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Abstract. In this paper, we obtain some statistical Korovkin-type approx-
imation theorems including fractional derivatives of functions. We also show
that our new results are more applicable than the classical ones.

1. Introduction. In [11], Gadjiev and Orhan improved the classical

Korovkin theory via the concept of statistical convergence, which is known as

“Statistical Korovkin Theory” in the literature (see also [4, 6, 7, 17]). In the very

recent paper [2], Anastassiou studied the Korovkin theory by considering the

fractional derivatives of functions, the so-called “Fractional Korovkin Theory”.

Here, we refer to readers [1, 13] for the Korovkin theory; [3, 14, 16] for the

fractional calculus, and also [5, 8, 9, 10, 15] for the statistical convergence. The

aim of the present paper is to obtain some fractional Korovkin-type results based
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on statistical convergence. We also show that our new results are more applicable

than the classical ones. More precisely, we display a sequence of positive linear

operators which obeys our all statistical approximation conditions but not ones

in the fractional Korovkin theory.

We first recall some basic definitions and notations used in the paper. Let

A := [ajn], j, n = 1, 2, . . . , be an infinite summability matrix and assume that, for

a given sequence (xn), the series

∞
∑

n=1

ajnxn converges for every j ∈ N. Then, by

the A-transform of x, we mean the sequence ((Ax)j) such that, for every j ∈ N,

(Ax)j :=

∞
∑

n=1

ajnxn. A summability matrix A is said to be regular (see [12]) if for

every (xn) for which lim
n

xn = L we get lim
j

(Ax)j = L. For a given non-negative

regular summability matrix A, we say that a sequence (xn) is A-statistically

convergent to a number L if, for every ε > 0, lim
j→∞

∑

n:|xn−L|≥ε

anj = 0, which is

denoted by stA − lim
n

xn = L. (see [10]). Observe now that if A = C1 = [cjn],

the Cesáro matrix defined to be cjn = 1/j if 1 ≤ n ≤ j, and cjn = 0 oth-

erwise, then C1-statistical convergence coincides with the concept of statistical

convergence, which was first introduced by Fast [8]. In this case, we use the

notation st − lim instead of stC1 − lim (see the last section for this situation).

Notice that every convergent sequence is A-statistically convergent to the same

value for any non-negative regular matrix A, however, the converse is not always

true. Not all properties of convergent sequences hold true for A-statistical con-

vergence (or statistical convergence). For instance, although it is well-known that

a subsequence of a convergent sequence is convergent, this is not always true for

A-statistical convergence. Another example is that every convergent sequence

must be bounded, however it does not need to be bounded of an A-statistically

convergent sequence.

2. Fractional Derivatives and Positive Linear Operators. In

this section we first recall the Caputo fractional derivatives. Let r be a positive

real number and m = ⌈r⌉, where ⌈·⌉ is the ceiling of the number. As usual, by

AC ([a, b]) we denote the space of all real-valued absolutely continuous functions

on [a, b]. Also, consider the space

ACm ([a, b]) :=
{

f : [a, b] → R : f (m−1) ∈ AC ([a, b])
}

.
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Then, the left Caputo fractional derivative of a function f belonging to ACm[a, b]

is defined by

(2.1) Dr
∗af(x) :=

1

Γ(m − r)

x
∫

a

(x − t)m−r−1f (m)(t)dt for x ∈ [a, b],

where Γ is the usual Gamma function. Also, the right Caputo fractional derivative

of a function f belonging to ACm ([a, b]) is defined to be

(2.2) Dr
b−f(x) :=

(−1)m

Γ(m − r)

b
∫

x

(ζ − x)m−r−1f (m)(ζ)dζ for x ∈ [a, b].

In (2.1) and (2.2), we set D0
∗af = f and D0

b−f = f on [a, b]. Throughout the

paper we consider the following assumptions:

Dr
∗af(y) = 0 for every y < a

and

Dr
b−f(y) = 0 for every y > b.

Then we know the following facts (see, e.g., [2, 3]):

(a) If r > 0, r /∈ N, m = ⌈r⌉, f ∈ Cm−1([a, b]) and f (m) ∈ L∞ ([a, b]),

then we have Dr
∗af(a) = 0 and Dr

b−f(b) = 0.

(b) Let y ∈ [a, b] be fixed. For r > 0, m = ⌈r⌉, f ∈ Cm−1([a, b]) with

f (m) ∈ L∞[a, b], consider the following Caputo fractional derivatives:

(2.3) Uf (x, y) := Dr
∗xf(y) =

1

Γ(m − r)

y
∫

x

(y − t)m−r−1f (m)(t)dt for y ∈ [x, b]

and

(2.4) Vf (x, y) := Dr
x−f(y) =

(−1)m

Γ(m − r)

x
∫

y

(ζ −y)m−r−1f (m)(ζ)dζ for y ∈ [a, x].

Then, by [2], for each fixed x ∈ [a, b], Uf (x, ·) is continuous on the interval [x, b],

and also Vf (x, ·) is continuous on [a, x]. In addition, if f ∈ Cm([a, b]), then,

Uf (·, ·) and Vf (·, ·) are continuous on the set [a, b] × [a, b].
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(c) Let ω(f, δ), δ > 0, denote the usual modulus of continuity of a function

f on [a, b]. If g ∈ C ([a, b] × [a, b]), then, for any δ > 0, both the functions

s(x) := ω (g (·, x) , δ)[a,x] and t(x) := ω (g (·, x) , δ)[x,b] are continuous at the point

x ∈ [a, b].

(d) If f ∈ Cm−1([a, b]) with f (m) ∈ L∞[a, b], then we get from [2] that

(2.5) sup
x∈[a,b]

ω (Uf (x, ·) , δ)[x,b] < ∞

and

(2.6) sup
x∈[a,b]

ω (Vf (x, ·) , δ)[a,x] < ∞.

(e) Now let Ψ(y) := Ψx(y) = y − x and e0(y) := 1 on the interval [a, b].

Following the paper by Anastassiou (see [2]) if Ln : C ([a, b]) → C ([a, b]) is a

sequence of positive linear operators and if r > 0, r /∈ N, m = ⌈r⌉, f ∈ ACm([a, b])

with f (m) ∈ L∞ ([a, b]) , then we obtain that (‖ · ‖ is the supremum norm)

‖Ln(f) − f‖ ≤ ‖f‖ ‖Ln(e0) − e0‖ +

m−1
∑

k=1

∥

∥f (k)
∥

∥

k!

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥

+

(

r + 2

Γ (r + 2)
+

1

Γ (r + 1)
‖Ln (e0) − e0‖

1
r+1

)

×
∥

∥

∥
Ln

(

|Ψ|r+1
)∥

∥

∥

r
r+1

{

sup
x∈[a,b]

ω

(

Uf (x, ·) ,
∥

∥

∥
Ln

(

|Ψ|r+1
)∥

∥

∥

1
r+1

)

[x,b]

+ sup
x∈[a,b]

ω

(

Vf (x, ·) ,
∥

∥

∥Ln

(

|Ψ|r+1
)∥

∥

∥

1
r+1

)

[a,x]

}

.

Then setting

(2.7) δn,r :=
∥

∥

∥
Ln

(

|Ψ|r+1
)∥

∥

∥

1
r+1

,
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and also using (2.5), (2.6) we may write that

(2.8)

‖Ln(f) − f‖ ≤Km,r

{

‖Ln(e0) − e0‖ +
m−1
∑

k=1

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥

+δr
n,r

(

sup
x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b]

)

+δr
n,r

(

sup
x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

)

+δr
n,r ‖Ln (e0) − e0‖

1
r+1

(

sup
x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b]

)

+δr
n,r ‖Ln (e0) − e0‖

1
r+1

(

sup
x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

)}

,

where

(2.9) Kr,m := max

{

1

Γ (r + 1)
,

r + 2

Γ (r + 2)
, ‖f‖ ,

∥

∥f ′
∥

∥ ,

‖f ′′‖
2!

,
‖f ′′′‖

3!
, . . . ,

∥

∥f (m−1)
∥

∥

(m − 1)!

}

We should note that the sum in the right hand-side of (2.8) collapses when

r ∈ (0, 1).

Therefore, the next theorem is a fractional Korovkin-type approximation

result for a sequence of positive linear operators.

Theorem A (see [2]). Let Ln : C ([a, b]) → C ([a, b]) be a sequence of

positive linear operators, and let r > 0, r /∈ N, m = ⌈r⌉. If the sequence {δn,r}n∈N

given by (2.7) is convergent to zero as n tends to infinity and {Ln(e0)}n∈N con-

verges uniformly to e0 on [a, b], then, for every f ∈ ACm([a, b]) with f (m) ∈
L∞ ([a, b]), the sequence {Ln(f)}n∈N converges uniformly to f on the interval

[a, b]. Furthermore, this uniform convergence is still valid on [a, b] when f ∈
Cm ([a, b]).
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3. Fractional Korovkin Results Based on Statistical Conver-

gence. In this section, we mainly obtain the statistical version of Theorem A.

We first need the following lemma.

Lemma 3.1. Let A := [ajn] be a non-negative regular summability ma-

trix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([a, b]) → C ([a, b]) is a

sequence of positive linear operators. If

(3.1) stA − lim
n

‖Ln(e0) − e0‖ = 0

and

(3.2) stA − lim
n

δn,r = 0,

where δn,r is the same as in (2.7), then we have, for every k = 1, 2, . . . ,m − 1,

stA − lim
n

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥ = 0.

P r o o f. Let k ∈ {1, 2, . . . ,m−1} be fixed. Then, using Hölder’s inequality

for positive linear operators with p =
r + 1

k
, q =

r + 1

r + 1 − k

(

1

p
+

1

q
= 1

)

, we

obtain that

∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≤
∥

∥

∥
Ln

(

|Ψ|r+1
)∥

∥

∥

k
r+1 ‖Ln (e0)‖

r+1−k
r+1 ,

which gives

∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≤
∥

∥

∥
Ln

(

|Ψ|r+1
)∥

∥

∥

k
r+1
{

‖Ln (e0) − e0‖
r+1−k

r+1 + 1
}

.

Hence, for each k = 1, 2, . . . ,m − 1, we get the following inequality

(3.3)
∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥ ≤ δk
n,r ‖Ln (e0) − e0‖

r+1−k
r+1 + δk

n,r.

Then, for a given ε > 0, define the following sets:

A : =
{

n ∈ N :
∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≥ ε
}

,

A1 : =
{

n ∈ N : δk
n,r ‖Ln (e0) − e0‖

r+1−k
r+1 ≥ ε

2

}

A2 : =

{

n ∈ N : δn,r ≥
(ε

2

) 1
k

}

.
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Then, it follows from (3.3) that A ⊆ A1 ∪ A2. Also, defining

A′
1 : =

{

n ∈ N : δn,r ≥
(ε

2

) 1
2k

}

,

A′′
1 : =

{

n ∈ N : ‖Ln (e0) − e0‖ ≥
(ε

2

)
r+1

2(r+1−k)

}

,

we observe that A1 ⊆ A′
1 ∪ A′′

2 , which implies that

A ⊆ A′
1 ∪ A′′

1 ∪ A2.

Hence, for every j ∈ N, we get

∑

n∈A

ajn ≤
∑

n∈A′

1

ajn +
∑

n∈A′′

1

ajn +
∑

n∈A2

ajn.

Letting j → ∞ in the last inequality and also using the hypotheses (3.1) and

(3.2) we immediately see that

lim
j

∑

n∈A

ajn = 0.

Hence, we conclude that, for each k = 1, 2, . . . ,m − 1,

stA − lim
n

∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
= 0,

whence the result. �

Now we are ready to give our first fractional approximation result based

on statistical convergence.

Theorem 3.2. Let A := [ajn] be a non-negative regular summability

matrix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([a, b]) → C ([a, b])

is a sequence of positive linear operators. If (3.1) and (3.2) hold, then, for every

f ∈ ACm([a, b]) with f (m) ∈ L∞ ([a, b]), we have

(3.4) stA − lim
n

‖Ln(f) − f‖ = 0.
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P r o o f. Let f ∈ ACm([a, b]) with f (m) ∈ L∞ ([a, b]). Then, using (2.5),

(2.6) and (2.8), we get

(3.5)

‖Ln(f) − f‖ ≤ Mm,r

{

‖Ln(e0) − e0‖ + 2δr
n,r

+2δr
n,r ‖Ln (e0) − e0‖

1
r+1 +

m−1
∑

k=1

∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥

}

,

where

Mm,r := max

{

Km,r, sup
x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b] , sup
x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

}

and Km,r is given by (2.9). Now, for a given ε > 0, define the following sets:

B : = {n ∈ N : ‖Ln(f) − f‖ ≥ ε} ,

Bk : =

{

n ∈ N :
∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≥ ε

(m + 2)Mm,r

}

, k = 1, 2, . . . ,m − 1.

Bm : =

{

n ∈ N : ‖Ln(e0) − e0‖ ≥ ε

(m + 2) Mm,r

}

Bm+1 : =

{

n ∈ N : δn,r ≥
(

ε

2(m + 2)Mm,r

)
1
r

}

,

Bm+2 : =

{

n ∈ N : δr
n,r ‖Ln(e0) − e0‖

1
r+1 ≥ ε

2(m + 2)Mm,r

}

.

Then, it follows from (3.5) that B ⊆
m+2
⋃

i=1
Bi. Also defining

Bm+3 : =

{

n ∈ N : ‖Ln(e0) − e0‖ ≥
(

ε

2(m + 2)Mm,r

)
r+1
2

}

,

Bm+4 : =

{

n ∈ N : δn,r ≥
(

ε

2(m + 2)Mm,r

)
1
2r

}

we see that

Bm+2 ⊆ Bm+3 ∪ Bm+4,
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which implies for i not m + 2 :

B ⊆
m+4
⋃

i=1

Bi.

Hence, for every j ∈ N, we have for i not m + 2 :

(3.6)
∑

n∈B

ajn ≤
m+4
∑

i=1

∑

n∈Bi

ajn.

Taking limit as n → ∞ in the both sides of (3.6) and also using (3.1), (3.2), and

also considering Lemma 3.1 we conclude that

lim
j

∑

n∈B

ajn = 0,

which gives (3.4). �

If we use the space Cm([a, b]) instead of ACm([a, b]), then we can get a

slight modification of Theorem 3.2. To see this we need the next lemma.

Lemma 3.3. Let A := [ajn] be a non-negative regular summability ma-

trix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([a, b]) → C ([a, b]) is a

sequence of positive linear operators. If (3.2) holds, then, for every f ∈ Cm([a, b]),

we have:

(i) stA − lim
n

(

sup
x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b]

)

= 0,

(ii) stA − lim
n

(

sup
x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

)

= 0,

where δn,r is the same as in (2.7); Uf (·, ·) and Vf (·, ·) are given respectively by

(2.3) and (2.4).

P r o o f. We know from (b) that if f ∈ Cm ([a, b]) , then both Uf (·, ·) and

Vf (·, ·) belong to C ([a, b] × [a, b]) . Then, by (c), the functions ω (Uf (x, ·) , δn,r)[x,b]

and ω (Vf (x, ·) , δn,r)[a,x] are continuous at the point x ∈ [a, b]. Hence, there exist

the points x0, x1 ∈ [a, b] such that

sup
x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b] = ω (Uf (x0, ·) , δn,r)[x0,b] =: g (δn,r)
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and

sup
x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x] = ω (Vf (x1, ·) , δn,r)[a,x1]
=: h (δn,r) .

Since Uf (x0, ·) and Vf (x1, ·) are continuous on [a, b], the functions g and h are

right continuous at the origin. By (3.2), we get, for any δ > 0, that

(3.7) lim
j

∑

n:δn,r≥δ

ajn = 0.

Now, by the right continuity of g and h at zero, for a given ε > 0, there exist

δ1, δ2 > 0 such that g(δn,r) < ε whenever δn,r < δ1 and that h(δn,r) < ε whenever

δn,r < δ2. Then, we may write that g(δn,r) ≥ ε implies δn,r ≥ δ1, and also that

h(δn,r) ≥ ε implies δn,r ≥ δ2. Hence, we see that

(3.8) {n ∈ N : g(δn,r) ≥ ε} ⊆ {n ∈ N : δn,r ≥ δ1}

and

(3.9) {n ∈ N : h(δn,r) ≥ ε} ⊆ {n ∈ N : δn,r ≥ δ2}

So, it follows from (3.8) and (3.9) that, for each j ∈ N,

(3.10)
∑

n:g(δn,r)≥ε

ajn ≤
∑

n:δn,r≥δ1

ajn

and

(3.11)
∑

n:h(δn,r)≥ε

ajn ≤
∑

n:δn,r≥δ2

ajn

Then, taking limit as j → ∞ on the both sides of the inequalities (3.10), (3.11);

and also using (3.7) we immediately get, for every ε > 0,

lim
j

∑

n:g(δn,r)≥ε

ajn = lim
j

∑

n:h(δn,r)≥ε

ajn = 0,

which means that

stA − lim
n

(

sup
x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b]

)

= 0



Fractional Korovkin Theory Based on Statistical Convergence 391

and

stA − lim
n

(

sup
x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

)

= 0.

Therefore, the proof of Lemma is completed. �

Then, we get the following result.

Theorem 3.4. Let A := [ajn] be a non-negative regular summability

matrix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([a, b]) → C ([a, b])

is a sequence of positive linear operators. If (3.1) and (3.2) hold, then, for every

f ∈ Cm([a, b]), we have (3.4).

P r o o f. By (2.8), we get

(3.12)

‖Ln(f) − f‖ ≤ Km,r

{

‖Ln(e0) − e0‖ +
m−1
∑

k=1

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥

+δr
n,rg (δn,r) + δr

n,rh (δn,r)

+δr
n,rg (δn,r) ‖Ln (e0) − e0‖

1
r+1

+δr
n,rh (δn,r) ‖Ln (e0) − e0‖

1
r+1

}

,

where g(δn,r) and h(δn,r) are the same as in the proof of Lemma 3.3. Now, for a

given ε > 0, consider the following sets

C : = {n ∈ N : ‖Ln(f) − f‖ ≥ ε} ,

Ck : =

{

n ∈ N :
∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≥ ε

(m + 4)Km,r

}

, k = 1, 2, . . . ,m − 1.

Cm : =

{

n ∈ N : ‖Ln(e0) − e0‖ ≥ ε

(m + 4)Km,r

}

Cm+1 : =

{

n ∈ N : δr
n,rg (δn,r) ≥

ε

(m + 4) Km,r

}

,
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Cm+2 : =

{

n ∈ N : δr
n,rh (δn,r) ≥

ε

(m + 4) Km,r

}

,

Cm+3 : =

{

n ∈ N : δr
n,rg (δn,r) ‖Ln (e0) − e0‖

1
r+1 ≥ ε

(m + 4) Km,r

}

Cm+4 : =

{

n ∈ N : δr
n,rh (δn,r) ‖Ln (e0) − e0‖

1
r+1 ≥ ε

(m + 4) Km,r

}

.

Then, by (3.12), we have

C ⊆
m+4
⋃

i=1

Ci.

So, for every j ∈ N, we get

(3.13)
∑

n∈C

ajn ≤
m+4
∑

i=1





∑

n∈Ci

ajn



 .

On the other hand, by (3.1), (3.2) and Lemmas 3.1, 3.3, we see that

stA − lim
n

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥ = 0, (k = 1, ..,m − 1),

stA − lim
n

δr
n,rg (δn,r) = 0,

stA − lim
n

δr
n,rh (δn,r) = 0,

stA − lim
n

δr
n,rg (δn,r) ‖Ln (e0) − e0‖

1
r+1 = 0,

stA − lim
n

δr
n,rh (δn,r) ‖Ln (e0) − e0‖

1
r+1 = 0.

Hence, we observe that, for every i = 1, 2, . . . ,m + 4,

(3.14) lim
j

∑

n∈Ci

ajn = 0.
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Now, taking limit as j → ∞ in the both sides of (3.13) and using (3.14) we obtain

that

lim
j

∑

n∈C

ajn = 0.

The last equality implies that

stA − lim
n

‖Ln(f) − f‖ = 0,

which completes the proof. �

4. Concluding Remarks. In this section we introduce a sequence of

positive linear operators which satisfies all conditions of Theorem 3.2 but not

Theorem A.

Now take A = C1 = [cjn], the Cesáro matrix, and define the sequences

(un) and (vn) by

un :=

{ √
n, if n = m2 (m ∈ N),

0, otherwise.

and

vn :=

{

1/2, if n = m2 (m ∈ N),
1, otherwise.

Then observe that

st − lim
n

un = 0 and st − lim
n

vn = 1.

Let r =
1

2
. Then we get m =

⌈

1

2

⌉

= 1. Now consider the following Bernstein-like

positive linear operators:

(3.15)

Ln(f ;x) := (1 + un)

n
∑

k=0

f

(

k

n

)(

n

k

)

vk
nxk(1 − vnx)n−k, x ∈ [0, 1], n ∈ N,

where f ∈ AC ([0, 1]) with f ′ ∈ L∞ ([0, 1]). Since

Ln(e0) = 1 + un,
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we easily get,

st − lim
n

‖Ln(e0) − e0‖ = st − lim
n

un = 0,

which gives (3.1). Also, by Hölder’s inequality with p =
4

3
and q = 4, since

Ln

(

|Ψ|
3
2 ;x

)

= (1 + un)
n
∑

k=0

∣

∣

∣

∣

x − k

n

∣

∣

∣

∣

3/2(n

k

)

vk
nxk(1 − vnx)n−k

≤ (1 + un)

(

n
∑

k=0

(

x − k

n

)2(n

k

)

vk
nxk(1 − vnx)n−k

)3/4

= (1 + un)

(

x2(1 − vn)2 +
vnx − v2

nx2

n

)3/4

we have

δ
3/2

n, 1
2

=
∥

∥

∥
Ln

(

|Ψ|
3
2

)∥

∥

∥
≤ (1 + un)

(

(1 − vn)2 +
1

4n

)3/4

.

Using the fact that

st − lim
n

un = 0 and st − lim
n

vn = 1,

we get

st − lim
n

(1 + un)

(

(1 − vn)2 +
1

4n

)3/4

= 0.

Hence, we obtain that

st − lim
n

δn, 1
2

= 0,

which verifies (3.2). Therefore, by Theorem 3.2, for every f ∈ AC([0, 1]) with

f ′ ∈ L∞ ([0, 1]) , we have

stA − lim
n

‖Ln(f) − f‖ = 0.

However, since neither (un) nor (vn) converges to zero (in the usual sense), it is

impossible to approximate f by the sequence {Ln(f)} for every f ∈ AC([0, 1])
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with f ′ ∈ L∞ ([0, 1]). This example clearly shows that our statistical result in

Theorem 3.2 is more applicable than Theorem A.
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