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Abstract. Some results on the existence and uniqueness of fixed points
for Kannan mappings on admissible subsets of bounded metric spaces and
on bounded closed convex subsets of complete convex metric spaces having
uniform normal structure are proved in this paper. These results extend
and generalize some results of Ismat Beg and Akbar Azam [Ind. J. Pure
Appl. Math. 18 (1987), 594–596], A. A. Gillespie and B. B. Williams [J.
Math. Anal. Appl. 74 (1980), 382–387] and of Yoichi Kijima and Wataru
Takahashi [Kodai Math Sem. Rep. 21 (1969), 326–330].

Kannan mappings have inspired a branch of fixed point theory devoted
exclusively to the study of generalizations of contraction type conditions. These
mappings have been used by Subrahmanyam [14] to characterize the metric com-
pleteness of the underlying spaces. Many results on the existence and uniqueness
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of fixed points for Kannan mappings have been proved in Banach spaces by Gille-
spie and Williams [4] and by Kannan [5, 6, 7, 8, 9]. Some of these results were
extended to convex metric spaces by Beg and Azam [1, 2]. In this paper, we
also prove some results on the existence and uniqueness of fixed points for Kan-
nan mappings on admissible subsets of bounded metric spaces and on bounded
closed convex subsets of complete convex metric spaces having uniform normal
structure. Our results extend and generalize some results of [2, 4] and [11]. The
proofs given here are modifications of those given in these papers.

We start with a few definitions and observations.

Definition 1. A mapping T of a metric space (X, d) into itself is said
to be a Kannan mapping on a subset K of X if

d(Tx, Ty) ≤
1

2
{d(x, Tx) + d(y, Ty)}

for all x, y ∈ K.

The following examples show that Kannan mappings need not be contin-
uous, these mappings need not be non-expansive and non-expansive mappings
need not be Kannan.

Example 1. Consider T : [0, 1] → [0, 1] defined as

T (x) =


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For any x, y ∈ [0, 1], d(x, y) = |x − y|.

If x, y ∈

[

0,
1

3

)

, then d(Tx, Ty) = |Tx − Ty| = |x − y| and d(x, Tx) =

|x − Tx| = |2x − 1| for all x.
1

2
(d(x, Tx) + d(y, Ty)) =

1

2
(|2x − 1| + |2y − 1|) =
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∣

∣

∣

∣

≥ |x − y| = |(1 − y) − (1 − x)| = d(Ty, Tx). This implies

d(Tx, Ty) ≤
d(x, Tx) + d(y, Ty)

2
for all x, y ∈

[

0,
1

3

)

. Similarly we can prove

this inequality for other x, y’s. Thus T is a Kannan mapping.

This mapping is not non-expansive because it is not continuous at x =
1

3
.
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Example 2. Define T : R
+ → R

+ by T (x) = x + 1 and d(x, y) = |x − y|
for all x, y ∈ R

+.

Clearly d(Tx, Ty) = d(x, y) for all x, y ∈ R
+ i.e. T is non-expansive. But

T is not Kannan: Take x, y ∈ R
+ with |x − y| > 1. d(x, Tx) = 1 for all x ∈ R

+.

d(x, Tx) + d(y, Ty)

2
=

1 + 1

2
= 1 < |x − y| = |(1 + x) − (1 + y)| = d(Tx, Ty).

Therefore, d(Tx, Ty) >
d(x, Tx) + d(y, Ty)

2
for all x, y ∈ R

+ with |x − y| > 1.

Definition 2. For a metric space (X, d) and the closed interval I = [0, 1],
a mapping W : X × X × I → X is said to be a convex structure on X if for all
x, y ∈ X,λ ∈ I

d(u,W (x, y, λ)) ≤ λd(u, x) + (1 − λ)d(u, y)

for all u ∈ X. The metric space (X, d) together with a convex structure is called
a convex metric space [15].

A normed linear space and each of its convex subset are simple examples
of convex metric spaces. There are many convex metric spaces which are not
normed linear spaces (see [15]).

Definition 3. A subset K of a convex metric space (X, d) is said to be
convex [15] if W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈ I.

If A is a subset of a convex metric space (X, d) then the intersection of
all convex sets in X containing A is called the convex hull of A and is denoted
by conv A.

Definition 4. If A is a subset of a metric space (X, d) then the diameter
of A, denoted by δ(A), is defined as

δ(A) = sup{d(x, y) : x, y ∈ A}.

Definition 5. The set A is said to be admissible (cf. [3, p.459]) if it can
be written as the intersection of a family of closed balls in X.

Admissible sets have played a central role in proving fixed point theorems
(see [10]).
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If A is a subset of a bounded metric space (X, d) then conv A is an
admissible set in X (see [10, p. 36]). Every bounded closed interval on the real
line is an admissible set. For more examples of admissible sets one may refer to
[10].

Definition 6. A convex metric space (X, d) is said to have uniform
normal structure [4] if we can find a real number h ∈ (0, 1) such that if C is a
closed bounded convex subset of X, then there exists some x0 ∈ C such that

sup{d(x0, y) : y ∈ C} ≤ hδ(C).

This notion was initially investigated by A. A. Gillespie and B. B. Williams in
1979 and has been widely used in fixed point theory (see e.g. [4], [10] and [13].)

Example 3. For f ∈ l2, define ‖f‖2,1 = ‖f+‖2 + ‖f−‖2. Then ‖ · ‖2,1 is
a norm on l2 and is equivalent to the usual norm. If l2 equipped with ‖ · ‖2,1 is
denoted by l2,1 then l2,1 has uniform normal structure (see [13]).

Every uniformly convex Banach space has uniform normal structure (see
[10]).

For more examples of spaces with uniform normal structure one may refer
to [10] and [13]. Throughout this paper, B[x, r] denotes a closed ball with center
x and radius r.

Theorem 1 proved below guarantees the existence and uniqueness of fixed
point for Kannan mappings on admissible sets:

Theorem 1. Let T be a Kannan mapping of a non-empty subset K of a
bounded metric space (X, d) into itself. Suppose

sup {d(y, Ty) : y ∈ F} < δ(F )

for every non-empty admissible subset F of K which has non-zero diameter and is
invariant under T . Then T has unique fixed point in K if there exists a minimal
T -invariant admissible subset K∗ of K.

P r o o f. If δ(K∗) = 0 then the point in K∗ is a fixed point of T . Suppose
δ(K∗) > 0. For any x, y ∈ K∗, we have

d(Ty, Tx) ≤
1

2
{d(y, Ty) + d(x, Tx)} ≤ sup

s∈K∗

d(s, Ts).

Therefore T (K∗) ⊆ C ≡ B

[

Tx, sup
s∈K∗

d(s, Ts)

]

for any x ∈ K∗. Moreover,

K∗ ∩ C is T -invariant, for if u ∈ K∗ ∩ C then Tu ∈ C as T (K∗) ⊆ C. Since
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Tu ∈ K∗, Tu ∈ K∗ ∩ C. Therefore, by the minimality of K∗, it follows that
K∗ ⊆ C. Hence for any arbitrary but fixed x ∈ K∗ and for every y ∈ K∗, we
have d(y, Tx) ≤ sup

s∈K∗

d(s, Ts) implying thereby sup
y∈K∗

d(y, Tx) ≤ sup
s∈K∗

d(s, Ts).

Let K ′ =

{

z ∈ K∗ : sup
y∈K∗

d(y, z) ≤ sup
s∈K∗

d(s, Ts)

}

. Obviously, K ′ is non-

empty as for any x ∈ K∗, Tx ∈ K ′. The previous argument shows that T (K∗) ⊂
K ′. Since K ′ ⊂ K∗, it follows that K ′ is invariant under T . Also K ′ is admissible
as

K ′ = K∗ ∩

{

∩B

[

y, sup
s∈K∗

d(s, Ts) +
1

n

]

: y ∈ K∗, n = 1, 2, . . .

}

.

Further, δ(K ′) ≤ sup
y∈K∗

d(y, Ty) < δ(K∗) by the hypothesis. Hence K ′ is a proper

invariant admissible subset of K∗, contradicting the minimality of K∗. Thus
δ(K∗) = 0 proving thereby that T has a fixed point in K.

For uniqueness, suppose x and y are fixed points of T then d(x, y) =

d(Tx, Ty) ≤
1

2
{d(x, Tx) + d(y, Ty)} = 0 and so x = y. �

Corollary 1. Let T be a Kannan mapping of a non-empty admissible
subset K of a bounded metric space (X, d) into itself satisfying:

(1) if a family of closed balls has finite intersection property (f.i.p.) then the
intersection of the family is non-empty,

(2) sup{d(y, Ty) : y ∈ F} < δ(F ) for every non-empty admissible subset F of
K which has non-zero diameter and is invariant under T ,

then T has unique fixed point in K.

P r o o f. Let Φ be the family of all non-empty admissible subsets of X

which are invariant under T . Since K ∈ Φ, Φ is non-empty. Φ is partially ordered
with respect to set inclusion. Let {Ai : i ∈ I} be totally ordered subfamily of Φ.
We show that A = ∩{Ai : i ∈ I} is an element of Φ. A is admissible as each
Ai = ∩{B[xj, rj ] : j ∈ Ji} so A = ∩{B[xj , rj ] : j ∈ J = ∪i∈IJi}. Also A is
invariant under T . Consider the family {B[xj , rj ] : j ∈ J} and take arbitrary
finite elements B[xj1, rj1 ], B[xj2 , rj2], . . . , B[xjn

, rjn
] from it. Every B[xj, rj ], j ∈

J contains some Ai, i ∈ I and so ∩n
k=1

Aik ⊂ ∩n
k=1

B[xjk
, rjk

]. Since the family
{Ai : i ∈ I} is totally ordered, ∩n

k=1
Aik is non-empty and so is ∩n

k=1
B[xjk

, rjk
].

This shows that the family {B[xj, rj ] : j ∈ J} has f.i.p. and so A is non-empty
by (1). Obviously, A is lower bound of the family {Ai : i ∈ I} and therefore
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by Zorn’s lemma, Φ has a minimal element, say K∗. The result now follows by
Theorem 1. �

Note 1. For non-expansive mappings, the following similar result was
proved by Kijima and Takahashi [11]:

Suppose a bounded metric space (X, d) satisfies

(1) if a family of closed balls has f.i.p, then the intersection of the family is
nonempty,

(2) each admissible subset which contains more than one point contains a non
diametral point,

then every non-expansive mapping T of X into X has a fixed point.

Note 2. For nonempty bounded closed starshaped subset K of a convex
metric space (X, d) the following result was proved by Beg and Azam [2]:

Let T be a Kannan mapping of a nonempty bounded closed starshaped

subset K of a convex metric space X into itself. Suppose sup
y∈F

d(y, Ty) <
1

2
δ(F )

for every closed T -invariant starshaped subset F of K with non-zero diameter.
Then T has a unique fixed point if there exists a minimal closed T -invariant
starshaped subset K∗ of K.

Gillespie and Williams [4] proved the existence and uniqueness of fixed
point of Kannan mappings for closed bounded convex subsets of Banach spaces
having uniform normal structure. We extend the result to convex metric spaces.

Theorem 2. If C is a bounded closed convex subset of a complete convex
metric space (X, d), T : C → C a Kannan mapping and X has uniform normal
structure, then T has unique fixed point.

P r o o f. Since X has uniform normal structure, there exists h ∈ (0, 1)
such that P = {x ∈ C : d(x, Tx) ≤ hδ(C)} 6= ∅. If x ∈ P , then in view of

d(Tx, T 2x) ≤
1

2
(d(x, Tx) + d(Tx, T 2x)),

we have d(Tx, T 2x) ≤ hδ(C) which implies that Tx ∈ P for all x ∈ P and hence
T (P ) ⊆ P . Let C1 = cl conv[T (P )] ≡ closed convex hull of T (P ). We claim that
C1 ⊆ P .

If z ∈ C1, then the following three cases may arise:
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(1) z ∈ T (P ). In this case, since T (P ) ⊂ P, z ∈ P .

(2) z ∈ conv[T (P )] = ∪i∈NAi (Proposition 1 [11]), where A1 = W (T (P ) ×
T (P )×[0, 1]), A2 = W (A1×A1×[0, 1]), . . . , An+1 = W (An×An×[0, 1]), . . ..
Then z ∈ Am for some m. Applying Principle of Mathematical Induction,
we get

d(z, Ty) ≤
hδ(C)

2
+

d(Ty, y)

2

for all z ∈ Am, m ≥ 1 and y ∈ C as shown below:

Suppose z ∈ A1 and y ∈ C. z ∈ A1 ⇒ z ∈ W (T (P ) × T (P ) × [0, 1]). This
implies z = W (T (u), T (v), λ) for some λ ∈ [0, 1], u, v ∈ P . Consider

d(z, Ty) = d(W (Tu, Tv, λ), T y)

≤ λd(Tu, Ty) + (1 − λ)d(Tv, Ty)

≤ λ
d(u, Tu) + d(y, Ty)

2
+

(1 − λ)
d(v, Tv) + d(y, Ty)

2

≤ λ

[

hδ(C)

2
+

d(y, Ty)

2

]

+

(1 − λ)

[

hδ(C)

2
+

d(y, Ty)

2

]

=
hδ(C)

2
+

d(y, Ty)

2

Suppose z ∈ A2 and y ∈ C. z ∈ A2 ⇒ z ∈ W (A1×A1× [0, 1]). This implies

z = W (p, q, κ), p, q ∈ A1. Now p ∈ A1 ⇒ d(p, Ty) ≤
hδ(C)

2
+

d(Ty, y)

2
and

q ∈ A1 ⇒ d(q, Ty) ≤
hδ(C)

2
+

d(Ty, y)

2
.
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Consider

d(z, Ty) = d(W (p, q, κ), T y)

≤ κd(p, Ty) + (1 − κ)d(q, Ty)

≤ κ

[

hδ(C)

2
+

d(Ty, y)

2

]

+

(1 − κ)

[

hδ(C)

2
+

d(Ty, y)

2

]

=
hδ(C)

2
+

d(Ty, y)

2

Proceeding so on, we get d(z, T z) ≤
hδ(C)

2
+

d(Tz, z)

2
for every z ∈ Am,

for all m ≥ 1 and y ∈ C. As a consequence, we have d(z, T z) ≤ hδ(C) and
therefore, z ∈ P .

(3) z is a limit point of conv[T (P )]. Then there exists a sequence 〈zn〉 in
conv[T (P )] such that 〈zn〉 → z. As zn ∈ conv[T (P )],

d(zn, T y) ≤
hδ(C)

2
+

d(Ty, y)

2

for all y ∈ C. In particular, d(zn, T z) ≤
hδ(C)

2
+

d(Tz, z)

2
. Thus

d(z, T z) ≤ d(z, zn) + d(zn, T z)

≤ d(z, zn) +
hδ(C)

2
+

d(Tz, z)

2
.

Taking limit as n → ∞, d(z, T z) ≤
hδ(C)

2
+

d(Tz, z)

2
i.e. d(z, T z) ≤ hδ(C)

and so z ∈ P .

Thus in all the three cases C1 ⊆ P . Also C1 is invariant under T for
if, x ∈ C1 ⊆ P then Tx ∈ T (P ) ⊆ C1. Now C1 = cl conv[T (P )] ⇒ δ(C1) =
δ(conv[T (P )]) = δ(T (P ))(see[12]) ≤ hδ(C) as Tx, Ty ∈ T (P ) ⇒ d(Tx, Ty) ≤
1

2
{d(x, Tx) + d(y, Ty)} ≤ hδ(C).
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Taking Cn = cl conv[T (Pn−1)], where for Cn−1 we consider the set Pn−1

defined in the similar way as P for C and noting that T (P1) ⊂ P1. So,we can
find a decreasing sequence 〈Cn〉 of non-empty closed convex T invariant subsets
of C such that δ(Cn) ≤ hnδ(C) for each n. Taking n → ∞, we get lim δ(Cn) = 0.
Therefore Cantor’s intersection Theorem gives a fixed point for T . Uniqueness of
fixed point follows as in Theorem 1. �

Corollary ([4]). If C is a bounded closed convex subset of a Banach
space X. T : C → C is a Kannan mapping and X has uniform normal structure
then T has unique fixed point.

Acknowledgement. The authors are thankful to the referee for critical
comments and valuable suggestions which resulted in the improvement of the
paper.
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