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RELATIONSHIP BETWEEN EXTREMAL AND SUM

PROCESSES GENERATED BY THE SAME POINT
PROCESS

E. Pancheva, I. Mitov, Z. Volkovich

Communicated by P. Jagers

Abstract. We discuss weak limit theorems for a uniformly negligible tri-
angular array (u.n.t.a.) in Z = [0,∞)× [0,∞)d as well as for the associated
with it sum and extremal processes on an open subset S. The complement
of S turns out to be the explosion area of the limit Poisson point process. In
order to prove our criterion for weak convergence of the sum processes we in-
troduce and study sum processes over explosion area. Finally we generalize
the model of u.n.t.a. to random sample size processes.

1. Introduction. Collective risk theory basically considers the question
about the distribution of the so called total risk process. In order to answer
this question the process of the claims met by the insurer is modeled. The
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relationship between the distribution of the number of claims and the distribution
(distributions) of the claim sizes is studied. The usual assumption is that the
claims arrive at times Tk, k = 1, 2, . . ., which form a renewal process N(t), t ≥ 0,
i.e. the claim inter-arrival times Yk = Tk − Tk−1, k ≥ 1 are i.i.d. The claim
sizes Xk are positive independent r.v.’s and the sequences {Tk} and {Xk} are
independent. In this framework the total claim amount process is defined by

Z(t) =

N(t)
∑

k=1

Xk =
∑

Tk≤t

Xk.

One of the most important characteristics in this model is namely the distribution
Gt(x) = P(Z(t) < x). It is clear that in general the problem of finding the
distribution of a sum of random number independent random variables is not an
easy one and often the results are quite complicated. Even in the simple case
when N(t) is a Poisson process and the claim sizes Xk are identically distributed
having distribution function F we have

Gt(x) = P





N(t)
∑

i=1

Xk < x



 =
∞
∑

n=0

P

(

n
∑

i=1

Xk < x|N(t) = n

)

P(N(t) = n)

=

∞
∑

n=0

e−λt (λt)
n

n!
F ∗n(t).

where F ∗n(x) = P

(

n
∑

i=1
Xi < x

)

is the n-fold convolution of F . Due to this

fact many authors turn to the approximation of the process Z(t) using another
process which finite dimensional distributions are known and more convenient
from a computational point of view. The basic idea of such an approximation
is to normalize properly the claim arrival times Tk and the claim sizes Xk. For
n ≥ 1 construct (Tnk,Xnk) = (τ−1

n (Tk), u
−1
n (Xk)), where (τn(t), un(x)) is a regular

time-space transformation, i.e. the functions τn and un are strictly increasing and
continuous.1 In this way when n increases to infinity the number of the claims
occurring during a fixed time interval [0, t] gets larger and the claim sizes get
smaller. The problem is to find weak limit S for the sequence

Sn(t) =
∑

τ−1
n (Tk)≤t

u−1
n (Xk) =

∑

Tnk≤t

Xnk

1In practice usually linear transformations are used.
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of the transformed total claim amount process. Of course, the norming transfor-
mations would have different forms depending on the assumptions for the distri-
butions of Yk and Xk. Respectively the limiting process S would have different
properties. From the formulation of the problem it follows that S shall be self-
similar process with independent increments since it appears as a weak limit in
uniformly negligible triangular array (u.n.t.a.) Nn = {(Tnk,Xnk)}, n ≥ 1 which
is derived in appropriate way from the sequence (Tk,Xk). Quite interesting is the
so called “very-heavy tailed” case when E(Xk) = ∞. In this case the norming
transformation has the form un(x) = b−1(n)x, i.e. there is no need of centering
but only normalizing the claim sizes. Further in our paper we are interested in
the very-heavy tailed case. It is well known that in this case the behavior of
the aggregate claim amount is determined by the behavior of the extremal claim

amount. On the other hand, the extremal claim amounts

N(t)
∨

k=1

Xk =
∨

Tk≤t

Xk are

also of great importance in the collective risk theory. Thus, the relationship
between the convergence of extremal and sum processes generated by the same
u.n.t.a. will be investigated.

Since the paper deals with processes and functions taking values in R
d,

d > 1 we introduce the following notations.
The non random d−dimensional vectors will be denoted by x = (x(1), . . . ,

x(d)). The random vectors and processes with phase space R
d will be denoted by

U = (U (1), . . . , U (d)) and Y(t) = (Y (1)(t), . . . , Y (d)(t)), t ∈ [0,∞), respectively.
The inequalities between two vectors

x < y, (x ≤ y)

mean

x(i) < y(i) (x(i) ≤ y(i)) for all i = 1, 2, . . . , d.

The operation “maximum” ∨ between two vectors has to be read as

x ∨ y = (x(1) ∨ y(1), x(2) ∨ y(2), . . . , x(d) ∨ y(d)).

The same for the operation “addition”

x + y = (x(1) + y(1), x(2) + y(2), . . . , x(d) + y(d)).

We will also use the vectors 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). For any two
vectors a and b such that a ≤ b we define the closed interval [a,b] = {x : a ≤
x ≤ b}. The open and half open intervals are defined in a similar way.
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Let

(1.1) Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1

be a sequence of time-space point processes. Further we suppose that for every
n = 1, 2, . . ., the point process Nn is defined on the open (hence locally compact)
subset Sn of [0,∞) × [0,∞)d. The time points tnk ∈ [0,∞) are distinct and
non-random, and Xnk are row-wise independent random vectors in [0,∞)d.

We assume that

(1.2) Nn([0, t] × [0,x)c) <∞ a.s.

if [0, t] × [0,x)c ⊂ Sn.

Remark 1. With an abuse of notation here and later on we denote by
Nn the collection of points (1.1) as well as the random measure Nn(A) = #{k :
(tnk,Xnk) ∈ A}, A ⊂ Sn.

The finiteness assumption (1.2) means that almost all realizations of Nn

are finite on compact subsets of Sn.

We associate with Nn the extremal process

(1.3) Yn(t) = {∨kXnk : tnk ≤ t}

with independent max-increments. One of the main characteristics of any ex-
tremal process is its lower curve C : [0,∞) → [0,∞)d below which the sample
paths of Y cannot pass. The lower curve is uniquely determined by the ex-
tremal process. Denote by Cn the lower curve of the extremal process Yn,
n ≥ 1. Since Yn(t) ≥ Cn(t) a.s. t ≥ 0, only the points of Nn which belong
to [0,Cn]c ⊂ Sn contribute to the behavior of the extremal process Yn. Here
[0,Cn] =

⋃

t[0,Cn(t)] is the set below the lower curve Cn.

Define the sum process

Sn(t) =

{

∑

k

Xnk : (tnk,Xnk) ∈ [0,Cn]c, tnk ≤ t

}

with independent additive increments. Therefore, the values of Sn and Yn are
determined by the same points of Nn which belong to [0,Cn]c.

Having the three sequences:

• the sequence of point processes Nn;
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• the sequence of extremal processes Yn;

• the sequence of sum processes Sn,

we investigate the following problems:

• the convergence of each sequence under appropriate normalization;

• the properties of the limiting processes;

• the relationships between the convergence of the three sequences.

The paper is organized as follows. In Section 2 we investigate the con-
vergence of the sequence of point processes Nn and the sequence of extremal
processes Yn. The main result of the section is Theorem 2 which establishes
the relation between the vague convergence of the sequence Nn and the weak
convergence of the sequence Yn. The section also contains some basic results for
extremal processes obtained by Balkema and Pancheva [1] which are needed in
the next sections.

In Section 3 we prove the decomposition and the representation for the
characteristic function of a stochastically continuous sum process S, defined above
the lower curve of a given extremal process Y.

In Section 4 we study the relation between the weak convergence of the
sequences Yn and Sn. The main result is Theorem 5, the Functional Extremal
Criterion for the weak convergence of the sequence Sn to the stochastically con-
tinuous limiting process S considered in Section 3.

In Sections 2, 3, and 4 we assume that the time points of the point
processes Nn are deterministic. In the last Section 5 we generalize the model of
u.n.t.a. and consider a sequence of Bernoulli point processes Nn with random
time components Tnk. Thus, the associated sum process Sn(t) and extremal
process Yn(t) are of random sample size Nn(t) = max{k : Tnk ≤ t}. In this
section we give conditions for the weak convergence of Nn to a Cox process Ñ
(Theorem 6) and also weak convergence of Yn and Sn to a compound extremal
– and a compound sum process, respectively (Theorems 7 and 8). A special
case of triangular array Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 is considered in
[5]: tnk = τ−1

n (tk) and Xnk = U−1
n (Xk) where ηn(t,x) = (τn(t), Un(x)) is a

coordinate-wise strictly increasing continuous mapping and Xk, k ≥ 1 are i.i.d.
random vectors in [0,∞)d. The corresponding limit extremal process is max-
stable. Thus, its lower curve is constant, say C(t) ≡ 0, and one does not observe
explosion area phenomena. A particular functional extremal criterion is proved
there. The random sample size generalization is studied later on in [6].
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2. Relationship between an Extremal Process and the un-

derlying Bernoulli Point Process. In this section we make a survey of some
published and some unpublished results obtained by Balkema and Pancheva dur-
ing their collaboration in 1995–2000. In [1] a point process N = {(Tk,Xk) :
k ≥ 1} on an open subset S of Z = [0,∞) × [0,∞)d is called Bernoulli point

process (B.p.p.) if

(a) Its mean measure (m.m.) µ(·) = EN (·) is a Radon measure on S (i.e. it is
finite on compact subsets of S);

(b) N is simple in time, i.e. Ti 6= Tj for i 6= j;

(c) For any integer m the restrictions N1, . . . ,Nm of N to (time) slices over
disjoint time intervals I1, . . . , Im are independent.

As a first example of B.p.p. one can take a simple in time Poisson point process.
Bernoulli point processes are important for the study of the so called extremal
processes.

An extremal process Y : [0,∞) → [0,∞)d is a random process with
right-continuous increasing sample paths and independent max-increments. More
precisely, for any finite sequence of time points 0 = t0 < t1 < . . . < tm there exist
independent random vectors U0,U1, . . . ,Um such that

(Y(t0), . . . ,Y(tm))
d
= (U0,U0 ∨ U1, . . . ,U0 ∨ . . . ∨ Um)

The main characteristics of an extremal process Y (cf [1]) are its:

– lower curve C : [0,∞) → [0,∞)d, increasing and right continuous, below
which the sample paths of Y cannot pass. It is defined coordinate-wise: C(i)(t)
is the left endpoint of the distribution function (df) of the i-th coordinate of the
random vector Y(t), i = 1, . . . ,m. Thus, Y(t) ≥ C(t), a.s. The lower curve is
uniquely determined by the process Y;

– distribution function f : (0,∞)d+1 → [0, 1], f(t,x) = P(Y(t) < x). It is
decreasing and right-continuous in t and increasing and left continuous in x, hence
lower semi-continuous. The family Ft(·) = f(t, ·), t ≥ 0 of the univariate marginal
distributions of Y determines uniquely the finite dimensional distributions (f.d.d.)
of Y, hence the process itself. More precisely, for t1 < · · · < tn in (0,∞) and
x1 < · · · < xn in (0,∞)d

Ft1,...,tn(x1, . . . ,xn) =



















0, if min
i
Fti(xi) = 0

Ft1(x1)
Ft2(x2)

Ft1(x2)
· · ·

Ftn(xn)

Ftn−1(xn)
, otherwise
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– max-increments U(s, t] over time intervals (s, t], 0 ≤ s < t, t > 0. The
Structure Theorem in [1] states that for any extremal process Y there exists a
consistent family of max-increments U(s, t] (assuming the underlying probability
space is sufficiently rich) so that

(i) U(s, t] ≥ C(t), 0 ≤ s < t;

(ii) Y(t) = Y(s) ∨ U(s, t], 0 ≤ s < t;

(iii) for disjoint time intervals I1, . . . , Im the random vectors U(I1), . . . ,U(Im)
are independent.

– underlying Bernoulli point process N = {(Tk,Xk) : k ≥ 1} on the open
set S = [0,C]c such that Y can be represented as

(2.1) Y(t) = C(t) ∨ {∨Xk : Tk ≤ t}

Here Xk are independent random vectors in [0,∞)d and Tk are distinct random
time points such that (Tk,Xk) ∈ S a.s. In the presence of a lower curve, i.e.
C(t) 6= 0 for some t ≥ 0, the distribution of the p.p. N is not uniquely determined
by the distribution of the associated extremal process Y. This holds even for a
Poisson p.p. associated with a max-id extremal process. So, different B.p.p.’s on
S may generate the same extremal process Y by (2.1). Later in this section we
shall consider closely this form of the phenomenon blotting, discussed in [1] and
related to different sources of lack of uniqueness in Extreme Value Theory.

Example 2.1. Assume that a p.p. N on [0, 1] × (0, 1) consists of two
points (1/3,X1) and (3/4,X2) where X1 and X2 are independent r.v.’s, X1 is
uniformly distributed in (0, 1/2) and X2 is uniformly distributed in (1/2, 1). The
extremal process Y, generated by N ,

(2.2) Y (t) =























0, t ∈ [0, 1/3)

X1, t ∈ [1/3, 3/4)

X2, t ∈ [3/4, 1)

has discontinuous lower curve C(t)

(2.3) C(t) =







0, t ∈ [0, 3/4)

1/2, t ∈ [3/4, 1)
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Example 2.2. Let N = {(tk,Xk) : k ≥ 1} be a point process on (0,∞)×
[0,∞)d where tk are distinct non-random time points, increasing to ∞, and {Xk}
are independent random vectors on [0,∞)d. Define k(t) = #{k : tk ≤ t}. Then

N is Bernoulli and the lower curve of the extremal process Y(t) =
k(t)
∨

k=1

Xk is

identically zero.

Example 2.3. Let C : [0,∞] → [0,∞)d be an increasing and right-
continuous curve. Let N = {(Tk,Xk) : k ≥ 1} be a Bernoulli p.p. on the open
set S = [0,C]c. Then N ([0, t] × [0,x)c) <∞ a.s. for all t ≥ 0,x > C(t). Assume
the corresponding counting process

N(t) = max{k : Tk ≤ t}

is finite for every finite t. Then

Y(t) := C(t) ∨

N(t)
∨

k=1

Xk

is an extremal process.

We call an extremal process stochastically continuous at a point t > 0
if

(2.4) Y(t) = C(t) ∨ Y(t− 0) a.s.

Thus, a stochastically continuous extremal process does not have fixed disconti-
nuity points except possible discontinuities of the lower curve.

The Decomposition Theorem in [1] states that an extremal process with
lower curve C and underlying B.p.p. N can be decomposed as the maximum

Y(t) = Yc(t) ∨Yd(t)

of two independent extremal processes Yc and Yd with common lower curve C.
The process Yc satisfies (2.4) for all t > 0 and Yc(0) = C(0), a.s. It is associated
with a Poisson p.p. N c on S which m.m. µ does not charge any instant sections
S(t) of S, i.e. µ(S(t)) = 0, for all t ≥ 0. The associated with Yd B.p.p. N d is
the sum of zero-one p.p.’s Nk = (tk,Xk) where tk ≥ 0 are points for which (2.4)
fails to hold, and Xk ≥ C(tk) are independent random vectors.
Recall, an extremal process is max-id if for all n > 1 there are n i.i.d. random
processes Yn1, . . . ,Ynn such that Y = Yn1 ∨ · · · ∨ Ynn. The most studied rela-
tionship between an extremal process Y with lower curve C and its underlying
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B.p.p. N on S = [0,C]c is in the max-id case: Y is max-id iff N is Poisson. There
is a close relation between the df f(t,x) = P(Y(t) < x) of a max-id extremal
process and the mean measure µ of the underlying Poisson p.p., namely

f(t,x) =







exp{−µ([0, t] × [0,x)c)}, x > C(t), t ≥ 0

0, otherwise.

The closed set [0,C] below the lower curve is an “explosion area” for
the mean measure µ, i.e. µ = ∞ there as f(t,x) = 0 for all (t,x) ∈ [0,C].
Above the lower curve, on the set A the measure µ is finite as f(t, x) is positive
for x > C(t), t ≥ 0. In the univariate case there are no other areas. In the
multivariate case the underlying p.p. N is defined on the open set [0,C]c. One
can not easily blot out the points of N in both sandwich areas between [0,C]
and A : they may contribute to the mass of f on A. So, different p.p.’s on S may
generate the same extremal process. We meet here another form of the blotting

phenomenon.

Following [2], a p.p. N is usually defined on a locally compact separable
metric space. In our case the set S = [0,C]c is open, hence locally compact. Let
Nn be a sequence of Bernoulli point processes on S. We say that Nn is vaguely

convergent to a p.p. N on S, briefly Nn
v
→ N , if for any relatively compact

subset K ⊂ S with P(N (∂K) = 0) = 1 the convergence Nn(K)
d
→ N (K) holds

(cf [8]). Unfortunately, the limit p.p. N may be problematic:

– the convergence
v
→ gives no information about the behavior of N on the lower

curve. There the m.m. µ may be finite or infinite;

– space points of N may be even in the interval (C(t0 − 0),C(t0)) when the
lower curve C of the associated extremal process Y is discontinuous at t0. By the
Structure Theorem, Y(t) = Y(t − 0) ∨ U(t) where U(t) = lim

n
U(sn, rn] a.s. for

sn ↑ t and rn ↓ t;

– time points may cluster to one point in the limit. In this case the limit p.p. is
no more B.p.p.

Example 2.4. Let N1 and N2,n, n = 1, 2, . . . be simple in time Poisson
p.p.’s lying respectively on [0,∞)2 and on the line x(t) = (t − t0) tanαn, αn ∈
(0, π/2), t ≥ 0 through the point t0. Assume αn ↑ π/2 as n → ∞. Then the
superposition Nn = N1 ⊕N2,n converges: Nn

v
→ N = N1 ⊕N2 where N2 lies on

the instant space through t0. As a limit of Poisson p.p.’s N is Poisson but not
Bernoulli. Its m.m. µ charges the instant section through t0.
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For a convergence of B.p.p.’s the following statement applies.

Theorem 1. Suppose Nn is a Bernoulli point process on an open subset
S ⊂ Z with mean measure µn, for n ≥ 1. Let µ be a Radon measure on S. If

(i) µn
v
→ µ on S

and

(ii) sup{µn(K(s)) : 0 ≤ s ≤ t} → 0 as n→ ∞

for every t > 0 and every relatively compact subset K ⊂ S, then the sequence Nn

converges vaguely to a Poisson p.p. N on S with mean measure µ. Here K(s) is
the instant section of the set K.

P r o o f. Let us fix an arbitrary compact set K ⊂ S. For all n we decom-
pose

(2.5) Nn(K) = N c
n(K) ⊕N d

n(K)

where N c
n is a Poisson p.p. and N d

n is a sum of independent zero-one p.p.’s
Nnk on instant spaces K(ank) of positive measure, µn(K(ank)) > 0. The set
An = {an1, an2, . . .} is at most countable and

∑

k

µn(K(ank)) ≤ µn(K) is finite.

In fact, every zero-one p.p. N can be embedded in a Poisson p.p. R :=
{X1, . . . ,XL} where L is a Poisson r.v. with EL = λ and X1,X2, . . . are i.i.d.
random variables, so that

N =

{

∅, if L = 0

{X1}, otherwise.

Then P(N 6= R) = P(L ≥ 2) = 1 − e−λ − λe−λ ≤ λ(1 − e−λ) ≤ λ2.
On the other hand µ = EN = P(|N | = 1) = P(L > 0) = 1 − e−λ, where |N | is
the number of points of N . Hence for µ → 0, λ2 = (log(1 − µ))2 ∼ µ2. Thus, we
can replace the zero-one p.p.’s Nnk by independent Poisson p.p.’s Rnk, so that

P(Nnk 6= Rnk) ≤ µ2
n(K(ank)) → 0, as n→ ∞

Then Rn :=
∑

k

Rnk is a Poisson p.p. on K and

P(Rn(K) 6= N d
n (K)) ≤

∑

k

P(Rnk 6= Nnk)

≤
∑

k

µ2
n(K(ank)) ≤ sup

k

µn(K(ank))
∑

k

µn(K(ank)) → 0
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in view of (ii) and the finiteness of µ(K). Now we may replace N d
n by Rn in the

above decomposition (2.5) of Nn. It is well known that Poisson p.p.’s converge
vaguely iff their m.m.’s converge vaguely. The limit process N is then Poisson,
too, but eventually not simple in time.

The convergence Nn
v
→ N holds on S since it holds on any compact subset

K of S. �

Remark 2. By Theorem 14.16 in [2], if N is a simple p.p. the conver-
gence Nn

v
→ N is equivalent to the weak convergence Nn ⇒ N .

Below we discuss the question whether the vague convergence of Bernoulli
p.p.’s Nn always imply weak convergence of the associated extremal processes Yn,
supposing additionally that the limit p.p. N is simple in time.

Let us first recall when a sequence of extremal processes is weakly con-
vergent. Given a sequence of extremal processes {Yn},Yn : [0,∞) → [0,∞)d we
denote the distribution function and the probability distribution (p.d.) of Yn on
M([0,∞)) by fn and πn respectively. For fixed t > 0 let Fnt(·) = fn(t, ·). We
say the sequence {Yn} is weakly convergent to an extremal process Y : [0,∞) →
[0,∞)d with df f and p.d. π, briefly Yn ⇒ Y, if one of the following equivalent
statements holds (cf Th. 1,§ 6 in [1])

(1) fn → f at all continuity points of f ;

(2) Fnt → Ft = f(t, ·) weakly for each t in a dense subset of (0,∞);

(3)
∫

φdπn →
∫

φdπ for bounded φ : M([0,∞)) → R which are continuous in the
weak topology of M([0,∞)).

Now we come back to the above question. The following example shows
a possible pitfall.

Example 2.5. Assume that p.p.’s Nn = N , for all n ≥ 1 where N is the
p.p. defined in Example 2.1. and Cn(t) = C(t), for all n ≥ 1 where C(t) is the
lower curve of N and has the form (2.3). The extremal process Y (t), generated
by N is given by (2.2).

Let C0(t) ≡ 1/2 and N0 = {(3/4,X2)}. Define an extremal process
Y0(t) = Y (t) ∨ C0(t). We observe that Nn

v
→ N0 on the set S = {(t, x) : t ∈

(0, 1), x ∈ (1/2, 1)} but Yn ; Y0. Indeed, for the point (1/3, x) with x ∈ (0, 1/2)
one gets

fn(1/3, x) = P(Y (1/3) < x) = P(X1 < x) = x

but
f0(1/3, x) = P(Y0(1/3) < x) = 0.
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The following result answers the above question.

Theorem 2. Let Y and Yn be extremal processes with lower curves C

and Cn, respectively. Let N and Nn be the underlying Bernoulli p.p.’s defined
on [0,C]c and [0,Cn]c, respectively. Suppose that C satisfies the following lower
curve condition

(LC)

Cn ∨ C → C weakly on (0,∞) and

lim
n
f

(i)
n (t, x) = 0 for all x < C(i)(t− 0), t > 0, i = 1, . . . , d.

If Nn
v
→ N on [0,C]c then Yn ⇒ Y.

Remark 3. In Theorem 1 we have assumed that the Bernoulli p.p.’s
Nn and the limit p.p. N are defined on the same space S. Theorem 1 remains
true if every Nn is defined on another (locally compact) space Sn in such a
way, that every point z ∈ S has a neighborhood U which is contained in all
Sn, for n ≥ n0(U). The first part of (LC) implies that for every compact set
K ⊂ S there is a number n0 so that K ⊂ Sn, for all n > n0.

P r o o f o f T h e o r em 2. Denote by f and fn the df’s of Y and Yn,
respectively. By Theorem 1, Section 6 in [1] we have to show that fn → f for all
continuity points of f . Let (t,x) ∈ S = [0,C]c be an arbitrary continuity point.
The set At,x = [0, t] × [0,x)c belongs to S whenever x > C(t). Then

P(Yn(t) < x) = P(Nn(At,x) = 0).

The set At,x is N−continuous a.s., hence

Nn(At,x)
d
→ N (At,x).

This means fn(t,x) → f(t,x) and consequently Yn ∨ C ⇒ Y. Finally, we com-
bine the last convergence with the second part of condition (LC) and obtain
Yn ⇒ Y �

The main conclusion of this section is as follows: given a sequence of
B.p.p.’s satisfying the conditions of Theorem 1 with simple in time limit Poisson
p.p., the conditions of Theorem 2 guarantee that the sequence of the associated
extremal processes is weakly convergent to the max-id extremal process generated
by the limit Poisson p.p.

It is very natural to associate with N a stochastic process S with indepen-
dent additive increments, briefly sum process. The following section is devoted
to such a process.
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3. Sum Process over Explosion Area. Let C : [0,∞) → [0,∞)d,
C(0) = 0 be an increasing right-continuous curve and T = sup{t ≥ 0 : |C(t)| =
0}. Suppose a simple in time Poisson p.p. on Z is given. Its mean measure µ is
supposed to be σ−finite and satisfying the condition

(I) µ(At,x)







<∞, x > C(t), t ≥ 0

= ∞, otherwise,

including the case x ∈ (C(t− 0),C(t+ 0)), if t is a discontinuity point of C.
Denote by S the open set [0,C]c ⊂ Z. The set [0,C] is the explosion

area of µ. We denote the restriction on S of the given Poisson p.p. by N =
{(Tk,Xk) : k ≥ 1}. Now each point (Tk,Xk) belongs to [0,C]c. In this section we
are interested in constructing a sum process S over the explosion area of µ. Note
that S is not a cone. The case of a cone is considered in [10, Th. 3.21]. Our sum
process S should be a.s. finite, stochastically continuous and having independent
increments. Below we define S, decompose it suitably and give the form of its
characteristic function. Suppose additionally

(II) µ{S(s)} = 0, for all s ∈ [0,∞)

(III)

∫ T+δ

0

∫

{|x|≤1}
|x|µ(ds,dx) <∞, for some δ > 0.

Condition (I) ensures
∫ T

0

∫

|x|≥1 µ(ds,dx) <∞ thus, (I) and (III) entail

∫ T

0

∫

[0,∞)d\{0}
(|x| ∧ 1)µ(ds,dx) <∞.

The last condition makes the measure µ a Levy measure. It is well known that
every Levy measure is a Radon measure but the converse is not always true.
Hence for t > 0 one can define the process S(1)(t) as follows

(3.1) S(1)(t) =























0, t = 0,

∑

Tk≤t Xk, 0 < t ≤ T,

S(1)(T ), t > T.
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Indeed, conditions (II) and (III) ensure P(|S(1)(T )| < ∞) = 1, so defin-
ition (3.1) is correct, i.e. the sum on the right hand side converges a.s. Thus,
the process S(1), considered above is a.s. finite, stochastically continuous (in
view of (II) and the second part of (I)) with independent increments and its
sample paths lie in S. Let us define for arbitrary h > 0 and t ≤ T the process

S
(1)
h (t) =

∑

Tk≤t

XkI{|Xk |>h} and R
(1)
h (t) = S(1)(t) − S

(1)
h (t). The process S

(1)
h (t) is

compound Poisson since it is simply a sum of a.s. finite number of independent

r.v’s. Both S
(1)
h (t) and R

(1)
h (t) are nonnegative increasing processes (Xk ∈ R

d
+).

The same holds for S
(1)
h1

(t) − S
(1)
h2

(t) ∈ R
d
+ whenever 0 < h1 < h2. As known,

each sequence xn ∈ R
d
+, such that xn−1 − xn ∈ R

d
+ is decreasing and bounded

from below, hence it converges in R
d
+, i.e. there exists lim

n→∞
xn = x0 ∈ R

d
+.

Therefore lim
h→0

R
(1)
h (t) = S

(1)
0 (t) exists. Here S

(1)
0 (t) is a.s. continuous process

with independent increments, hence it is a Gaussian process. The increment

S
(1)
0 (t) − S

(1)
0 (0) follows Gaussian distribution and on the other hand it is a.s.

positive. This is possible if and only if its variance is equal to zero, which implies

a(t) := S
(1)
0 (t) − S

(1)
0 (0) is a deterministic increasing continuous function. Since

limh→0 R
(1)
h (t) = a(t) exists and the process S(1)(t) is a.s. finite, the following

decomposition holds

(3.2) S(1)(t) =











a(t) + lim
h↓0

S
(1)
h (t), 0 ≤ t ≤ T

S(1)(T ), t > T.

The characteristic function of a(t) + S
(1)
h (t) is given by

Eeiz.[a(t)+S
(1)
h

(t)] = exp

{

iz.a(t) +

∫ t

0

∫

[0,∞)d
T
{|x|>h}

(

eiz.x − 1
)

µ(ds,dx)

}

Here z.x means the scalar product of the vectors z and x. Letting h ↓ 0 in the
above equation we get the characteristic function of S(1)(t)

(3.3) Eeiz.S(1)(t) = exp

{

iz.a(t) +

∫ t

0

∫

[0,∞)d\{0}

(

eiz.x − 1
)

µ(ds,dx)

}

.

Consider the case t > T. It is clear that for δ > 0 and t ≥ T + δ > T
if
∫ t

T+δ

∫

[0,C(s)]c µ(ds,dx) were infinite then the point process would be infinite
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a.s. since it is Poisson point process and respectively the sum process would be
infinite a.s. too. Since we are interested in a.s. finite case assume the following
condition

(IV)

∫ t

T+δ

∫

[0,C(s)]c
µ(ds,dx) <∞, for δ > 0 and t ≥ T + δ.

Condition (IV) combined with (III) provides that the sum process

(3.4) S(2)(t) =











0, t ≤ T,

∑

T<Tk≤t

Xk, t > T.

is a.s. finite (cf Theorem 10.15 in [2]), and can be decomposed as

(3.5) S(2)(t) =











a∗ + lim
δ↓0

S(2)(δ, t), T < t

0, 0 ≤ t ≤ T,

with
S(2)(δ, t) =

∑

T+δ<Tk≤t

Xk, and a∗ = lim
δ↓0

S
(2)
δ ,

where S
(2)
δ =

∑

T<Tk≤T+δ

Xk. The proof of this decomposition relies on similar

arguments as in the first case. The only difference is that the limit is taken along
the time and in this way a constant a∗ appears. The characteristic function of
S(2)(t), t > T is given by

Eeiz.S(2)(t) = exp

{

iz.a∗ +

∫ t

T

∫

[0,C(s)]c

(

eiz.x − 1
)

µ(ds,dx)

}

.

Define for t ≥ 0 the process

S(t) = S(1)(t) + S(2)(t),

or equivalently

S(t) =







S(1)(t), 0 ≤ t ≤ T

S(1)(T ) + S(2)(t), t > T.
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The processes S(1) and S(2) are independent.
Moreover, if C ≡ 0 we can put [0,C]c = [0,∞)d \ {0} so the characteristic
function (3.3) of S(1) can be rewritten as

(3.6) Eeiz.S(1)(t) = exp

{

iz.a(t) +

∫ t

0

∫

[0,C(s)]c

(

eiz.x − 1
)

µ(ds,dx)

}

Finally, the characteristic function of the sum process over explosion area
is given by

ψt(z) = Eeiz.S(t) = exp

{

iz.aT (t) +

∫ t

0

∫

[0,C(s)]c

(

eiz.x − 1
)

µ(ds,dx)

}

where aT (t) satisfies

(3.7) aT (t) =







a(t), 0 ≤ t ≤ T

a(T ) + a∗, t > T.

Briefly we write ψ ∼ (aT , µ) for the ch.f. of the process S, where the Levy
measure of S is the mean measure of the generating Poisson p.p.
There are two boundary cases. The first is T = 0 and then S(t) is pure jump
process with aT (t) = a∗. The second is T = ∞ then aT (t) = a(t), for all t ≥ 0.
Taking advantage of the results above we have proved the following theorem.

Theorem 3. Suppose N = {(Tk,Xk) : k ≥ 1} is a simple in time
Poisson point process on S = [0,C]c with mean measure µ, where C : [0,∞) →
[0,∞)d, C(0) = 0 is increasing and right-continuous. Denote T = sup{t ≥ 0 :
|C(t)| = 0} and let µ satisfy conditions (I)–(IV). Then the stochastic process S,
defined by S(t) =

∑

Tk≤t

Xk, t ≥ 0 is a.s. finite, stochastically continuous and

has independent increments. It can be decomposed into a sum of two independent
processes S(t) = S(1)(t) + S(2)(t). The process S(1)(t) is defined by (3.1) and
admits decomposition (3.2) and the process S(2)(t) is defined by (3.4) and admits
decomposition (3.5). The characteristic function of S is given by

ψt(z) = Eeiz.S(t) = exp

{

iz.aT (t) +

∫ t

0

∫

[0,C(s)]c

(

eiz.x − 1
)

µ(ds,dx)

}

where the function aT (t) is defined in (3.7).
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Let us remark that the converse statement is also true: If S(t) is a sto-
chastically continuous sum process on S with ch.f. ψ ∼ (aT , µ), then µ necessar-
ily satisfies conditions (I)–(IV) since these conditions are equivalent to the a.s.
finiteness of the sum process.

Remark 4. Each id process can be decomposed into a sum of a stochas-
tically continuous, a deterministic and a discrete process. We consider here only
the case of stochastically continuous sum process since it is the most interesting
case from a theoretical and practical point of view.

4. Triangular Arrays. Triangular arrays are used in studying the
asymptotic behavior of maxima (or sums) of large numbers of r.v.’s. Traditionally
the n-th row consists of independent r.v.’s Xn1, . . . ,Xnn and one is interested in
the weak limit of the probability distribution of the maxima Xn1 ∨ · · · ∨Xnn. In
order to ensure that the contribution of each separate term in a row to the maxima
is small, one imposes a condition of asymptotic negligibility on the individual
max-increments Xnk, k = 1, . . . , n. For sums the negligibility condition is simple:
Xnk → 0 in probability as n → ∞, uniformly in k. For maxima the condition

may depend on the limit: If X11 ∨ · · · ∨ Xnn
d
→ X and X has lower endpoint

q, then the asymptotic negligibility condition says max
k

{1 − P(Xnk < x)} → 0,

n → ∞, x > q. Here we are interested in processes rather than individual r.v.’s.
Thus, a sequence of p.p.’s {(tnk,Xnk), k ≥ 1}, n ≥ 1 instead of a triangular array
is considered. For fixed n the r.v.’s Xn1,Xn2, . . . in [0,∞)d are independent. The
time points tnk are chosen so that

(4.1) 0 ≤ tn1 < tn2 < · · · < tnk → ∞, k → ∞, tnk − tn,k−1 → 0, n→ ∞

Hence the counting function kn(t) = max{k : tnk ≤ t} is finite for every fixed
n and t and tends to infinity as n → ∞. Now with each row we associate an
extremal process Yn. If Xnk has lower endpoint qnk, the lower curve Cn of Yn

is just Cn(t) =
kn(t)
∨

k=1

qnk, so Yn(t) = Cn(t) ∨

{

kn(t)
∨

k=1

Xnk

}

.

We are interested in the asymptotic behavior of Yn for n → ∞. The
points (tnk,Xnk) which belong to [0,Cn] a.s. do not contribute to the limit, but
only (tnk,Cn(tnk)∨Xnk). Thus, we may start our study with a given sequence of
B.p.p. Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 on Sn = [0,Cn]c with m.m. µ satisfying

(4.2) µn([0, t] × [0,x)c) =

kn(t)
∑

k=1

P(Xnk ∈ [0,x)c) <∞ for x > Cn(t), t ≥ 0.
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Next we assume the weak convergence

(4.3) Yn(·) = Cn(·) ∨







kn(·)
∨

k=1

Xnk







⇒ Y(·)

to an extremal process Y with lower curve C. Moreover, we suppose that the
p.p.’s Nn satisfy the following “asymptotic negligibility” condition

(AN) max
{k:tnk≤t}

{1 −P(Xnk < x)} → 0, n→ ∞, x > C(t)

uniformly in t. Here “negligible” stands for the influence of any individual r.v.
Xnk to the asymptotic behaviour of Yn rather than for its size.

Remark 5. The (AN) condition on the set S = [0,C]c is equivalent to
condition (ii) in Theorem 1. Indeed, for t ≥ 0 and x > C(t) the mean measure µn

of Nn satisfies sup
s≤t

µn({s} × [0,x)c) = sup
s≤t

ENn({s} × [0,x)c) = sup
k:tnk≤t

P(Xnk ∈

[0,x)c).

Remark 6. Convergence (4.3) implies (LC) condition.

Definition 1. We refer to a sequence of p.p.’s Nn = {(tnk,Xnk), k ≥ 1},
n ≥ 1 as uniformly negligible triangular array (u.n.t.a.) if its time points tnk

satisfy (4.1) and its space points Xnk are row-wise independent r.v.’s satisfying
the (AN) condition for some increasing right-continuous curve C(t).

“Triangular” here stands to remind that kn(t) <∞, t ≥ 0 and that only
Xn1, . . ., Xn,kn(t) are used to construct Yn(t).

Let µ be a Radon measure and let M(t,x) := µ([0, t] × [0,x)c) be its
distribution function. We denote by Rc the set of all Radon measures on [0,C]c

such that e−M(t,x) is df of an extremal process, i.e.

(a) M(t,x) is right-continuous in t and left-continuous in x. That M(t,x) in-
creases in t and decreases in x is satisfied by definition;

(b) M(t,x) < ∞ for x ∈ (C(t),∞]. This condition is satisfied by any Radon
measure on S since for x > C(t) the compactified set At,x = [0, t] × [0,x)c

belongs to S;

(c) M(t,x) → 0 for fixed t > 0 and x → ∞;

(d) The difference M(t,x)−M(s,x) = µ((s, t]× [0,x)c) for s < t satisfies condi-
tions (a)–(c) for any fixed s ≥ 0, which hold naturally.
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The following theorem characterizes the limit extremal process Y in (4.3)
as max-id.

Theorem 4. Let Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 be u.n.t.a. and let
Y : [0,∞) → [0,∞)d be an extremal process with df f and lower curve C. Then
the following statements are equivalent

(i) Yn ⇒ Y

(ii) Condition (LC) is met and

(4.4)

kn(t)
∑

k=1

P(Xnk ∈ [0,x)c) → µ([0, t] × [0,x)c), n→ ∞

for some measure µ ∈ Rc and all continuity points (t,x) of f, such that x ∈
{Ft > 0}. Furthermore, any one of these statements is equivalent to the vague
convergence of Nn on S to a Poisson point process N with mean measure µ and
Y is just the associated with N max-id extremal process.

P r o o f. (ii) ⇒ (i). In view of Theorem 1 and (4.2), both conditions (4.4)
and (AN) imply Nn

v
→ N , where N is Poisson p.p. with m.m. µ. Hence the

associated with N extremal process Y is max-id and f(t,x) = exp{−µ([0, t] ×
[0,x)c)}. Now the (LC) condition enables to apply Theorem 2 and obtain (i).

(i) ⇒ (ii). Conversely, we have still to show that (i) entails (4.4). Let fn

and Cn be df and lower curve of Yn. Then (i) says that for all continuity points
of f and for n→ ∞ fn(t,x) → f(t,x). More precisely

fn(t,x) = P(Yn(t) < x)

∼ exp{−

kn(t)
∑

k=1

P(Xnk ∈ [0,x)c)} →







f(t,x), x ∈ {Ft > 0}

0, otherwise .

Here the sign ∼ is legally used since Nn, n ≥ 1 form u.n.t.a.

Now determine a measure µ on S by setting

µ([0, t] × [0,x)c) =







− log f(t,x), x ∈ {Ft > 0}

∞, otherwise.

This measure belongs to Rc and so (4.4) is met. �
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With the u.n.t.a. Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 on Sn given above we
may also associate sum processes on Sn for all n, as follows

Sn(t) =

kn(t)
∑

k=1

Xnk

We are interested in necessary and sufficient conditions for the weak convergence
Sn ⇒ S. The following theorem gives such conditions.

Theorem 5 (Functional Extremal Criterion). Assume C : [0,∞) →
[0,∞)d, C(0) = 0 is an increasing right-continuous curve and define T = sup{t ≥
0 : |C(t)| = 0}. Let Nn = {(tnk,Xnk) : k ≥ 1}, on Sn, n ≥ 1 form u.n.t.a. and
let S : [0,∞) → [0,∞)d be a stochastically continuous sum process on S = [0,C]c

with characteristic function ψ ∼ (aT , µ). Then

(4.5) Sn(·) =

kn(·)
∑

k=1

Xnk ⇒ S(·)

if and only if

(i) the associated extremal processes Yn converge weakly to a stochasti-
cally continuous extremal process Y with lower curve C and df f(t,x) = e−µ(At,x),
t ≥ 0, x > C(t);

(ii) the following condition holds for t ≤ T and h > 0

(4.6)

kn(t)
∑

k=1

E
(

XnkI{|Xnk|≤h}

)

→ aT (t) +

∫ t

0

∫

{|x|≤h}
xµ(ds,dx) <∞.

P r o o f. Sufficiency: Suppose that Yn ⇒ Y with df f(t,x) = e−µ(At,x),
t ≥ 0, x > C(t). Hence (4.4) holds. By assumption µ is the Levy measure of the
sum process S on S. Thus, µ ∈ Rc and satisfies conditions (I)–(IV). By Theorem
3 we know that µ is also a mean measure of the generating Poisson p.p. N . On
the other hand in view of Theorem 4 the sequence Nn converges weakly on S to a
Poisson p.p., say N ∗, with the same mean measure µ as N . Hence N ∗ coincides
in distribution with N and we may consider S and Y generated by the same
Poisson p.p. N .

Since Sn and S are increasing processes it is enough to show the con-

vergence Sn(t)
d
→ S(t), for all t > 0. Consider the case t ≤ T . In this case



Relationship Between Extremal and Sum Processes . . . 189

C ≡ 0 and the r.v.’s Xn1, . . . ,Xn,kn(t) for n ≥ 1 form a null array since (AN)

condition says Xnk
P
→ 0, n → ∞ uniformly in k. Then the convergence of the

r.v. Sn(t) =
∑kn(t)

k=1 Xnk to the id r.v. S(t) is reduced to the classical framework
of null arrays with row-wise independent r.v.’s., where conditions (4.4) and (4.6)

are necessary and sufficient for the convergence Sn(t)
d
→ S(t), t > 0 (cf Theorem

13.28 in [2]).
Now fix t > T . In that case the r.v. Sn(t) can be represented as Sn(t) =

Sn(T ) + S
(2)
n (t) where S

(2)
n (t) =

∑

T<tnk≤t

Xnk. Further, Sn(T )
d
→ S(T ), so it is

enough to show that S
(2)
n (t)

d
→ S(2)(t), where S(2)(t) =

∑

T<Tk≤t

Xk.

The characteristic function of S
(2)
n (t) is

E exp
(

iz.S(2)
n (t)

)

= E exp



iz.
∑

{k:T<tnk≤t}

Xnk





=
∏

{k:T<tnk≤t}

E exp (iz.Xnk) =
∏

{k:T<tnk≤t}

[

∫

[0,Cn(tnk)]c
eiz.xP(Xnk ∈ dx)

]

=
∏

{k:T<tnk≤t}

[

1 +

∫

[0,Cn(tnk)]c
(eiz.x − 1)P(Xnk ∈ dx)

]

= exp
∑

{k:T<tnk≤t}

log

[

1 +

∫

[0,Cn(tnk)]c
(eiz.x − 1)P(Xnk ∈ dx)

]

Condition (LC) combined with condition (AN) imply

exp
∑

{k:T<tnk≤t}

log

[

1 +

∫

[0,Cn(tnk)]c
(eiz.x − 1)P(Xnk ∈ dx)

]

∼ exp
∑

{k:T<tnk≤t}

∫

[0,C(tnk)]c
(eiz.x − 1)P(Xnk ∈ dx)

= exp
∑

{k:T<tnk≤t}

∫ t

T

∫

[0,C(s)]c
(eiz.x − 1)P((tnk ,Xnk) ∈ ds× dx)

Finally, we get

E exp
(

iz.S(2)
n (t)

)
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= exp





∫ t

T

∫

[0,C(s)]c
(eiz.x − 1)

∑

{k:T<tnk≤t}

P((tnk,Xnk) ∈ ds× dx)





−→ exp

[

∫ t

T

∫

[0,C(s)]c
(eiz.x − 1)µ(ds,dx)

]

= E exp
(

iz.S(2)(t)
)

.

Consequently, S
(2)
n (t)

d
→ S(2)(t) for t > T and we conclude that Sn ⇒ S on S.

The necessity of (i) and (ii) for the convergence (4.5) is easily checked and we
omit the proof. �

5. Subordination. Here we generalize the results of Section 4 assuming
that the time points of the generating B.p.p Nn are random. Theorems 6, 7 and
8 below are improved versions of Theorems 3, 4 and 5 in [7].

Let us consider a sequence of extremal processes Yn,

Yn(t) = Cn(t) ∨ {∨Xnk : Tnk ≤ t}

with lower curve Cn and generating B.p.p. Nn = {(Tnk,Xnk) : k ≥ 1}, defined
on the open set Sn = [0,Cn]c in Z, n ≥ 1, where

(a) the sequences {Tnk : k ≥ 1} and {Xnk : k ≥ 1} are independent for every
n ≥ 1 and defined on the same probability space;

(b) the random time points {Tnk : k ≥ 1} are strictly increasing to infinity, i.e.
0 ≤ Tn1 < Tn2 < . . . ;

(c) the state points {Xnk : k ≥ 1} are row-wise independent r.v.’s in [0,∞)d.

With Nn we associate the counting process

Nn(t) = max{k : Tnk ≤ t}

and the sum process

Sn(t) =

Nn(t)
∑

k=1

Xnk

In this section we ask for relationships between the asymptotic behaviour
of Nn,Yn and Sn for n→ ∞. To this end we impose our basic assumption: For
every n ≥ 1 there exists a deterministic counting function kn(t) and a random
time change θn(t) such that
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(BA) Nn(t) = kn(θn(t)) a.s. for all t > 0

Recall: A random time change θ : (0,∞) → (0,∞), θ(0) = 0 and θ(s) →
∞ as s → ∞, is stochastically continuous and has strictly increasing sample
paths.

Condition (b) implies Nn(t) < ∞ a.s. for each n and t. Thus, kn(t) is
finite and determines uniquely an associated sequence of deterministic distinct
time points 0 ≤ tn1 < tn2 < . . . such that kn(t) = max{k : tnk ≤ t}. Given both
counting process Nn and kn the random time change θn is uniquely determined
at tn1, tn2, . . . and can be defined piecewise linearly between them (see Pancheva
and Jordanova (2004b)). In our model kn(t) is not arbitrary, but just a counting
function that guarantees the convergence (4.4). Observe that kn(t) is not uniquely
determined by (4.4) and depends on the tails 1 − P(Xnk < x), x > C(t).

Definition 2. The point process N
(a)
n = {(tnk,Xnk) : k ≥ 1}, n ≥ 1

whose state components are the same as those of Nn and whose time components
are related to the time components of Nn by (BA), we term accompanying

point process.

Analogously we call the extremal process Y
(a)
n and the sum process S

(a)
n

generated by N
(a)
n accompanying extremal – and accompanying sum processes

to the corresponding processes Yn and Sn generated by Nn. We observe that

Sn(t) =
Nn(t)
∑

k=1

Xnk =
kn(θn(t))
∑

k=1

Xnk = S
(a)
n (θn(t)) and analogously Yn = Y

(a)
n ◦ θn.

Now, let C : [0,∞) → [0,∞)d be an increasing right-continuous curve
and put S = [0,C]c. From the previous Sections 2 and 4 we already know that
conditions (4.4), (LC), (AN) and (4.6) determine uniquely the relationship be-
tween the accompanying processes. The question is what additional condition we
need in order to claim the convergence of the new processes Nn,Yn and Sn.

Theorem 6. Let Nn = {(Tnk,Xnk) : k ≥ 1} be B.p.p on Sn satisfy-
ing conditions (a)–(c) whose counting processes obey the basic assumption (BA).
Suppose the random time changes θn are weakly convergent to a random time

change Λ. If the sequence of the accompanying p.p.’s N
(a)
n is vaguely convergent

on S to a simple in time Poisson p.p. N with mean measure µ, then the sequence
Nn is weakly convergent to a Cox p.p. Ñ with mean measure µ̃ defined on an
open subset S̃ ⊆ S and satisfying

µ̃(At,x) = Eµ([0,Λ(t)] × [0,x)c)
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for all points (t,x) such that At,x belongs to S̃.

Theorem 7. Let Yn be extremal processes on Sn generated by the point
processes Nn from Theorem 6, n ≥ 1. Suppose that conditions (AN), (LC) and
(4.4) hold. If θn converges weakly to a random time change Λ, then the sequence
Yn is weakly convergent to the composition Ỹ := Y ◦ Λ with df f̃ where Y is a
max-id extremal process and

f̃(t,x) = Ee−µ([0,Λ(t)]×[0,x)c).

Theorem 8. Let Sn be sum process on Sn generated be the point process
Nn from Theorem 6, n ≥ 1. Suppose

(i) Y
(a)
n ⇒ Y, a stochastically continuous extremal process with df f(t,x) =

e−µ(At,x), x > C(t), t ≥ 0;

(ii)
kn(t)
∑

k=1

E (XnkI{|Xnk| ≤ h}) → aT (t) +
∫ t

0

∫

{|x|≤h} xµ(ds,dx) < ∞ for t ≤ T ,

and h > 0;

(iii) θn ⇒ Λ, a random time change.

Then Sn ⇒ S̃ = S ◦Λ where S is a stochastically continuous sum process
with characteristic function ψ ∼ (aT , µ) and

ψ̃t(z) = Eeiz.S̃(t) = EψΛ(t)(z).

The proofs are direct consequences of our main results in Sections 2 and
4 and the continuity of composition theorem (cf Th. 13.2.3 in [11]).

6. Conclusions. Relationship between sum and extremal processes over
explosion area generated by a Poisson point process have been obtained. These
sum and extremal processes arise as a weak limits for normalized sums and max-
ima of independent random vectors. The limit processes can be used as approxi-
mations for real processes in insurance (total and extremal claim amounts) and
in operational risk modeling. The results are successfully applied for approximat-
ing aggregate and extremal operational losses in a forthcoming paper under the
assumption that the loss amounts Xk, k = 1, 2, 3, . . . follow Pareto distribution
Hk.
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