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Let A be the class of all analytic functions in the open unit disc D = {z| |z| < 1} of
the form f(z) = z + a22® + a3z® 4+ ---. Let g(z) be an element of A and satisfy the condition

Re(em%) > 0 for some «, |a| < 7. Then g(z) is said to be a-spirallike. Such functions are
known to be univalent in D. It was shown by L. Spacek [11], that the a-spirallike functions
are univalent in |z| < 1.

Let S}, denote the class of all functions g(z) satisfying the above condition for a given
a. A function f(z) € A is called close-to-a spirallike, if there exists a function g(z) in S}, such

that Re(ﬁz;) > 0. The class of such functions is denoted by S; K.
The aim of this paper is to give a growth theorem and the radius of starlikeness of the
class Sn K.
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1. Introduction

Let © be the family of functions ¢(z) which are regular in D and satisfying
the condition ¢(0) = 0, |¢(z)] < 1 for all z € D. The family of functions
p(2) = 1+ p1z+p2z?+--- analytic in D, and satisfying the conditions p(0) = 1,
Rep(z) > 0 is denoted by P such that p(z) in P if and only if

_ 1+ ¢(2)
1—¢(2)

for some ¢(z) € Q, and every z € D. Then we say that p(z) € P is the
Caratheodory function, see [1].

p(z) (1.1)
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Next, let A be the family of functions which are analytic in the open unit
disc D = {z: |z| < 1}. Let g(z) be an element of A and satisfying the condition,

Re(eiag/(z)) >0 (1.2)

for some «, |a| < 3, then g(z) is said to be a-spirallike. The class of such

functions is denoted by S, see [2]. A function f(z) € A is close-to-a-spirallike
if there exists a function g(z) in S} such that

)>0 (1.3)

for all z € D. The class of such functions is denoted by SiK. By taking
a = 0, we see that every close-to-a-spirallike functions reduces to a close-to-
star function, see [6]. Close-to-star functions are not always univalent in D
consequently, close-to-a-spirallike functions need not to be univalent in . We
also note that if g(z) € S¥, the introduction of appropriate normalizing factors
enables us to write

9'(2)

9(2)
This leads to a useful representation formula for being member of S, in terms
of functions P. The function g(z) is a-spirallike function if and only if there
exists a function p(z) in P,

sec afe’z —isina),—g = 1. (1.4)

= cos ap(z) + isina. (1.5)

Many geometric and analytic properties of a-spirallike functions can be obtained
from (1.5). Using (1.5), D. Pashkouleva [8] found the radius of spiral convexity
of a close-to-spirallike functions.

Finally, we need to give a description. Let F(2) = z 4+ ag2? + agz® + - - -
and G(2) = z + (222 + B32% + - be analytic functions in D, if there exists a
function ¢(z) € Q such that F(z) = G(¢(z)) for every z € D, then we say that
F(z) is subordinate to G(z), and we write F(z) < G(z). We also note that if
F(z) < G(z), then F(D) C G(D). The following lemma is due to I. S. Jack, see
[2] and plays very important role in our proof of Theorem 2.2.

Lemma 1.1. Let w(z) be reqular in the unit disc with w(0) = 0. Then
if lw(z)| obtains its maximum value on the circle |z| = r at the point z, one
has. z1w'(z1) = kw(z1), for some k > 1.
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2. Main results

Lemma 2.1. ([7]) Let g(z) be an element of S}, then

r

(1 _ r)cos2 a—cosa(l 4 r)cos2 atcosa —

r

’g(z)| < (1 _ T)COS2 a+cosa(1 + T)cos2 a—cosa (2‘1)
This inequality is sharp because the extremal function is
f(Z) — Z(l . Z)2cosae_i°‘
with ( , )
rir —e*“
N
then )
<g’(z) _1—-2cosanr + 6_2“"1"2. (2.2)

9(2) 1—r2

Proof. Let g(z) € S¥. If there exists a function p(z) in P such that

/
o, 9 (2) ,
e'*z>——= = cosap(z) + isina. 2.3
o © (23)
By using p(z) is subordinate to (112), we obtain ([1]).
1+ 72 2r
— . 2.4
o) - 10| < 2 (24
Equations (2.3) and (2.4) yield
Zg’(z) 1+ e~ g2 9 cosa (25)
g(z) 1—r2 1—r2
which gives:
1 — (2cos a)r + (cos 2a)r? < Re(zg/(z)) < 1+ (2cosa)r + (cos 204)1“2. (2.6)

1 — 72 1 —r2

On the other hand we have

0
Re(z 70 ) = rm log |g(2)] . (2.7)
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Using (2.7) and after the simple calculations we get,

1— (2cosa)r + (cos2a)r? 0 1+ (2cos a)r + (cos 2a)r?
< —1 < . (2.8
A-nien o BEl s a 28)
then after integration we obtain (2.1). n
Theorem 2.2.
! 92 —iQ
g(2) € 5t e (207 _qy L 2AeTMeos)z gy (2.9)

g(z) 1—2

Proof. Let g(z) be an element of S, then we define the function ¢(z)
by
g\=z —2cos ae”
T (1 ey 2o, (2.10)

z

—ix

where (1 — ¢(2)) 722" has the value 1 at z = 0, then ¢(2) is analytic and
#»(0) = 0. If we take logarithmic derivative from (2.10), we get

J'(2) (2cos ae™ ) z¢/(2)
9(2) 1—¢(z)

Now it is easy to realize that the subordination is equivalent |¢(z)| < 1 for all
z € D. Indeed, assume to the contrary: Then there exists z; € D such that
|#(z1)] = 1. So from L. S. Jack Lemma, z1¢'(21) = k¢(z1) for some k > 1 and
for such z; € DD, we have

(a J'(z1) )= (2 cos ae ™" ) kp(21)
9(z1) 1—¢(21)

But this contradicts (2.11); so our assumption is wrong, i.e., |¢(z)| < 1 for all
z € D. This shows that

(z

—1) =

(2.11)

= F(¢(21)) ¢ F(D).

(zg(z)—1)< T,
Conversely, ‘
g'(z) e " (2cosa)z
(z 02 1) < =
Zg’(z) | ia (2cos a)p(z) N
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0,02 1+6(2)

=cosa——= + ¢sina.

9(2) 1—¢(2)
This shows that g(z) € S%. ]

Corollary 2.3. Let g(z) be an element of Sk, then

g(z))m - 1‘ <L (2.12)

Proof. Since

M =(1- (25(’2))—2cosoze*iCK

z

(2.13)
is analytic and (1 — ¢(z))2¢s ae™'* has the value 1 at z = 0, then after simple
calculations from (2.12) with |¢(z)| < 1 we get (2.13). We also note that the
inequality (2.12) is the Marx-Strohhacker inequality for a-spirallike functions.
If we take o = 0 we obtain,

~—
N

‘(g(z) - 1‘ <1 (2.14)

The inequality (2.14) is the Marx-Strohhacker inequality for starlike functions,
see [5]. [

Theorem 2.4. Let f(z) be an element of S: K, then
7“(1 + T)COS2 a+cosa—1(1 o ,,A)cos2 a—cosa+l - |f(z)|

2 a—cosa+1 (1 _ T,)COSQ a+cosa—1

< r(1+7)®
This inequality is sharp because the extremal function is

f(z) = z:(l + z)(l _ Z)*2cosae—ia71
with |
r(r—e)

1—rei@

(=
Proof. Using the definition of close-to-a-spirallike function, we can

write;
N IR C T
re(f) >0 18 p()i\g(z) p(:)] (2.15)
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On the other hand, since p(z) € P, then we have;

1—7r 147
< < . 2.16
Ty S PEl < (2.16)
Considering the inequalities (2.15) and (2.16) together we get the result. [

Lemma 2.5. Let f(z) be an element of S} K, then

Re|(1- z)mmw‘fiz) > 0. (2.17)

Proof. Since
B z
g(z) - 1— Z)2cosae_ia
is a~spirallike function, then using the definition of close-to-a-spirallike function
we get (2.17). [
Theorem 2.6. ([7]) The radius of starlikeness of the class of SLK is

1

. 2.18
(1 +cosa) + /(1 + cosa)? — cos 2a (2.18)

r =

This radius is sharp because the extremal function is

2(1+ 2)
(1 _ Z)2cosae_ia71

f(z) =

with ,
r(r—e')
1 —refe

(=

Proof. Using Lemma 2.5 and after straightforward calculations, we get

fl(z) Zp’(z) 1+ (2cosae™™ — 1)z
SO TC I (219

On the other hand if we take

1+ (2cosae™™ — 1)z
w =
1—2 ’

then we obtain

1 — 2r cos ar + cos 2ar?

Rew >
ew > 1= 2

(2.20)
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Therefore, we have

f'(2) p'(2) —2r 1 —2cosar + cos2ar?
R =R Rew >
e(zf(z)) ezp(z) + Rew > 1—r2+ 1,2
1'(2) 1 —2(1 + cos a)r + cos 2ar?
Re(z ) ) > 12 . (2.21)

From (2.21) we conclude that the radius of starlikeness of S¥ K is the smallest
positive root of
1 —2(1 4 cos a)r + cos 2ar?,

which is the result. ™

Corollary 2.7. If we take o = 0, then we obtain
1 2—-+3
2+v3  4-3

This is the radius of starlikeness of the class of close-to-star functions which
was obtained by Sakaguchi, see [10].

r (2.22)
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