, for all z € [0,1].

Recall [1, 6] that function g(A) is said to be a function of the bounded
type in Im A > 0 if it is a quotient of two holomorphic bounded in ImA > 0
functions. It is easy to see [1] that if Reg(A\) > 0in Im A > 0 and g(\) is analytic
in the semiplane Im A > 0, then g()) is a function of bounded type. This easily
yields [1] the following representation of analytic functions g(A) of bounded type
in ImA > 0:
90N = BO)e MG,

where B()\) is the Blashke product corresponding to the zeroes of g(\); number
h € R is said to be the mean type of g(A); and G(X) is holomorphic function in
Im A > 0 for which

_ T dult
ReG(ac—&-zy):%/7(75_:5)(2)+y2

—00

A=z +1iy; y > 0);

besides, the real function u(t) is such that x(0) = 0 and

|du(t)]
1+t

< o0

Consider a pair of integer functions A(A) and B(A) such that functions
E(\) = A(A\)—iB(\) and E(\) = A(A)+iB(\) do not have roots in the semiplanes
Im A > 0 and Im A < 0 correspondingly, besides

>0, ImA>0;

yE(A)y—}E(A)}: —0, Im\=0;
<0, Tm\<O0.
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Associate with such pair of functions Hilbert space B(A, B) [1].
A linear manifold of integer functions F'(\) is said to be an L. de Branges
space B(A, B) [1, 6] if
a) @ <@) is the function of bounded type and non-positive mean
E() \EMX)
type in the upper, Im A > 0 (lower, Im A < 0), semiplane;

b)
150 |20 <
takes place.

The space B(A, B) is Hilbert [1]. Scalar product in B(A, B) is specified
in the natural way:

(FO). 6 e = [ FOGO TGS

The L. de Branges Theorem 3 [1]. Consider the family of L. de
Branges Hilbert spaces B (Az(M\), Bz(\)) where the vector-row Ly(A\) = [Az(N),
B, (\)] is the solution of the integral equation (11) on the segment x € [0,1] for
some matriz-valued measure F;. Correlate the function

a

(13) FO =1 [ 110, 9(0MaRL; (3.

™
0

with each row [f(t), g(t)] € L3, (F;) where a is an inner point of the segment [0,1],

S
0<a<l. Then F(\) € B(Au(N), Ba(N)), besides, the “Parseval equality”

[ele) 2 7 f
[ FOP / (1), g(D)]dF; [ ﬁ(t) }
0

J TEOF
is true. For any function G(A\) € B(Aq(N), Bo (X)) there exists the vector-function
[o(t),¥(t)] € L%l (F}) with support on [0,a] such that representation (13) takes
place for G()).

Theorem 4 [6]. Let the spectrum o(A) of operator A of the local complex
A (7) be concentrated at zero, o(A) = {0}. Then, in the case of its simplicity,
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complexr A is unitarily equivalent to the functional model
(14) A = (A,B(AN), BY) , {er (V) 2N}, I

where A in B (Ay(\), Bi(\)) acts via the formula

A F(\) — F(0)

(15) AF(A) = 3 , FQ) e B(AI(N), Bi(V),

and the functions éo(\) are given by

Bi ()

(16) e1(\) = N

2. Estimation of growth of the semigroup.
I. Consider the semigroup

Zuf(€) = M f () =

i2t2

(17) = () +itAf(€) + 5 A2F )+, [(§) € L, (Fy)

where A is given by (15).
The explicit formula for Z; is given by the following theorem [5].

Theorem 5. The semigroup Z; = exp(it/l), where A is given by (15),
on the functions f(\) € B(A;(N\), Bi(X)) acts in the following way:

Zif(A) = f(0) + Prex (F(N) — £(0))

where Py is the orthoprojector on the subspace of continuable into the upper
semiplane functions.

Consider the local complex A (14) and denote by M the linear span of
vector-functions of the type

(18) f(&) = (ur(€), h(N), u—(€))
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where u4 (£) is a vector-function from the space of vector-rows E? = E such that
suppu+ (&) € Ry, and h(N) € B(A4;(N\), Bi()\)) . Specify on M the norm

0 [e'e)
(19) 12 = / s (€)3de + ROV + / lu (€)|3d¢ < oo.

Closure of the manifold M in this metric forms the Hilbert space, we denote it
by H. Denote by Py [6] the operator of contraction on the set M, namely:

(Parf)(€) = fF(E)xa (€)

where x,,(§) is the characteristic function of set M (M C R) (x,,(§) =1 as
€€ M, and x,, (&) =0 as £ ¢ M). Specify in the space H the semigroup Uz,

(20) (Utf) ()‘7 g) = (’U,+ (tv €)7 ht()‘)v U-— (tv g)) (t > 0)
The vector-function u_(¢,€) is given by
1) u-() = Prou (€ +1)

Consider the Cauchy problem

d A €) — (0, 2 ) )
oy | iggnn g PEEIEE S (R 6 ).60) dupts

a,f=1
yt()‘7 _t) = h()‘)7 5 € (_t70)7
where é, is given by (16), and let
hie(A) = e (A, 0).

Finally,

2

(23)  up () =up(€+t) + Py qu-(E+t)—i > (WX §).éa)és o,
a,B=1

where y4(\, §) is the solution of the Cauchy problem (22), it is easy to see that

i(§+t)

ye(A &) = h(0) + Pre 3 (h(A) — h(0))—

§ 2
—i / AN (u (0 + 1), 6a(N) g Jappdd.
4 a,f=1
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Specify in ‘H an indefinite metric

0 [e'e)
(24) U, f)s = / (T (€),us (€)) p € + IRV + / (T (), u_())  d.
. 0

It is easy to ascertain [6] that (U, f,U.f); = (f, f)s and so the semigroup U; (20)
is a J-isometry.
A semigroup U, is said to be J-unitary [6] if U; is unitary in the J-metric

(24),
UrJU, = J, UJUf =J (VteR,).
It is easy to see [7] that U, is a J-unitary dilation.
Obviously,
0 00
U1 = [ st €)1 + WO + [ ()
—00 O
where
— dz dz
iM% = | h(2)h = [ |h(2)]? .
IheO IR 4 (WP o 4 )P

Note that in the case of dissipativity of operator A the dilation U is
unitary. In the studied case, the operator A (15) is not dissipative.

As is known [2, 4], for the semigroup U;, when [t| > 1, the estimation
|Us]| < e+t takes place where B+ > 0, besides,

_ o WU _ o Ul
ﬁJr—tngof’ 5__tli>rgof'

Taking into account (23), we have

2

—t 0
U1 = [ Nesle+03d+ [ute+0) =1 Y n8).ca) eallpde+
—0o0 —t a,B=1

') 0 ')
IR + / lu_ (€ + )|3de = / s (€3¢ + / lu_(€) 3 de+
0 —00 t
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2
/nu E+D—1 3 N6, adenlBde + [hVII3

a,B=1
Denote
2
(25) —(E+1t) - ZZ (W (N, ), éq) g = .
a,f=1
The following equality [6] is true,

0

/<JN|:U (E+1t) — lz (e (A, &), éa eﬂ]v —(E+1)-

4 a,B=1

2
—1 Z <yt(A7§)7éOé> éﬂ> d§+

a,f=1

HheWI? = [ (Tnvu—(€),u—(£)) d€ + |[R(N)J?,

('D O\N

or, taking into account (25), we have

t

0
[tawvo)de + I = [ (nu-€),u-(©)de + AV,

0

Let Jy = Q4+ — Q— where Q1 are such orthoproectors that Q@ + @Q_ = I and
Q+Q7 = 0, then

0 0

0
[ olde + eI = [ v, 0)de + eI +2 [ (@-v,v)d =

—t —t
0

/ €)de + (V2 + 2 / (Q_v.v)de =
0 —t
t t 0
- / lu_(©)llde + [hV? - 2 / (Q_u_(€),u_(€))de +2 / (Q_v, v)dé.
0

0 —t
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Thus,
0 ') t
WU = / s (€2 + / lu (€)|2de + / lu(€)[2de+
—00 t 0
0 0
BV — 2 [ 1Qu(€-+0)u-(+)dg +2 [ (@v,v)ds =
¢ —t
0
— I+ 2 / Q0,005 — Qo (€ +t)ou_ (€ + 1)) ] de
~t
II. Let
A =A+ig Q e,
then

A= A+ - ZSO*Q—‘/%

where Ay is a dissipative operator [6]. Denote

(26) % — efitA_,_’ Zt — €itA.
Then
d . . . A
% (%Zt) = —ZAJrV;th + %(Y/A)Zt == ‘/;f (_ZA+) Zt + W(lA)Zt =
=iV; (A - A+> Zy = iVi (=" Q) Zt = V" Q- Z;
Consequently,

t
Wz — 1= /V;sO*Qcszds,
0

multiply both parts of equality by V_;, obtain

t
(27) Zi=Vii+ / Viip"Q_pZuds,
0

295
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then
t

Zih =V_ih + / Vs_19*Q_pZshds
0

consequently,
¢

120 < Vel + / Vi o Q_pZds| .
0

Rewrite (27) as follows,
t
Zi~ [ VT2 = V-
0

where T' = p*()_p. By the mean theorem,
Zy — Ve TZe = V4
where £ = £(t) € (0,t). Let s =0, then
1Zell < NVoill + [8Ve—e T Ze|l-
Since V4 is a contraction semigroup, then [|[V;|| < 1 and thus
1Zell <1+ [[tVe— T Ze||

or
1Ze]] < 1+ tl|Ve-eT e,

where 0 < 0y < 1,

. Wz
a = [1m .
t—o00 t
Then 7
-1
H t’i < ”V%_tT”eoA%t < HT”eaGtt
Since
1Z:]] < e,
then

1Z]] —1 e —1
<
¢t Tt

—
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when ¢t — 0. From the other side,

Zi]| — 1
=L < yrjess -

as t — 0. Thus,
o < 7).

Let us estimate ||T]|.
(Tf, f) =" Q-¢f, ) =(Q-¢f,of)
HQ—wf, of) < 1Q-II{ef,of) < (of.of) = llef|?

As is well-known,
_ <f7é1> _ fl
of= < (fsé2) > B < f2 >’

then
leflI? = 1] + 1 fol?
A(z) dx
/ fe - / T Ewp
AL Nedls 1l < 1A el
then
e f 1P < 112 enll® + 11 eal® = (el + leal*) I 112
So,
lefll < Vel + llezlIPl £
or
el < Vleal* + llé2lf?,
where

= fa

Hé1H2: / ’Bl(x)’ dx ’2H2 /|1 dx )
) 22 E(x)]’ |l‘!2 !Ez(x)IQ

Thus,

le*Q-sll = I < V/lIéx]l* + lléz]>.

So, we have proved the following theorem.

297
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Theorem 6. For the semigroup Z; (17), an estimation ||Z:]| < e*;
(t > 1) is true, where « is estimated in the following way:

a < /el + e,
besides, é1, éx are given by (16).

Thus, for the semigroup Z; (17) an explicit estimation of character of the
growth of semigroup Z; is given in terms of parameters of the colligation A (14).
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