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In 2007, P. J. Larcombe established the following result for the 3F2 hypergeometric
series, for m ≥ 2:
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The aim of this paper is to provide a generalization of this result. The results are
derived with the help of a generalization of the Whipple theorem on the sum of a 3F2, obtained
earlier by Lavoie et al. A few interesting special cases are also given.
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1. Introduction and statement of results

The generalized hypergeometric functions with p numerator and q de-
nominator parameters [1–3] is defined by

pFq




α1, . . . , αp

; z
β1, . . . , βq


 = pFq [α1, . . . , αp; β1, . . . , βq; z]

=
∞∑

n=0

(α1)n . . . (αp)n

(β1)n . . . (βq)n

zn

n!
, (1)

where (α)n denotes the Pochhammer symbol (or the shifted factorial, since
(1)n = n!) defined by

(α)n =
{

α(α + 1) . . . (α + n− 1), n ∈ N
1, n = 0.

(2)
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Using the fundamental property Γ(α + 1) = αΓ(α), (α)n can be written in the
form

(α)n =
Γ(α + n)

Γ(α)
(3)

where Γ is the well known gamma function.
It is not out of place to mention here that whenever a hypergeometric

function reduce to gamma functions, the results are very important from the
applicative point of view. Only a few summation theorems for the series 2F1

and 3F2 are available in the literature. The classical summation theorems such
as of Gauss, Gauss’s second, Kummer and Bailey for the series 2F1 and Watson,
Dixon and Whipple for the series 3F2 play an important role in the theory of
hypergeometric and generalized hypergeometric series.

Bailey, in his well known and very interesting paper [5] applied the above
mentioned classical summation theorems and obtained a large number of known
and unknown results involving products of generalized hypergeometric series.

Also, Berndt [6] has pointed out that the interesting summations due
to Ramanujan can be obtained quite simply by employing the above mentioned
classical summation theorems. For more details about the recent generalizations
of such summations theorem and their applications, see [9, 10]

It is well known that the classical summation theorems for 3F2 play an
important rule in the theory of hypergeometric series. Let us recall some of
them:

Watson theorem ( [2]):
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a, b, c
; 1

1
2(a + b + 1), 2c


 (4)

=
Γ(1

2)Γ(c + 1
2)Γ(1

2a + 1
2b + 1

2)Γ(c− 1
2a− 1

2b + 1
2)

Γ(1
2a + 1

2)Γ(1
2b + 1

2)Γ(c− 1
2a + 1

2)Γ(c− 1
2b + 1

2)
,

provided Re(2c− a− b) > −1.

Dixon theorem ( [2]):

3F2




a, b, c
; 1

1 + a− b, 1 + a− c


 (5)

=
Γ(1 + 1

2a)Γ(1 + a− b)Γ(1 + a− c)Γ(1 + 1
2a− b− c)

Γ(1 + a)Γ(1 + 1
2a− b)Γ(1 + 1

2a− c)Γ(1 + a− b− c)

provided Re(a− 2b− 2c) > −2.
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Whipple theorem ( [2]):

3F2




a, b, c
; 1

e, f


 (6)

=
πΓ(e)Γ(f)

22c−1Γ(1
2a + 1

2e)Γ(1
2a + 1

2f)Γ(1
2b + 1

2e)Γ(1
2b + 1

2f)
,

provided Re(c) > 0 and Re(e+f−a−b−c) > 0 with a+b = 1 and e+f = 2c+1.

In [10], explicit expressions of
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a, b, c
; 1

1
2(a + b + i + 1), 2c + j


 (7)

for i, j = 0,±1,±2, and

3F2




a, b, c
; 1

1 + a− b + i, 1 + a− c + i + j


 (8)

for i = −3,−2,−1, 0, 1, 2; j = 0, 1, 2, 3, as well as

3F2




a, b, c
; 1

e, f


 (9)

with a + b = 1 + i and e + f = 1 + 2c + j each for i, j = 0,±1,±2,±3, are given.
For i = j = 0, (7), (8) and (9) reduce to the Watson, Dixon and Whipple

summation theorems, (4), (5) and (6) respectively.
By employing (8), very recently in [8] a new hypergeometric transforma-

tion and a large number of new and interesting identities are deduced.
In 2007, Larcombe [11, Theorem 3, Eq.II2], established the following

result on the sum of a 3F2 hypergeometric series

3F2

(
1
2
(1−m),

1
2
(1 + m), 1;

3
2
,
3
2
; 1

)
=

π2

8
1

Γ2(1− m
4 )Γ2(1 + m

4 )
, for m ≥ 2.

(10)
This result is derived in two different ways; by employing the formula [2, (3.8.2),
p. 21]:

3F2 (a, b, e + f − a− b− 1; e, f ; 1) =
Γ(e)Γ(f)Γ(e− a− b)Γ(f − a− b)
Γ(e− a)Γ(e− b)Γ(f − a)Γ(f − b)

+
1

(a + b− e)
.

Γ(e)Γ(f)
Γ(a)Γ(b)Γ(e + f − a− b)

× 3F2 (e− a, e− b, 1; e− a− b + 1, e + f − a− b; 1) ,

and by the classical Whipple’s theorem (6).
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The main aim of this research paper is to obtain the explicit expression
for the value of

3F2
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2(1 + m) + i + j, 1
; 1

3
2 , 3

2 + i




for i = −3,−2,−1, 0, 1, 2, 3; j = 0,−1,−2,−3. A few interesting special cases
have also been given.

The results are derived with the help of a generalized form of Whipple’s
theorem given by Lavoie et al. [7, Eq. 4, P. 294], viz.:
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 ,

where a + b = 1 + i + j, e + f = 2c + 1 + i, [x] is the greatest integer less than or
equal to x and its modulus is denoted by |x|. Also, i, j takes values in a subset
of 0,±1,±2,±3 and the coefficients Ai,j , Bi,j are given in the tables for Ai,j , Bi,j

at the end of this paper, [7, Table 1 and Table 2, p. 295-296].

2. Main result

The result to be derived is the following:
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Theorem 1. With i = −3,−2,−1, 0, 1, 2, 3 and j = 0,−1,−2,−3, we
have
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 .

Here as usual [x] denotes the greatest integer less than or equal to x and its
modulus is denoted by |x|. The coefficients of Aij and Bij can be obtained from
the tables of Aij and Bij by setting a = 1

2(1−m), b = 1
2(1+m)+i+j, c = 1, e = 3

2
and f = 3

2 + i.

2.1. Derivation

The derivation of this theorem is quite straight forward. It follows by
setting a = 1

2(1 −m), b = 1
2(1 + m) + i + j, c = 1, e = 3

2 and f = 3
2 + i in the

generalized Whipple’s theorem.

2.2. Special cases

Certain interesting special cases of our main results are given here.

1. For i = 0, j = −1
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2. For i = 1, j = −1
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6. For i = −1, j = −1
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The result (8) is the Larcombe’s result [11, Theorem 3, Eq. II2], and the
results (1)-(7) are closely related to it.
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3. Tables for Aij and Bij

i/j −3 −2 −1

3
−(a + 2)(a− 3)

+3c(c + 3)
−e(3c− e + 5)

−(a− 1)(a + e− 3)
+c(a + c)

−(a− 1)(a− 2)
+c(2c− e + 2)

2
−(a + 1)(a− 2)
+c(a + c + 3)
−e(2c− e + 3)

−1
2(a + 1)(a− 2)

+c(c + 2)
− e

3(2c− e + 3)
c− a + 1

1
(a− 1)(a + 2)
−2c(c + 2)

+e(3c− e + 1)
a− c + e− 1 1

0
e(2c− e + 1)
+a(a− c + 1)

a(a + 1)
+e(2c− e + 1)

1

−1 -
e(2c− e + 1)

+(a + 2)(c− e)
2c− e

−2 - 1
2p2(a, c, e) e(2c− e− 1)− ac

−3 - - −

Table 1: Table for the coefficients Ai,j : i = −3,−2,−1

p2(a, c, e) = a(a + 3)[2c(e− c)− e(e + 1)] + e(e + 2)(2c− e− 1)(2c− e + 1)
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i/j −3 −2 −1

3
(a + 1)(a− 2)
−c(c + 3)

+e(c− e + 3)

(a− 1)(a− e + 1)
+c(a− c− 2)

(a− 1)(a− 2)
−c(e− 2)

2
−(a− 1)(a + 2)
+c(a− c + 3)
−e(2c− e + 3)

−2 −(a + c− 1)

1
−a(a + 1)

−e(c− e + 1)
−(a + c− e + 1) −1

0
e(2c− e + 1)

+(a + 2)(a + c + 1)
2 1

−1 -
e(2c− e + 1)
−a(c− e)

e

−2 - 2(e + 1)(2c− e)
c(a + 2)

+e(2c− e− 1)
−3 - - −

Table 3: Table for the coefficients Bi,j : j = −3,−2,−1
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