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In the paper, long-time behavior of solutions of autonomous two-component incom-
mensurate fractional dynamical systems with derivatives in the Caputo sense is investigated. It
is shown that both the characteristic times of the systems and the orders of fractional deriva-
tives play an important role for the instability conditions and system dynamics. For these
systems, stationary solutions can be unstable for wider range of parameters compared to ones
in the systems with integer order derivatives. As an example, the incommensurate fractional
FitzHugh-Nagumo model is considered. For this model, different kinds of limit cycles are ob-
tained by the method of computer simulation. A common picture of non-linear dynamics in
fractional dynamical systems with positive and negative feedbacks is presented.

MSC 2010: 26A33, 34D05, 37C25

Key Words: fractional dynamical system, linear stability analysis, limit cycles, frac-

tional FitzHugh-Nagumo model

1. Introduction and problem formulation

Autonomous non-linear systems of ordinary differential equations are im-
portant mathematical models of dynamical processes that are widely used in dif-
ferent areas like electrical engineering, electronics, and chemical and biological
kinetics to mention only few of them. Depending on an application, nonlinear-
ities in these models can be of different kind and range from polynomials and
rational functions in chemical and biochemical models to complex exponential
functions in electronics industry.

Even if nonlinear phenomena and mechanisms of their formation have
been extensive investigated within the last decades, their adequate mathematical
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theory is still not completed. In the recent publications (see e.g. [1, 4, 10, 12, 13,
21] and references therein), differential equations of fractional order have been
suggested for modelling of some systems and processes and in particular for
the so called anomalous phenomena in the complex systems. The main reason
for utility of the fractional dynamical systems in applications is that they can
adequately represent some long-memory and non-local effects that are typical
for many anomalous processes. During the last few years, fractional dynamical
systems and their applications have been discussed by many authors. We refer
the reader e.g. to the recent books [11], [15], [18] and to the references therein.

In applications, mathematical models in form of dynamical systems usu-
ally consist of many coupled material balance equations. Nevertheless, the two-
component non-linear systems with positive and negative feedbacks are very
important from the viewpoint of understanding of basic properties of non-linear
dynamics and the role of feedbacks (see e.g. [9]). In this paper, we deal with
the two-component incommensurate fractional dynamical systems:

7 Dou = f (u, A), (1)

where u(t) = (uy (t),uz (t))T, u1(t),us(t) being the variables with a positive
and a negative feedback, respectively, Dou = (d® uy /dt®, d*2uy /dt*2)” is the
incommensurate fractional differential operator, a1, as € (0, 2), f(u,A) =
(f1(u,u2, A), fa(ur, uz, A))" is a non-linear vector-function that depends on a
external parameter A, and the matrix 7 = diag(7m,T2) represents the charac-
teristic times of the system. The fractional derivatives of non-integer order «
(m—1<a<m, mée N) are understood in the Caputo sense:

o t
(D)) = (1) 2= F(ml_a) | =nmtal () an
If « =m, m € N, the Caputo fractional derivative coincides with the common
derivative of the order m. For the fractional dynamical system (1), an initial-
value problem will be considered. We note, that the number of initial conditions
depends on the orders of fractional derivatives: whereas for 0 < a; <1, 1 =1,2
one initial condition for w;, ¢ = 1,2 is posed, for 1 < a; < 2, ¢ = 1,2 two initial
conditions for u;, ¢ = 1,2 are required. In what follows, we restrict ourselves to
the case, when the ratio a1 /ay of orders of the fractional derivatives is a rational
number.

Let us note that models of type (1) provide a continuous transition
between systems of coupled oscillators (a1 = ag = 2) and algebraic systems
(a1 = ag = 0). Analysis of non-linear fractional dynamical systems with deriva-
tives of different orders is thus an important topic that can help both in un-
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derstanding of the role of derivative orders in system dynamics and open new
insights regarding classical non-linear problems.

2. Linear stability analysis for stationary points

When the ratio a;/ag of orders of the fractional derivatives in (1) is a
rational number, the two-component incommensurate system (1) can be trans-
formed under some reasonable constrains to a system of fractional differential
equations of the same order v (ay = py, as =71y, p,r € N):

T7¢- Déu® = F° (uf, A), (2)

T
e, e __ e e e e e —
where DEu® = (d'yun/dtv,...,d”ulp/dtW,d”Yqu/dtV,...,d7u2T/dt7> , u§y = ug,
T
= = - di % v %
ug; = ug, u® = (uu,...,ulp,,um,...,u%) , T¢ = diag (7'11,...,7'1}77,7'21,...,7'27,),

T
Fe(u®, A) = (u*jQ, ey U, f1(ufy, uby, A), uSs, ...,u%r,fg(u‘fl,ugl,A)) . This rep-
resentation is obtained my means of the semigroup property of the Caputo frac-
tional derivative that is valid under some suitable conditions on the solution
of the problem under consideration.

The representation (2) of the system (1) makes it possible to use re-
sults already obtained for commensurate fractional dynamical systems and to
demonstrate the influence of the relation between derivative orders on stability
properties of solutions to the incommensurate systems.

First let us recall some basic facts regarding the linear stability analy-
sis for the integer-order two-component systems (a3 = as = 1 in (1)). The
stationary solutions u = (41, u2) of the system (1) of differential equations are
obtained as solutions of the system of algebraic equations fi(ui,us, A) = 0,
fa(uy,uz, A) = 0. To analyze the stability of these steady-state solutions, let us
consider the linearization of the non-linear system. Expanding the right-hand
side of the system (1) in powers of small perturbations Au = (Auy, Aug) of a
steady-state solution 4 (Au; = uy — 41, Aug = ug — u2), we get the following
system of linear differential equations:

DyAu=J-Au (3)

with the Jacobi matrix

— ( all/Tl a12/7—1 >’ (4)

a1 /Ty a/T

where ajl = 8f1/8u1, a2 = af1/8UQ, as] = 8f2/aul, a2 — af2/8UQ and all
derivatives are evaluated at the fixed point @ = (@, u2). In some situations,
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stability (instability) of the steady-state solutions of the non-linear system (1)
follows from stability (instability) of trivial solutions of the system (3). To
judge the stability of the linear system, we have to analyze the eigenvalues of
the Jacobi matrix (4). They are determined by the characteristic equation

M —trJ - A+detJ =0 (5)

with the roots A1o = 1(trJ £ Vtr2J —4det J) (here trJ = ay1/m1 + as/m,
det J = aqy - age /7170 — ay2 - a1 /T172). If at least one eigenvalue has a positive
real part, i.e. if one of the conditions trJ < 0, det J < 0 or ¢rJ > 0 holds true,
then both the trivial solution of the linear system (3) and the corresponding
steady-state solution of the non-linear system (1) are unstable.

Let us now consider (1) with the fractional derivatives of the same order
a = a1 = ag # 1. In this case, a similar procedure can be applied to analyze
stability of the steady-state solutions. Because the Caputo derivative applied
to a constant function is identically equal to zero, the linearization of (1) for
small perturbations Au of a steady-state solution @ leads to the same linear
system (3). Stability of solutions to this system of linear fractional differential
equations is described by theorem of Matignon [14]:

Theorem 1. The linear autonomous system
Dyx = Az, z(0)=z9, 0<a<l1 (6)

with © = (x1(t),22(t), ..., 20 (t))T, A = ||aijllnxn, aij = const for Vi,j is
asymptotically stable if and only if the condition o < %]Arg()\m 1s satisfied for
all eigenvalues \; of the matrix A.

This system is stable if and only if the condition a < %\Arg()\m is satis-
fied for all eigenvalues \; of the matrix A and all critical eigenvalues that satisfy
the condition oo = 2|Arg(\;)| have geometric multiplicity of one.

To illustrate the theorem of Matignon, we note that the solution to the
initial-value problem (6) can be represented in the form

(t) = Eq(At)zo

with the Mittag-Leffler function of the matrix argument:

E,(M) = A R ——
(M) ];)F(ak—i— 1)

In the case of a diagonalizable matrix A, i.e. a matrix that can be represented
in the form A = Q~'BQ with a diagonal matrix B that contains eigenvalues
Xi, i=1,...,n of A on its diagonal, the Mittag-Leffler function E,(At) can be
easy evaluated:
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- (Q'BQY* _ $ (@B

E,(At) =
(4%) kz:% I(ak+1) = I(ak+1)

where By (t) is a diagonal matrix that contains the elements F,(\;t) on its
diagonal, A;, i = 1,...,n being the eigenvalues of the matrix A. The Matignon
theorem follows then from the well-known asymptotics of the Mittag-Leffler
function E,(\;t) in the complex plane (see e.g. [17]).

In fact, the Matignon theorem says, that for the linear stability analysis
of the fractional dynamical systems we have to take into account not just the
real parts of the eigenvalues as for the conventional dynamical systems but
the relationship between the imaginary and the real parts of eigenvalues, too.
For the system (3) in the case a1 = as = a (0 < a < 2) for every point
inside the parabola det J = tr?J/4 (Fig. 1(a)) there exists a marginal value of

ap = Z2[Arg(\i)| = 2 ‘Arctg (%";:\\Z)‘ defined by the formula

= Q_IBML(t)Qa

2 arctan \/4det J/tr2J — 1,  trJ >0,
Qg = 9 2 (7)
2 — Zarctan/4det J/tr2J — 1, trJ <0,

that determines the stability domain of the system (see [7]). In other words, the
order « of the fractional derivatives in the system (1) is an additional bifurcation
parameter that can change behavior of the system.

Another approach to linear stability analysis of the commensurate system
(1) is in employing the Laplace transform technique. The formula of the Laplace
transform of the Caputo fractional derivative is well-known (see e.g. [17, 21]):

~ n—1
(Dx)(s) := / e SN (D) (t) dt = sai(s)—z s@7F 1 04), n-1<a<n,
k=0

o)

0

where Z(s) denotes the Laplace transform of the function = at the point s.
Applying this formula to the linearized system (3) in the case 0 < o < 1 leads
to a system of linear equations in the frequency domain:

(Tlsa — CLH)A’[Ll(S) — algAag(S) = Tlso‘_lAul(O), (8)
—a91 AUy (8) + (TQSa — GQQ)A'&Q(S) = Tgsa_lAUQ(O). (9)
This system can be easily solved in explicit form:
71 (T25% — a22)s* *Aup (0) + m2a125% 1 Aus(0)
(T15% — a11)(T28% — agz) — a12az1

T1a215* L Aug (0) + 1o(115Y — a11)s* 1 Aus(0)

(T18% — a11)(T28% — ag2) — a12a21

Aﬂl(s) =

: (10)

Aﬁg(s) =

(11)
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Let us now consider the case of a being a rational number, ie. a = =, n <
m, n,m € N. The solution (10)-(11) can be then represented in the vector form
as follows:

-~ G - s@n=—m)/m o [y . g(n—m)/m

Awu(s) [T, (51m — ) ;

where G, H are certain constant vectors that are determined by the parameters
of the system and z; are zeros of the polynomial

(12)

P2n - (len — all)(ng" — agg) — a12a21. (13)

Conditions for stability (instability) of the trivial solution to the linearized sys-
tem (3) are in fact determined by the asymptotic behavior of the inverse Laplace
transform of (12) (see [8]):

Aulf) — 1 ct+ioo Gs(?n—m)/m+H8(n—m)/m
0= 55 | e T TR G-

The integral in (14) can be evaluated by considering an integral with the same
integrand along a modified Bromwich contour that is shown in Fig. 1(b). It can
be shown that this last integral vanishes along the circular arcs and along the
cut, so that the integral (14) is equal to the sum of residiums in the poles of
the integrand, i.e. in zeros of the polynomial (13) (for more details see e.g. [8]).
This means that stability (instability) of the trivial solution to the linearized
system (3) is determined by the roots of the polynomial (13) and can be again
formulated in form of the quadratic equation (5).

st
= — ds. 14
211 € as (14)

ImA

a<<a
stable

unstable

Xrg )

0 Re A
(a) (b)

Fig. 1: Marginal value ag — (a); modified Bromwich contour — (b)

In the case 1 < a < 2, applying the Laplace transform to the linearized system
leads to additional terms in the equations because of the second initial condi-
tions for the unknown functions. Nevertheless, analysis of the inverse Laplace
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transform shows that these additional terms do not lead to any additional con-
ditions for stability (instability) of the system and as before the instability is
determined by the roots of the polynomial (13). Thus, the Laplace transform ap-
proach leads to the same stability conditions for the linearized system (3) as the
ones given in the Matignon theorem, but in this case a geometric interpretation
of the stability conditions can be given.

Indeed, let us write down the imaginary and real parts of the complex
roots of the polynomial (13)

2
AT +anT _ . a22T1 — (1172 12021
Y= ——" " Fi-,|— _ - (15)
21T 21179 TIT2
and represent them in trigonometric form Y = |Y| (cos ¢ + isin ¢), where
a11022 — 12021
Y= \/ ) (16)
T172
ageT1 + a11Te : — (a2emi — anm)? — dnimaizan
cosp = , sinp = .
2y/mi2(a11a22 — ar2az1) 4y (ar1az — ai2a21)

Making the inverse substitution ¥ = s/ and applying the de Moivre formula,
we obtain the following relations

2 2
sl/n:‘y|1/"< cosMiisinM > 7 (17)
n n
2 2
s = |Y’m/n< cos m(go; k) + 7sin m(goi; k) ) (18)

with k=0,...,n—1.
For the instability of the system, at least one of the real parts of the
m-th degree of the polynomial roots (13) has to be greater than zero, i.e, the

condition

2k
cos mlp + 2km) >0 (19)

n

has to be fulfilled. The geometrical interpretation of condition (19) is that it
verifies if some roots of the n-th degree of radical of the complex radius-vector
raised to the m-th power are located in the right-hand side complex half-plane.

Now let us return to the two-component incommensurate fractional dy-
namical system (1) that can be represented in form (2) when the ratio a; /a9 of
orders of the fractional derivatives in (1) is a rational number. The characteris-
tic equation of the linearized system for (2) can be explicitly written down (see
[5]) in the form
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(NP 4+ ()R 4 ()P () 4 (1) det T =0, (20)
2 1

where a;; are defined as before. Analysis of the eigenvalue spectrum that is
determined by the equation (20) allows us to construct instability domains for all
stationary points of the system (see [5] for details). The form of the characteristic
equation shows that its roots distribution and thus the stability behavior of the
linearized system strongly depend both on orders of the fractional derivatives
and on their ratio. In general, solutions of the characteristic equation that is an
algebraic equation of the (p + r)-th degree cannot be obtained in explicit form.
Instead, we have to compute them numerically with a certain accuracy. Having
found these eigenvalues, stability condition from the Matignon theorem is given

by the inequality
T

2(p+r)

Finally, it should be noted that the results of linear stability analysis are valid
only locally. They describe the system’s behavior only in a small vicinity of a
stationary state. In the non-linear case, new branches of solutions can appear
because of bifurcations in the system. If the system parameters are close to
the critical values, the minimum set of variables (order parameters) can be de-
termined for these new branches and then used to express the type of system
dynamics in the normal form on the basis of the Lyapunov-Schmidt procedure.
In more complex cases, say, if the system parameters are far from the critical
values or an interaction between the branched solutions leads to repeated bi-
furcations, construction of the normal form becomes a very complex task. In
this case, numerical methods and computer simulations are practically the only
tools for study of these non-linear systems. In the next section, we use computer
simulations to analyze the behavior of solutions to a special class of fractional
dynamical systems.

— miin{|Arg()\i)]} > 0. (21)

3. Stability analysis and nonlinear dynamics of fractional
van der Pol-FitzHugh-Nagumo model

For practical applications of models formulated as dynamical systems
with fractional derivatives, their auto-oscillation behavior, i.e. undamped oscil-
lations raised by an external non-periodical source, are very important. Frac-
tional oscillators of this type have attracted considerable interest during last
years. Well-known examples are the fractional Lotka-Volterra model [2, 13], the
fractional van der Pol oscillator [19], the fractional-order Chuas, Chen, Lorenz,
and Lu systems [16, 20|, the fractional Brusselator oscillator [6], etc. From the
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viewpoint of the qualitative theory of dynamical systems, auto-oscillations are
special attractors in the phase space. Periodic auto-oscillations correspond to a
simple attractor, a so called limit cycle. In is well-known that in the 2nd order
dynamical systems with integer derivatives no strange attractors exist and non-
trivial attractors can be always represented as some closed paths in the phase
space. For the two-component dynamical systems with fractional derivatives of
different orders, the situation with attractors is qualitatively different.

To illustrate qualitative behavior of solutions to the fractional dynamical
systems, we consider in this section the nonlinear fractional model (1) with the
nonlinear source term

fi(u, A) = uy — u:f/?) — Uy (22)
for the activator variable and with the linear source term
fo(u, A) = —ug + Pu; + A (23)

for the inhibitor one (see [3, 9]). This model was proposed for the first time
by R. FitzHugh (see e.g. [9]) as a generalization of the classical van der Pol
equations. During the last decades, several nonlinear phenomena in physics,
chemistry, and biology were explained on the basis of dynamical systems with
nonlinearities of this type [3, 9].

In this section, we show that dynamics of the fractional dynamical sys-
tem (1) with sources (22), (23) and different orders of fractional derivatives is
qualitative different compared to one of the system with integer-order deriva-
tives. The fixed points of this model correspond to the null-cline intersections
(Fig. 2(a)) and can be determined as solutions to the cubic algebraic equation

(B—1Du +a3/3+A=0 (24)

as functions of the external parameter A. Equation (20) with the coefficients
aj1 = (1—a2), a2 = —1, az; = 3, aze = —1, equation (24), and the inequality
(21) for the linearized system define the instability conditions for the null-cline
intersection points (see [7]). In other words, solution of these algebraic systems
allows us to obtain the eigenvalues of the linearized system for all fixed points
and for arbitrary orders of the fractional derivatives.

In the simplest case a1 = 2a0 = «, 0 < @ < 1, the characteristic equation
(20) takes the form A3 + A2 /75 — A(1 — @?)/7 — det J = 0 and can be solved in
explicit form by the Cardano formulas. In the general case, the instability con-
ditions for the fractional van der Pol-FitzHugh-Nagumo model are determined
by means of computer simulations.
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Fig. 2: Null-clines of the system (1) with sources (22), (23) — (a); Imaginary
(gray) and real (black) parts of eigenvalues as functions of u; for oy = ag — (b)
and for a1 = 2ay — (¢). The parameters for the left column pictures are
71=0.1,17 =1, A=0.5, 8 =2. Instability domains for different ratios
between aq, g a1 > ag - (d), a1 = ag - (e), a1 < ag - (f). The results of
computer simulations for § = 2.0 and a1=1.5, as=1.25 — 1(d); a1 =1.75,
as=1.5 - 2(d); a1=1.75, ap=1.25 — 3(d); a1=1.75, ax=1.0 — 4(d);
a1=a9=1.0 — 1(e); a1=a=1.25 — 2(e); ay=ce= 1.5 — 3(e); ay=ca= 1.75 —
4(e); a1=1.25, ag=1.5 — 1(f); a1=1.0, ae=1.75 -2(f); a1=1.5, ae=1.75 —
3(f); an=1.25, as=1.75 — 4(f)
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Fig. 3: Examples of the oscillations (left column) and the corresponding phase
portraits (right column) for different values of fractional derivatives. Dynamics
of variables u; (black lines) and wug (grey lines) for: a3=0.5, as=1, f =2,
71=02517=1 A=0.8 - (a); a;=1.5, ax=0.75, 6 =2, 71 = 0.1, » = 1,
A=-1.1-(b); an=1.5, a=0.75, 5 =2, 71 =0.1, » =1, A = —1.145 - (c);
a1=0.8, as=0.4, =2, 71 =0.1, =1, A= —0.39 - (d); a1=1.8, ap=1.8,
B=2,11=011=1A4A=0-(e)
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Typical results of computer simulations of the eigenvalue spectrum and
instability domains for different ratios between the orders of the fractional
derivatives are presented in Fig. 2. Plots from Fig. 2(b) and 2(c) demonstrate
that the spectrum of eigenvalues significantly depends on the ratio between the
orders of the fractional derivatives. For a fractional dynamical system, the con-
ditions for instability are strongly connected to the relationship between the real
and the imaginary parts of the eigenvalues. Some typical examples of instability
domains for the fractional dynamical system (1) with different orders of frac-
tional derivatives are presented in Fig. 2(d)-(f). The curve on the middle plot
that corresponds to the case ay = ao = 1 represents instability domain for the
standard van der Pol-FitzHugh-Nagumo system. For all fractional derivatives
orders a = (aj,2) that are located in the region between the corresponding
curve and the horizontal axis, the system (1) with sources (22), (23) is unstable.
It is stable outside this region. As we see, both for ay > as and for a1 < «g, the
system can be unstable within a wide range of the governing parameters (Fig.

2(d),(f))-

It should be noted that the spectrum of the linearized problem is the
same for a fixed ratio between the orders of the fractional derivatives. It there-
fore coincides with the spectrum of a system with the same non-linearities and
integer-order derivatives of a higher order. Therefore, the time-evolution of a
two-component fractional dynamical system can indicate behavior of dynami-
cal systems with integer-order derivatives of higher order. In contrast to the
integer-order dynamical systems, conditions of instability in fractional dynami-
cal systems are realized in a qualitatively different manner and depend not only
on the orders of the fractional derivatives but on the ratio between them, too.
As a consequence, repeated bifurcations in these systems can occur under condi-
tions that depend on the orders of fractional derivatives both in the case a; > o
and for a; < ag. In addition, the ”velocities” of the variables in the phase space
are also different from the ones in the integer-order systems. As a result, we
can expect that dynamics of the fractional order systems should be qualitatively
different from and richer compared to one of the integer-order systems. Some
results of numerical simulations for the fractional van der Pol-FitzHugh-Nahumo
model are presented in Fig. 3.

To plot the pictures, the fractional van der Pol-FitzHugh-Nahumo sys-
tem with the corresponding initial conditions was integrated numerically using
numerical schemes on the basis of the Griinwald-Letnikov definition of the frac-
tional derivative. As we can see, even in the case of a simple fractional dynamical
model, a rich scope of different oscillations for different orders of the fractional
derivatives is present. For many applications, dependence of the phase portrait
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of a dynamical system on the system parameters is an important topic. Of
particular interest are the values of the parameters where the phase portrait
changes qualitatively. For the incommensurate fractional dynamical systems
there are two additional parameters that can influence long-time behavior of
the system: the orders of the fractional derivatives and the ratio between them.
Changing these parameters, we can modify system dynamics and observe both
simple limit cycles, limit cycles with intersections, and limit cycles that look like
strange attractors (see Fig. 3(c)). Let us finally note, that strange attractors
cannot appear in the 2nd order dynamical systems with integer derivatives and
thus are a new feature of two-component fractional order dynamical systems.
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