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Abstract. The oscillatory and nonoscillatory behaviour of solutions of the
second order quasi linear neutral delay difference equation

∆(an|∆(xn + pnxn−τ )|α−1∆(xn + pnxn−τ ) + qnf(xn−σ)g(∆xn) = 0

where n ∈ N(n0), α > 0, τ, σ are fixed non negative integers, {an}, {pn},
{qn} are real sequences and f and g real valued continuous functions are
studied. Our results generalize and improve some known results of neutral
delay difference equations.

1. Introduction. In this paper, we consider the second order quasi

linear neutral delay difference equation of the form

(1) ∆(an|∆(xn + pnxn−τ )|
α−1∆(xn + pnxn−τ ) + qnf(xn−σ)g(∆xn) = 0
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where n ∈ N(n0) = {n0, n0 + 1, . . . } n0 a non negative integer, ∆ is the forward

difference operator defined by ∆xn = xn+1 − xn, α > 0, τ , σ are fixed non

negative integers.

Throughout this paper we assume that the following conditions hold:

(C1) {an} is a positive real sequence and {qn} is a non negative real sequence

with qn is not identically zero for large n,

(C2) {pn} is a real sequence,

(C3) g : R → R such that g(u) ≥ c > 0 for u 6= 0,

(C4) f : R → R is continuous and uf(u) > 0 for u 6= 0 and f(u) − f(v) =

h(u, v)(u − v) for all u 6= 0 and h is a non negative function.

Let m = max{τ, σ}. By a solution of equation (1) we mean a real sequence {xn}

which is defined for all n ≥ n0 − m and satisfies (1) for large n ≥ n0. A solution

{xn} of (1) is said to be nonoscillatory if all the terms xn are eventually of fixed

sign, otherwise the solution {xn} is called oscillatory. A nonoscillatory solution

{xn} of (1) is said to be weakly oscillatory if {∆xn} changes sign for arbitrarily

large values of n.

In this paper, we investigate oscillatory and asymptotic behaviour of non

oscillatory solution of equation (1), when qn is either non negative or changing

sign for large n.

Let S denote the set of all nontrivial solutions of (1). With respect to

their asymptotic nature, the nonoscillatory solutions of equation (1) may be a

priori divided into the following classes:

M+ = {{xn} ∈ S : there exists an integer N such that

xn∆xn ≥ 0, ∀n ≥ N}

M− = {{xn} ∈ S : there exists an integer N such that

xn∆xn ≤ 0, ∀n ≥ N}

OS = {{xn} ∈ S : there exists an integer N such that

xnxn+1 ≤ 0, ∀n ≥ N}

WOS = {{xn} ∈ S : {xn} is nonoscillatory for every N ∃ n ≥ N

such that ∆xn∆xn+1 ≤ 0}

In [1] and [3] the authors studied the oscillatory and asymptotic behaviour

of nonoscillatory solution of equation (1) when g(u) ≡ 1, α = 1 and pn either
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identically zero or pn = p via the above said classification. Hence the results

obtained in this paper generalize that in [3].

2. Main results. Define

(2) zn = xn + pnxn−τ

First we examine the non-existence of solutions of equation (1) in the

class M+.

Theorem 2.1. With respect to difference equation (1), assume that

(3) −1 < −h ≤ pn

(4) qn is non negative and lim
n→∞

sup

n−1
∑

s=n0

qs = ∞

(5) and

∞
∑

s=n0

1

a
1/α
n

= ∞

hold. Then for equation (1) we have M+ = φ.

P r o o f. Suppose that equation (1) has a solution {xn} ∈ M+. Without

loss of generality we can assume that there exists an integer n1 ≥ n0 such that

xn > 0, ∆xn ≥ 0, xn−m > 0, ∆xn−m ≥ 0 for all n ≥ n1 = n0 + m (the proof is

similar if xn < 0, ∆xn ≤ 0 for all large n). If pn ≥ 0, we have zn ≥ xn > 0. If

−1 < −h ≤ pn < 0 we claim that zn > 0, for all n ≥ n1. Otherwise, there is a

n2 ≥ n1, such that zn2
≤ 0, then

xn2
≤ hxn2−τ

and therefore

xn2+τ ≤ hxn2

by induction

xn2+2τ ≤ hxn2+τ ≤ h2xn2
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we obtain

xn2+jτ ≤ hjxn2

implying that xn2+jτ ≤ 0 for large n, which contradicts the fact that xn > 0,

∆xn ≥ 0 for n ≥ n1.

Hence zn > 0 for all n ≥ n1.

Now from the equation (1), it follows that

(6) ∆(an|∆zn|
α−1∆zn) = −qnf(xn−σ)g(∆xn) ≤ 0 n ≥ n1

we claim that ∆zn ≥ 0 for n ≥ n1.

Otherwise, there exists an integer n3 ≥ n1 such that ∆zn3
< 0.

It follows from (6) that

zn ≤ zn3
− (−an3

|∆zn3
|α−1∆zn3

)1/α
n−1
∑

s=n3

1/a1/α
n n ≥ n3

By using (5), we have lim
n→∞

zn = −∞ which contradicts the fact that zn > 0 for

n ≥ n1. So

(7) ∆zn ≥ 0 for n ≥ n1

Summing equation (6) and using (C1) - (C4)

an(∆zn)α

f(xn−σ)
≤

an1
(∆zn1

)α

f(xn1−σ
−

n−1
∑

s=n1

an(∆zn)αh(xs+1−σ, xs−σ)∆xs−σ

f(xs+1−σf(xs−σ)
− c

n−1
∑

s=n1

qs.

≤
an1

(∆zn1
)α

f(xn1−σ)
− c

n−1
∑

s=n1

qs n ≥ n1

From (4) we obtain

lim
n→∞

inf
an(∆zn)α

f(xn−σ)
= −∞

which contradicts (7). The proof is complete. �

Theorem 2.2. With respect to the difference equation (1), assume that

(8) {pn} is non negative and nondecreasing for all n ∈ N(n0)
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(9) lim
n→∞

sup
n−1
∑

s=n0

qs = ∞

hold. Then for equation (1) we have M+ = φ.

P r o o f. Suppose that equation (1) has a solution {xn} ∈ M+. There is

no loss of generality in assuming that there exists n1 ≥ n0 such that xn > 0,

∆xn ≥ 0, xn−m > 0, ∆xn−m ≥ 0 for all n ≥ n1 = n0 + m. The proof is similar if

xn < 0, ∆xn ≤ 0 for all large n.

By condition (8) we see that

(10) zn > 0,∆zn ≥ 0, n ≥ n1.

Similar to the proof of Theorem 2.1, we obtain

lim
n→∞

inf
an(∆zn)α

f(xn−σ)
= −∞

which contradicts (10). The proof is complete. �

Now we examine existence of solutions of equation (1) in the class M−.

Theorem 2.3. Assume that τ ≤ σ. If the function
1

(f(u))1/α
is locally

integrable on (0, α) and (−α, 0) for all α > 0 and

(11)

∫ α

0

du

(f(u))1/α
< ∞,

∫

0

−α

du

(f(u))1/α
> −∞

(12) f is sub multiplicative;

(13) {pn} is non negative and nonincreasing for all n ∈ N(n0)

(14) lim
n→∞

sup

n
∑

s=N

1

(asf(1 + ps))1/α

(

s−1
∑

t=N

(qτ )
1/α

)

= ∞ N ∈ N(n0)

hold, then for equation (1) we have M− = φ.
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P r o o f. Suppose that equation (1) has a solution {xn} ∈ M−. Then

there is no loss of generality in assuming that there exists n1 ≥ n0 such that

xn > 0, ∆xn ≤ 0 xn−m > 0, ∆xn−m ≤ 0 for all n ≥ n1. The proof is similar if

xn < 0 ∆xn ≥ 0 for all large n. Then from (2) by using (13) we see that

zn > 0, ∆zn ≤ 0 n ≥ n1.

Summing (6), using summation by parts from n1 to n − 1 and by (C3) and (C4)

n−1
∑

s=n1

∆[an(∆zn)α]

f(xs−σ)
≤ −c

n−1
∑

s=n1

qs n ≥ n1

an(∆zn)α

f(xn−σ)
−

an1
(∆zn1

)α

f(xn1−σ)
+

n−1
∑

s=n1

as(∆zs)
αh(xs−σ, xs+1−σ)∆xs−σ

f(xs+1−σ)f(xs−σ)

≤ −c

n−1
∑

s=n1

qs.

an(∆zn)α

f(xn−σ)
≤

an1
(∆zn1

)α

f(xn1−σ)
−

n−1
∑

s=n1

as(∆zs)
αh(xs−σ, xs+1−σ∆xs−σ

f(xs+1−σ)f(xs−σ)
− c

n−1
∑

s=n1

qs.

≤ −c
n−1
∑

s=n1

qs n ≥ n1.

By (C1)

(15) −
(∆zn)α

f(xn−σ)
≥ c/an

n−1
∑

s=n1

qs for n ≥ n1

Since {xn} is non increasing and τ ≤ σ we have zn ≤ (1 + pn)xn−σ and hence by

using (12)

(16) f(zn) ≤ f(1 + pn)f(xn−σ)

Combining (15) and (16)

−
(∆zn)α

f(zn)
≥

c

anf(1 + pn)

n−1
∑

s=n1

qs n ≥ n1.
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Then we have

−
(∆zn)

(f(zn))1/α
≥ c1/α

(

∑n−1

s=n1
qs

anf(1 + pn)

)1/α

, n ≥ n1.

Using (by parts) summing the last inequality from n1 to n − 1

(17)

n−1
∑

s=n1

−
(∆zs)

α

(f(zs))1/α
≥ c1/α

n−1
∑

s=n1

1

(asf(1 + ps))1/α

(

s−1
∑

t=n1

qt

)1/α

n ≥ n1

For t + 1 ≤ zn ≤ t
∫ t

t+1

dt

f(zt)1/α
≥ −

∆zs

f(zs)1/α

hence

(18)

∫ zn1

0

dt

f(zt)1/α
≥

n−1
∑

s=n1

−
∆zs

f(zs)1/α

Combining (17) and (18) and taking limit sup we get a contradiction to (11) and

(14).

The proof is complete. �

Next we establish sufficient conditions under which equation (1) has no

weakly oscillatory solution.

Theorem 2.4. Let qn ≥ 0 for all n ≥ n0. If

(19) pn ≡ p ≥ 0 for n ∈ N(n0).

Then for equation (1), WOS = φ.

P r o o f. Let {xn} be a weakly oscillatory solution of (1). Without loss

of generality we assume that there exists an integer n1 ≥ n0 such that xn > 0,

xn−m > 0 for n ≥ n1.

(The proof is similar if xn < 0 for all large n)

Using (2) and (19), zn > 0

∆zn = ∆xn + p∆xn−τ

∆zn+1 = ∆xn+1 + p∆xn−τ+1

∆zn∆zn+1 = ∆xn∆xn+1 + p(∆xn∆xn−τ+1 + ∆xn+1∆xn−τ )

+p2∆xn−τ∆xn−τ+1

≤ 0.
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Hence zn > 0 and weakly oscillatory. In equation (1) putting Fn = an|∆zn|
α−1∆zn

for n ≥ n0 we get ∆Fn = −qnf(xn−σ)g(∆xn) ≤ 0 which implies {Fn} is non-

increasing hence Fn is eventually of one sign which gives a contradiction, since

{Fn} an oscillatory sequence. �

Theorem 2.5. Assume conditions (5), (9), (19) hold. Then every solu-

tion of equation (1) is either oscillatory or weakly oscillatory.

P r o o f. From Theorem 2.2 it follows that for equation (1) M+ = φ. In

order to complete the proof it suffices to show that for (1) M− = φ.

Suppose that {xn} ∈ M−. Then as earlier we can assume that xn > 0,

∆xn ≤ 0, xn−m > 0, ∆xn−m ≤ 0 for all n ≥ n1 the proof is similar if xn < 0,

∆xn ≥ 0 for large n.

Then by using (2) and (19) we see that

zn > 0 ∆zn ≤ 0 n ≥ n1

Let wn = an(∆zn)α, so that wn ≤ 0 for n ≥ n1. From (1)

∆wn ≤ −cqnf(xn−σ)

wn ≤ wn1
− c

n−1
∑

s=n1

qsf(xs−σ)

using Abel’s transformation. (1, p. 35)

wn ≤ wn1
− cf(xn−σ)

n−1
∑

s=n1

qs −

n−1
∑

s=n1

∆f(xs−σ)

(

s
∑

t=n1

qt

)

From the above relation

wn ≤ wn1

(∆zn)α ≤
wn1

an
< 0 for n ≥ n1

zn − zn1
≤ w1/α

n1

n−1
∑

s=n1

1

a
1/α
s

→ −∞ as n → ∞

which contradicts zn > 0. The proof is complete. �

From Theorems 2.4 and 2.5 we can easily get the following theorem.
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Theorem 2.6. Let qn ≥ 0 for all n ≥ n0 and conditions (5), (9), (19)

hold. Then every solution of equation (1) is oscillatory.

Now we study the asymptotic behaviour of the eventually monotone so-

lution of equation (1).

Theorem 2.7. Assume conditions (12), (13), (14) are satisfied. Then

for every solution xn ∈ M− we have lim
n→∞

xn = 0.

P r o o f. The assertion follows from the same argument as given in the

proof of Theorem 2.3. Taking into account (18) which implies lim
n→∞

zn = 0,

together with zn ≥ xn for all n ≥ M we have lim
n→∞

xn = 0.

This completes the proof. �

Example 2.1. Consider the quasi linear neutral delay difference equation

∆

[

1

n2
|∆xn + 2xn−1|

α−1 ∆(xn + 2xn−1)

]

+
n

n − 2
xn−2(1 + (∆xn)2) = 0 n ≥ 3.(E1)

τ = 1 σ = 2 f(y) = y g(y) = 1 + y2 ≥ 1

pn = 2 > 0 an = 1/n2 > 0 qn = n/n − 2

All conditions of Theorem 2.6 are satisfied and hence (E1) is oscillatory by The-

orem 2.6.
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