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COMPOUND COMPOUND POISSON RISK MODEL*
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Abstract. The compound Poisson risk models are widely used in practice.
In this paper the counting process in the insurance risk model is a compound
Poisson process. The model is called Compound Compound Poisson Risk
Model. Some basic properties and ruin probability are given. We analyze
the model under the proportional reinsurance. The optimal retention level
and the corresponding adjustment coefficient are obtained. The particular
case of the Pólya-Aeppli risk model is discussed.

1. Introduction. Assume that the standard model of an insurance

company, called risk process {X(t), t ≥ 0} is given by
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(1) X(t) = ct− S(t).

Here c is a premium income per unit time and S(t) represents the aggre-

gate amount of claims up to time t. The process S(t) is a compound process,

given by

(2) S(t) =

N(t)
∑

i=1

Zi,

(

0
∑

1

= 0

)

,

where N(t) is the counting process, {Zi}∞i=1 is a sequence of independent identi-

cally distributed, positive random variables, independent of N(t) with Zi repre-

senting the ith claim amount. We assume that the individual claim amounts have

a continuous distribution with distribution function F , F (0) = 0, and mean value

µ = EZ1 < ∞. In the classical risk model the process N(t) is a homogeneous

Poisson process, see for instance [1] and [7]. In this paper we suppose that the

counting process N(t) is a compound Poisson process with discrete compounding

distribution, i.e. N(t) =
N1(t)
∑

i=1
Yi, where Y1, Y2, . . . are independent identically

distributed random variables, independent of N1(t) and N1(t) ∼ Po(λt). Let Y

denotes the compounding random variable with probability generating function

(PGF) ψ(s) = EsY and EY = m1 and EY 2 = m2. Then the PGF of the counting

process is given by

PN(t)(s) = e−λt[1−ψ(s)]

and the process (1) is called a Compound Compound Poisson risk model (CC

Poisson risk model). It is easy to find that EN(t) = λm1t, ES(t) = λµm1t and

the safety loading coefficient

θ =
(c− λµm1)t

λµm1t
=

c

λµm1
− 1 > 0.

Denote by

τ(u) = inf{t > 0, u+X(t) ≤ 0}

the time to ruin of a company having initial capital u. We let τ = ∞, if for all

t > 0 u+X(t) > 0.
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The probability of ruin in the infinite horizon time is

Ψ(u) = P (τ(u) <∞)

and in the finite horizon case

Ψ(u, t) = P (τ(u) ≤ t).

In Section 2 and Section 3 the CC Poisson risk model and martingale approach are

discussed. In Section 4, we analyze the model under the proportional reinsurance

in the case of small claims. The retention level maximizing the adjustment coef-

ficient is obtained. The effect of reinsurance on the ruin probability is discussed.

The particular case of Pólya-Aeppli risk model is given.

2. Martingales for the CC Poisson risk model. Let us denote

by (FX
t ) the natural filtration generated by any stochastic process X(t). (FX

t )

is the smallest complete filtration to which X(t) is adapted.

Let us denote by LSZ(r) =

∫ ∞

0
e−rxdF (x) the Laplace-Stieltjes trans-

form of any random variable Z with distribution function F (x) and MZ(r) =

LSZ(−r) the moment generating function (MGF) of Z.

Lemma 1. For the CC Poisson risk model

Ee−rX(t) = eg(r)t,

where

(3) g(r) = λ[ψ(MZ(r)) − 1] − cr.

P r o o f. Let us consider the random sum from the right hand side of (1)

St =

N(t)
∑

k=1

Zk,
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where N(t) is a compound Poisson process, independent of Zk, k = 1, 2, . . .. St is

a CC Poisson process and the MGF is given by

MSt(r) = PN(t)(MZ(r)) = e−λt[1−ψ(MZ (r))].

For the Laplace-Stieltjes transform of X(t) we have the following

LSX(t)(r) = Ee−rX(t) = Ee−r[ct−S(t)] = e−rctEerS(t) =

= e−rctPN(t)(MZ(r)) = e−rcte−λt[1−ψ(MZ (r))] = eg(r)t,

where g(r) is given by (3). �

From the martingale theory we get the following

Lemma 2. For all r ∈ R the process

M(t) = e−rX(t)−g(r)t, t ≥ 0

is an FX
t -martingale, provided that MZ(r) <∞.

3. Martingale approach to the CC Poisson risk model. Using

the martingale properties of M(t), we will give some useful inequalities for the

ruin probability.

Proposition 1. Let r > 0. For the ruin probabilities of the CC Poisson

risk model we have the following results

i) Ψ(u, t) ≤ e−ru sup
0≤s≤t

eg(r)s, 0 ≤ t <∞

ii) Ψ(u) ≤ e−ru sup
s≥0

eg(r)s.

iii) If the Lundberg exponent R exists, then R is the unique strictly positive

solution of
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(4) λ[ψ(MZ(r)) − 1] − cr = 0

and

(5) Ψ(u) ≤ e−Ru.

P r o o f. i) Since at the time of ruin X(τ) ≤ −u, for any t < ∞, the

martingale stopping time theorem yields the following

1 = M(0) = EM(t ∧ τ)

= E[M(t ∧ τ)|τ ≤ t]P (τ ≤ t) + E[M(t ∧ τ)|τ > t]P (τ > t)

≥ E[M(t ∧ τ)|τ ≤ t]P (τ ≤ t) = E[e−rX(τ)−g(r)τ |τ ≤ t]P (τ ≤ t)

≥ eruE[e−g(r)τ |τ ≤ t]P (τ ≤ t),

from which

(6) P (τ ≤ t) ≤ e−ru

E[e−g(r)τ |τ ≤ t]
.

The statement i) follows from the above relation.

ii) follows immediately from i) when t→ ∞.

iii) Under the condition (4) (g(r) = 0), (5) follows from (6). Let R be a

positive solution of g(r) = 0. Because g(0) = 0, g′(0) = λψ′(1)µ − c = λm1µ −
c < 0, g′′(r) = λψ′′(MZ(r))(M ′

Z(r))2 + λψ′(MZ(r))M ′′
Z(r) and g′′(0) = λ[m2µ

2 +

m1V ar(Z)] > 0, there is at most one strictly positive solution of the equation

g(r) = 0. �

Remark 1. The condition (4) is known as Cramér condition and (5) as

Lundberg inequality.

4. Reinsurance. Suppose the insurer has the possibility to choose

proportional reinsurance with retention level b ∈ [0, 1]. This means that the
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insurer pays bZ of a claim. The premium rate for the reinsurance is

(1 + η)(1 − b)λµm1,

where η > 0 is the relative safety loading, defined by the reinsurance company.

We consider the case η > θ, i.e. the reinsurance is more expensive than first

insurance. The premium rate for the insurer is

[(1 + θ) − (1 + η)(1 − b)]λµm1 = [b(1 + η) − (η − θ)]λµm1,

and the surplus process becomes

(7) U(t, b) = u+ [b(1 + η) − (η − θ)]λµm1t−
N(t)
∑

k=1

bZk,

In order that the net profit condition is fulfilled we need

[b(1 + η) − (η − θ)]λµm1

bλµm1
> 1,

i.e.

b > 1 − θ

η
.

The adjustment coefficient R(b) under proportional reinsurance solves the equa-

tion:

(8) λ[ψ(MZ(br)) − 1] − [b(1 + η) − (η − θ)]λµm1r = 0.

Let Ψ(u, b) denote the probability of ultimate ruin when the proportional

reinsurance is chosen. Then

Ψ(u, b) = P (U(t, b) < 0 for some t > 0).

Our objective is to find the retention level that minimizes Ψ(u, b). The

problem related to classical risk model is given in [8]. According the Lundberg

inequality (7), the retention level will be optimal, if the corresponding Lundberg

exponent R is maximal. We know that there is a unique b ∈ [0, 1] where the

maximum is attained. If the maximiser b > 1 we know from the uni-modality

that the optimal b is 1, i.e. no reinsurance is chosen.
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The next result gives the optimal retention level b and maximal adjust-

ment coefficient R(b). Similar result is obtained by Hald and Schmidli [2] for the

classical risk model.

Lemma 3. The solution of (8) is given by

(9) R(b(r)) =
1 − ψ(MZ(r)) + (1 + η)µm1r

(η − θ)µm1
,

where r(b) is invertible function.

P r o o f. Assume that r(b) = bR((b)), where R(b) will be the maximal

value of the adjustment coefficient and r(b) is invertible. If we consider the

function r → b(r), it follows that

(10) b(r) =
(η − θ)µm1r

1 − ψ(MZ(r)) + (1 + η)µm1r
.

Now R(b(r)) =
r

b(r)
in details is given by (9). �

The next result gives a way to calculate b and R(b).

Theorem 1. Assume that MZ(r) < ∞. Suppose there is a (unique)

solution r to

(11) ψ′(MZ(r))M ′
Z(r) − µm1(1 + η) = 0.

Then r > 0, the maximal value of R(b(r)) and the retention level b(r) are given

by (9) and (10).

P r o o f. The necessary condition for maximizing the value of the adjust-

ment coefficient is given by equation (11).

Because R′(b(0)) =
η

η − θ
> 0, the function R(b(r)) is strictly increasing

in 0. The second derivative in zero R′′(b(0)) = −(m2 −m1)µ
2 +m1EZ

2

(η − θ)µm1
< 0

shows that R(b(r)) is strictly concave. Consequently, the function R(b(r)) has an

unique maximum in r, which is the solution of (11). The retention level is given

by (10). �
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Remark 2. Note that the value R does not depend on c but on the

relative safety loadings only.

5. Pólya-Aeppli risk model. The Pólya-Aeppli risk model is defined

in [4]. In this case the counting process N(t) has a Pólya-Aeppli distribution

(see [3] and [5]). The random variables Yi are geometrically distributed with

parameter 1 − ρ and m1 =
1

1 − ρ
. The Pólya-Aeppli counting process is the

only compound Poisson process that is also a renewal process. The problem of

reinsurance for the Pólya-Aeppli risk model is discussed in [6].

The Lundberg exponent R of the Pólya-Aeppli risk model is given by the

positive solution of the equation

ρcrMZ(r) + λ(MZ(r) − 1) − cr = 0.

From the equation one can see that the solution will not be explicit as in the case

of exponentially distributed claims.

5.1. Exponentially distributed claims. Here we suppose that the

claim sizes are exponentially distributed with parameter µ > 0, i.e.

F ′(z) =
1

µ
e
− z

µ , z ≥ 0.

The moment generating function is given by

MZ(r) =
1

1 − µr
, r <

1

µ

and

M ′
Z(r) =

µ

(1 − µr)2
.

The Lundberg exponent r in this case is obtained as the positive solution

of the equation

(1 − ρ)2
µ

(1 − µr)2
= (1 + η)µ

[

1 − ρ
1

1 − µr

]2

= 0,
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i.e.

r =
1

µ

(

1 − (1 + η)−
1

2

)

.

From (10) we find

b =
(η − θ)√

1 + η(1 +
√

1 + η)

yielding

R(b) =
(1 − ρ)[1 −√

1 + η]2

(η − θ)µ
.

In this example there are closed form expressions for b and R(b), if b ≤ 1

and the retention level does not depend from ρ.

Analyzing the optimal retention levels for the Pólya-Aeppli risk model

and the classical model gives the possibility to compare the ruin probabilities. In

the case of proportional reinsurance and ρ = 0, the retention level b(r), given by

(10) coincides with the retention level for the classical risk model, say b0, obtained

by Hald and Schmidli [2]. It is easy to verify that b(r) < b0. For the maximal

values R(b0) and R(b(r)) is fulfilled

R(b0) ≥ R(b(r)),

which means that the Pólya-Aeppli risk model with proportional reinsurance is

more dangerous than the classical risk model.
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