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CLASS NUMBER TWO FOR REAL QUADRATIC FIELDS

OF RICHAUD-DEGERT TYPE

R. A. Mollin

Communicated by V. Drensky

Abstract. This paper contains proofs of conjectures made in [16] on class
number 2 and what this author has dubbed the Euler-Rabinowitsch polyno-

mial for real quadratic fields. As well, we complete the list of Richaud-Degert
types given in [16] and show how the behaviour of the Euler-Rabinowitsch
polynomials and certain continued fraction expansions come into play in the
complete determination of the class number 2 problem for such types. For
some values the determination is unconditional, and for others, the wide
Richaud-Degert types, the determination is conditional on the generalized
Riemann hypothesis (GRH).

1. Introduction. Over the past couple of decades there has been much
work done on real quadratic fields of Richaud-Degert type, namely those Q(

√
D)

with radicand D = m2 + r where r
∣

∣ 4m. Some of this work by this author and
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H.C. Williams in the 1980s made a list of Richaud-Degert types of various class
numbers, and showed that the list is complete with one possible exception that
is ruled out if the GRH is assumed—see [12] for background. Recently some of
these lists have been unconditionally verified. In particular conjectures made by
this author and others have been affirmatively resolved. For instance, Chowla’s
conjecture and Yokoi’s conjectures were both settled in 2003 by Biro in [1]–[2].
Chowla’s conjecture says that if p = m2 + 1 is prime and m > 26, then the
class number of Q(

√
p), hp > 1. Yokoi’s conjecture says that if d = m2 + 4 is

squarefree and m > 17, then hD > 1. Mollin’s conjecture says that if d = m2 − 4
is squarefree and m > 21, then hD > 1. The latter was affirmatively verified
in 2007 by Byeon, Kim, and Lee in [3]. This essentially determines all narrow

Richaud-Degert types of class number one, where a narrow Richaud-Degert type
is one for which the aforementioned r ∈ {±1,±4}. Also, in 2008, Byeon and
Lee unconditionally determined all narrow Richaud-Degert types with radicand
D = n2 + 1 with n odd having class number 2. This allows the unconditional
verification of conjectures made by this author and H.C. Williams in [16].

In this paper, we look at the class number 2 problem for Richaud-Degert
types. We provide several theorems that delineate the relationship between class
number 2 for all Richaud-Degert types with necessary and sufficient conditions
in terms of the behaviour of the simple continued fraction expansions of certain
specified quadratic irrationals as well as the prime-producing behaviour of the
Euler-Rabinowitsch polynomial. This completely describes the class number 2
radicands, some unconditionally, and some with one GRH-ruled-out exception.
Moreover, we include values, three of them, missed in the list in [16], which
includes one missed in [13] of type D = m2 ± 2. Hence, this paper completes the
list of all Richaud-Degert types of class number 2 and related continued fraction
and polynomial performance criteria, heretofore not presented in the literature.
What remains, and this is not likely to be resolved soon, is an unconditional

verification that the list of 107 values is indeed complete.

2. Notation and Preliminaries. In what follows, a field discriminant
∆, with associated (squarefree) radicand D, is defined by

(2.1) ∆ =

{

D if D ≡ 1 (mod 4),
4D if D ≡ 2, 3 (mod 4).

Herein, we will be concerned with the simple continued fraction expan-
sions of quadratic irrationals α = (P +

√
D)/Q, namely P 2 ≡ D (mod Q) with
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P,Q ∈ Z (the integers) and Q 6= 0. We denote this expansion by,

α = 〈q0; q1, q2, . . . , qℓ−1, qℓ〉,

where ℓ = ℓ(α) is the period length, q0 = ⌊α⌋ (the floor of α). The norm of α is
given by N(α) = (P 2 − D)/Q2.

The complete quotients are given by (Pj +
√

D)/Qj , where P0 = P , Q0 =
Q, and for j ≥ 1,

(2.2) Pj+1 = qjQj − Pj ,

(2.3) qj =

⌊

Pj +
√

D

Qj

⌋

,

and

(2.4) D = P 2
j+1 + QjQj+1.

We will need the following facts concerning period length.
If ℓ(α) = ℓ is even, then

(2.5) Pℓ/2 = Pℓ/2+1,

and if ℓ is odd, then

(2.6) Q(ℓ+1)/2 = Q(ℓ−1)/2.

The principal surd for the discriminant ∆ of a real quadratic field Q(
√

D)
having radicand D, is given by

ω∆ =

{

(1 +
√

∆)/2 if D ≡ 1(mod 4),√
∆/2 if D 6≡ 1(mod 4).

We will need the following which determines the generators of the ideal
class group C∆ of Q(

√
∆) having discriminant ∆.

Theorem 2.1. If ∆ is the discriminant of a real quadratic field, then

every class of C∆ contains a primitive ideal I with N(I) ≤
√

∆/2. Furthermore,

C∆ is generated by the non-inert prime O∆-ideals P with N(P) <
√

∆/2.

P r o o f. See [12, Theorem 1.3.1, p. 15]. �
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We also need the following, called the infrastructure theorem for real
quadratic fields.

Theorem 2.2. Let I = I1 = [Q0/2, (P0 +
√

∆)/2] be an O∆-ideal cor-

responding to the quadratic irrational α = α0 = (P0 +
√

∆)/2, and let Pj , Qj be

as given above. If Ij = [Qj−1/2, (Pj−1 +
√

∆)/2], then I1 ∼ Ij for all j ≥ 1.
Moreover, there exists a least value m ∈ N such that Im+i is reduced for all i ≥ 0.

P r o o f. See [12, Theorem 2.1.2, p. 44]. �

Corollary 2.1. A reduced ideal I = [Q/2, (P +
√

∆)/2] of O∆ is principal

if and only if Q = Qj for some positive integer j ≤ ℓ(ω∆) in the continued fraction

expansion of ω∆.

P r o o f. See [9]. �

3. Class Number Two. In what follows, ∆ is a discriminant with
squarefree radicand D, and q ∈ N a squarefree divisor of ∆, with α∆ = 1 if
4q

∣

∣ ∆ and α∆ = 2 otherwise. The polynomial

(3.1) F∆,q(x) = qx2 + (α∆ − 1)qx +
(α∆ − 1)q2 − ∆

4q

is called the Euler-Rabinowitsch polynomial, which was introduced by this au-
thor in [12] to discuss prime-producing quadratic polynomials as an analogue
of the renowned Rabinowitsch result for class number one of complex quadratic
fields—see [12, Theorem 4.1.2, p. 108].

The following affirmatively verifies, without the use of GRH, the values for
class number 2 given in [16] for the case where ∆ = 4(m2 ± 1) and provides both
the continued fraction expansion data and behaviour of the Euler-Rabinowitsch
polynomial.

Theorem 3.1. Let ∆ = 4(m2 ± 1) = 4D for m ∈ N. Then following are

equivalent.

(a) h∆ = 2.

(b) For each split prime r <
√

∆/2, there exists a natural number q
∣

∣ ∆ such

that |F∆,q(x)| = r for some integer x ≥ 0.

(c) ∆ is one of the following values:
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(3.2) {10, 15, 26, 35, 122, 143, 362}.

(d) For each x with 1 ≤ x ≤ m, |F∆,1(x)| equals 1, a prime, twice a prime, or

m2 where m is prime.

(e) One of the following holds:

(i) D = p2 +2p = (p+1)2−1 for some prime p and there is no split prime

p <
√

D.

(ii) D = p2 − (p − 2)p = 2p = q2 + 1 for some prime p where q is prime

and the only split prime less than
√

D is q.

P r o o f. The equivalence of (a) and (b) is [11, Theorem 3.1, p. 357]. The
equivalence of (a) and (c) is [8] and [4, Theorem 1.2, p. 866]. The equivalence of
(a) and (d) is [10]. Now assume that (e) holds. If (i) holds, then by [12, Theorem
3.2.1, p. 78], since D = p2+2p, then ℓ(

√
D) = 2 and Q1 = 2p. Thus, by Corollary

2.1, h∆ > 1 since p 6= Qj for any j in the principal cycle ω∆. Also, ℓ(
√

D/p) = 2
and this is not the principal cycle with Q1 = 2 and Q0 = p = Q2. Since there
are no split primes less than

√
∆/2, then by Theorem 2.1, h∆ = 2. If (ii) holds,

namely D = 2p = m2 + 1, then by [12, Theorem 3.2.1, p. 78], ℓ(
√

D) = 1 so by
Corollary 2.1, h∆ > 1. Also, ℓ(

√
D/2) = 3 with Q0 = Q3 = 2 and Q1 = Q2 = q.

Since there are no other split or ramified primes less than
√

D then, by Theorem
2.1, h∆ = 2.

We have shown that part (e) implies part (a). Since (a) is equivalent to
(c) and (c) is easily checked to imply (e), then the logical circle is complete. �

Example 3.1. Our largest example for D = 2p = q2 + 1 is D = 362 =
2 · 181 = 192 + 1. Here ℓ(

√
362) = 1 and ℓ(

√
D/2) = 3 with Q3 = Q0 = 2

and Q2 = Q3 = 19, where 19 is the only split prime less than
√

362. Indeed,
⌊
√

362⌋ = 19.

The largest value of D = p2 + 2p is D = 143 = 112 + 2 · 11 where
ℓ(
√

143) = 2 with Q1 = 22 and ℓ(
√

143)/11 = 2 with Q0 = Q2 = 11, Q1 = 2, and
there are no split primes less than

√
143.

Remark 3.1. In [8] it was shown that if D = m2 + 1 6≡ 5(mod 8) is
squarefree, then h∆ = 2 if and only if the list in (3.2) also contains D = 65.
Thus, our restriction to D 6≡ 1(mod 4) eliminates only this one value. Indeed,
note that in [13, Theorem 3.3, p. 569], it was unconditionally shown that if
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D = ∆ = m2 + 1 ≡ 1(mod 8), then h∆ = 2 if and only if ∆ = 65 or ∆ = 105.
See also [10]. Now we look at D = ∆ ≡ 5(mod 8). Also, we found the values in
part (e) (i) in [15] by different methods.

Theorem 3.2. If ∆ = D = 4m2 + 1, with m odd, is a squarefree

discriminant, then the following are equivalent.

(a) h∆ = 2.

(b) For each split prime r <
√

∆/2, there exists a natural number q
∣

∣ ∆ such

that |F∆,q(x)| = r for some integer x ≥ 0.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.3) {485, 1157, 2117, 3365}.

(d) m is prime, ∆ = 4 · p2 + q2, where p <
√

∆/2 is a split prime and if

α = (q +
√

∆)/p, then ℓ(α) = 3 or ℓ(α) = 5, and in the latter case Q3 = r
a split prime with either r >

√
∆/2 or else, r <

√
∆/2 and p, m, and r are

the only split primes less than
√

∆/2.

P r o o f. The equivalence of (a) and (b) is [11, Theorem 3.1, p. 357]. The
equivalence of (a) and (c) is [16, Theorem 3.2, p. 99]. Now assume that (d) holds.
By [12, Theorem 3.2.1, p. 78], ℓ((1+

√
∆)/2) = 3 and by (2.6), Q1 = Q2 = 2m, so

by Corollary 2.1, h∆ > 1. By the hypothesis, the continued fraction expansion of
(q+

√
∆)/p has the norms in Qj of all split primes less than

√
∆/2, so by Theorem

2.1, h∆ = 2. We have shown that (d) implies (a). Since (a) is equivalent to (c)
and (c) is easily checked to imply (d), then the proof is secured. �

Remark 3.2. Allowing m to be even in Theorem 3.2 adds only the
value ∆ = 65 via [16, Theorem 3.2, p. 99], and we have dealt with this already
as mentioned in Remark 3.1. Also, note that ∆ = 2117 is the only value from
the list (3.3) that has three split primes less than

√
∆/2, namely p = 17, m = 23

and r = 11.

Now that we have secured all of the class number 2 values for narrow
Richaud-Degert types, we turn our attention to the wide values.

Theorem 3.3. Let ∆ = 4(m2 + q) with q = 2p where the prime p
∣

∣ m.

Then the following are equivalent.
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(a) h∆ = 2.

(b) |F∆,2p(x)| is 1 or prime for all non-negative integers x < (
√

D − 1)/2.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.4) {42, 87, 110, 395, 447, 635}.

(d) There are no split primes less than
√

D and in the simple continued fraction

expansion of α =
√

D/p, ℓ(α) = 2, with Q0 = Q2 = p and Q1 = 2.

P r o o f. That (b) implies (a) is [12, Theorem 4.2.5 (a), p. 134]. The
equivalence of (a) and (c) is [16, Theorem 3.2, p. 99]. Assuming that (d) holds,
by [12, Theorem 3.2.1, p. 78], ℓ(

√
D) = 2 and Q1 = 2p. Since the continued

fraction expansion of α contains all the non-inert primes less than
√

D, then by
Theorem 2.1, h∆ = 2. Thus, (d) implies (a) which is equivalent to (c) and is
easily checked to imply (d), as well as (b). �

In exactly the same fashion as in Theorem 3.3, we achieve the following
Theorems 3.4–3.5, which we therefore state without proof.

Theorem 3.4. Let ∆ = 4(m2 − q) with q = 2p where the prime p
∣

∣ m.

Then the following are equivalent.

(a) h∆ = 2.

(b) |F∆,2p(x)| is 1 or prime for all non-negative integers x < (
√

D − 1)/2.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.5) {138, 182, 215, 318}.

(d) There are no split primes p <
√

D and in the simple continued fraction

expansion of α =
√

D/p, ℓ(α) = 4, with Q0 = Q4 = p and Q2 = 2.

Theorem 3.5. Let ∆ = 4(m2 ± p) with the prime p
∣

∣ m. Then the

following are equivalent.

(a) h∆ = 2.
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(b) |F∆,2p(x)| is 1 or prime for all non-negative integers x < (
√

D − 1)/2.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.6) {30, 39, 78, 95, 203, 222, 230, 327}.

(d) One of the following occurs:

(i) ∆ = 4((pq)2 ± p) where q = 1 or q is prime, and there is at most

one split prime less than
√

D, which when it exists, appears as Qj for

j ∈ {1, 2} in the simple continued fraction expansion of α =
√

D/2,
where ℓ(

√
D/2) = 4.

(ii) ∆ = 4(4p2 + p) or ∆ = 4(4p4 + p) and there is one split prime less

than
√

D, which appears as a Qj for j ∈ {1, 2} in the simple continued

fraction expansion of α = (1 +
√

D)/2, where ℓ((1 +
√

D)/2) = 6.

(iii) ∆ = 4(4p2 − p) and there is one split prime less than
√

D, which ap-

pears as a Qj for j ∈ {1, 2} in the simple continued fraction expansion

of α = (1 +
√

D)/2, where ℓ((1 +
√

D)/2) = 4.

Remark 3.3. The list in [16, Theorem 3.2, p. 99] lacks the values 78
and 222, which we include in Theorem 3.5.

Theorem 3.6. Let ∆ = 8(m2 + 2) = 4D = 8pq for primes p < q. Then

the following are equivalent.

(a) h∆ = 2.

(b) For each split prime r <
√

∆/2, there exists a natural number q
∣

∣ ∆ such

that |F∆,q(x)| = r for some integer x ≥ 0.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.7) {66, 102, 258, 402, 678, 902, 1298}.

(d) One of the following occurs:

(i) There is one split primes less than
√

D, and it appears as a Qj for

j ∈ {1, 2} in the simple continued fraction expansion of α =
√

D/p,
where ℓ(

√
D/p) = 6.
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(ii) There exactly two split primes less than
√

D, and they appear as a

Qj for j ∈ {1, 2, 3, 4} in the simple continued fraction expansion of

α =
√

D/p, where ℓ(
√

D/p) = 10.

P r o o f. The equivalence of (a) and (b) is [11, Theorem 3.1, p. 357]. The
equivalence of (a) and (c) is [16, Theorem 3.2, p. 99]. Assuming that (d) holds,
by [12, Theorem 3.2.1, p. 78], ℓ(

√
D) = 2 and Q1 = 2. Since the continued

fraction expansion of α contains all the non-inert primes less than
√

D, then by
Theorem 2.1, h∆ = 2. Thus, (d) implies (a) which is equivalent to (c) which, in
turn, is easily checked to imply (d). �

Theorem 3.7. Let ∆ = 4(m2 + 2) = 4D = 4pq for primes p < q. Then

the following are equivalent.

(a) h∆ = 2.

(b) For each split prime r <
√

∆/2, there exists a natural number q
∣

∣ ∆ such

that |F∆,q(x)| = r for some integer x ≥ 0.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.8) {51, 123, 843}.

(d) There is either one or two split primes less than
√

D, and they appear as a

Qj for j ∈ {1, 2} in the simple continued fraction expansion of α =
√

D/p,
where ℓ(

√
D/p) = 6.

P r o o f. The equivalence of (a) and (b) is [11, Theorem 3.1, p. 357]. The
equivalence of (a) and (c) is [16, Theorem 3.2, p. 99]. Assuming that (d) holds,
by [12, Theorem 3.2.1, p. 78], ℓ(

√
D) = 2 and Q1 = 2. Since the continued

fraction expansion of α contains all the non-inert primes less than
√

D, then by
Theorem 2.1, h∆ = 2. Thus, (d) implies (a) which is equivalent to (c) which, in
turns, is easily checked to imply (d). �

The following Theorems 3.8–3.11 are proved in exactly the same fashion
as Theorem 3.7.

Theorem 3.8. Let ∆ = 8(m2 + 2) = 4D = 8p for where p is prime.

Then the following are equivalent.
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(a) h∆ = 2.

(b) For each split prime r <
√

∆/2, there exists a natural number q
∣

∣ ∆ such

that |F∆,q(x)| = r for some integer x ≥ 0.

(c) ∆ = 146 with one possible GRH-ruled-out exceptional value.

(d) There are two split primes less than q < r <
√

D, and they appear as a Qj for

j ∈ {1, 2, 3} in the simple continued fraction expansion of α = (1 +
√

D)/q,
where ℓ((1 +

√
D)/q) = 8.

Theorem 3.9. Let ∆ = 8(m2 − 2) = 4D = 8p for where p is prime.

Then the following are equivalent.

(a) h∆ = 2.

(b) For each split prime r <
√

∆/2, there exists a natural number q
∣

∣ ∆ such

that |F∆,q(x)| = r for some integer x ≥ 0.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.9) {34, 194, 482}.

(d) One of the following occurs, where D ≡ (bq)
2 (mod q):

(i) There are exactly two split primes less than
√

D, and they appears as

a Qj for j ∈ {1, 2, 3} in the simple continued fraction expansion of

α = (bq +
√

D)/q, where ℓ((bq +
√

D)/q) = 6.

(ii) There are exactly three split primes less than
√

D, and they appears as

a Qj for j ∈ {1, 2, 3, 4, 5} in the simple continued fraction expansion

of α = (bq +
√

D)/q, where ℓ((bq +
√

D)/q) = 10.

Remark 3.4. It is worthy of note that the values in Theorems 3.8–3.9
are the only values of type D = m2 ± 2 where the class group of C∆ is generated
by an ambiguous class of ideals with no ambiguous ideals in it. See [14] and [12,
Chapter 6] for more background and details.

Theorem 3.10. Let ∆ = 8(m2 − 2) = 4D = 8pq for primes p < q. Then

the following are equivalent.
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(a) h∆ = 2.

(b) For each split prime r <
√

∆/2, there exists a natural number q
∣

∣ ∆ such

that |F∆,q(x)| = r for some integer x ≥ 0.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.10) {782, 1022}.

(d) One of the following occurs:

(i) There are exactly two split primes less than
√

D, and they appears as

a Qj for j ∈ {1, 2, 3} in the simple continued fraction expansion of

α =
√

D/p, where ℓ(
√

D/p) = 8.

(ii) There is exactly one split prime less than
√

D, and it appears as a

Qj for j ∈ {1, 2, 3, 4} in the simple continued fraction expansion of

α =
√

D/p, where ℓ(
√

D/p) = 10.

Theorem 3.11. Let ∆ = 4(m2 − 2) = 4D = 4pq for primes p < q. Then

the following are equivalent.

(a) h∆ = 2.

(b) For each split prime r <
√

∆/2, there exists a natural number q
∣

∣ ∆ such

that |F∆,q(x)| = r for some integer x ≥ 0.

(c) ∆ is one of the following values, with one GRH-ruled-out exception:

(3.11) {119, 287, 527, 623}.

(d) There are one or two split primes less than
√

D and they appear as a Qj for

some j ∈ {1, 2, 3}in the simple continued fraction expansion of α =
√

D/p
where ℓ(α) = 8.

Remark 3.5. In [13, Conjecture 3.9, p. 571], where we list all class
number two of the form D = m2 ± 2, the value D = 51 was omitted. Now
that we included this value in Theorem 3.7, then the details for all such values
comprise Theorems 3.6–3.11.
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Theorems 3.12–3.13 following are proved in the same fashion as above so
we state them without proof.

Theorem 3.12. Let ∆ = m2 ± 4 with m odd. Then the following are

equivalent.

(a) h∆ = 2.

(b) ∆ is one of the following values, with one GRH-ruled-out exception:

{85, 165, 221, 285, 357, 365, 533, 629, 957, 965, 1085, 1517,

(3.12) 1685, 1853, 2397, 2813}.

(d) One of the following occurs:

(i) ∆ = m2 +4 = pq where p < q are primes, and all split primes less than√
∆/2 appear as some Qj for 1 < j < ℓ(α) in the simple continued

fraction expansion of α =
√

D/p.

(ii) ∆ = m2 − 4 = pqr with p < q < r where p, q, r are primes or p = 1
and q, r are primes, and all split primes less than

√
∆/2 appear as

some Qj for 1 < j < ℓ(α) in the simple continued fraction expansion

of α =
√

D/p.

Remark 3.6. The equivalences in Theorem 3.1 (a)–(c), Theorem 3.2
(a)–(c), and Theorem 3.12 (a)–(b) are also included in the results on class number
two for real quadratic fields: [6]–[7] (when the fundamental unit has norm −1,
and [5] (when the fundamental unit has norm 1).

Theorem 3.13. Let ∆ ≡ 5(mod 8) where either ∆ = m2 ± q q = 4r
where r

∣

∣ m and r is a prime or a product of two primes, or ∆ = 4m2 ± q
where q

∣

∣ m and q is prime or a product of two primes. Then the following are

equivalent.

(a) h∆ = 2.

(b) ∆ is one of the following values, with one GRH-ruled-out exception:

{205, 429, 645, 741, 885, 1173, 1205, 1245, 1469, 1533, 1605,
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1965, 2013, 2037, 2045, 2085, 2093, 2301, 2373, 2613, 2717, 3005, 3237,

3597, 3605, 3813, 4245, 4277, 4773, 4893, 5645, 5757, 5885, 5957, 6573,

7157, 7733, 8333, 9005, 14405}.

(d) ∆ = pqr with p < q < r where p, q, r are primes or p = 1 and q, r are primes,

and all split primes less than
√

∆/2 appear as some Qj for 1 < j < ℓ(α) in

the simple continued fraction expansion of α =
√

D/p.

Remark 3.7. The value D = 885 was missed in [16, Theorem 3.2, p.
99], and its inclusion in Theorem 3.13 completes the description of all Richaud-
Degert types of class number 2 in detail in terms of continued fraction expansions
and the prime production of Euler-Rabinowitsch polynomials. Note that if we
allow ∆ ≡ 1(mod 4) in Theorem 3.13, then we only add ∆ = 105 to the list. As
noted in Remark 3.1, this value is already taken into account. Thus, Theorems
3.1–3.13 and Remark 3.1 comprise all class number 2 Richaud-Degert types.
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