Mathematica Balkanica

Exact Solutions of Nonlocal Pluriparabolic Problems

Georgi Chobanov ${ }^{1}$, Ivan Dimovski ${ }^{2}$

Presented at $6^{\text {th }}$ International Conference "TMSF' 2011"

A generalization of the classical Duhamel principle for the pluriparabolic equation

$$
\frac{\partial u}{\partial t_{1}}+\cdots+\frac{\partial u}{\partial t_{n}}=\frac{\partial^{2} u}{\partial x^{2}}+F\left(x, t_{1}, \ldots, t_{n}\right) \quad \text { in } \quad 0 \leq x \leq a, 0 \leq t_{k} \leq T_{k}
$$

with time-nonlocal initial value conditions of the form

$$
\chi_{k, \tau}\left\{u\left(x, t_{1}, \ldots, t_{k-1}, \tau, t_{k+1}, \ldots, t_{n}\right)\right\}=f_{k}\left(x, t_{1}, \ldots, t_{k-1}, t_{k+1}, \ldots, t_{n}\right)
$$

with linear functionals χ_{k} on $C\left[0, T_{k}\right](k=1, \ldots, n)$, a space-local boundary value condition of the form

$$
u\left(0, t_{1}, \ldots, t_{n}\right)=\psi\left(t_{1}, \ldots, t_{n}\right)
$$

and a space-nonlocal boundary value condition of the form

$$
\Phi_{\xi}\left\{u\left(\xi, t_{1}, \ldots, t_{n}\right)\right\}=\phi\left(t_{1}, \ldots, t_{n}\right)
$$

with a linear functional Φ on $C^{1}[0, a]$ is proposed. To this end two non-classical convolutions $\phi^{t_{1} \ldots t_{n}} \psi$ and $F^{x t_{1} \ldots t_{n}} G$ are used: the first one for functions of t_{1}, \ldots, t_{n} only and the second - for functions of x, t_{1}, \ldots, t_{n}. The corresponding Duhamel representation takes the following form: If $\Omega\left(x, t_{1}, \ldots, t_{n}\right)$ is a solution for the boundary value problem for the special choice $F \equiv 0, f_{k} \equiv 0, \psi \equiv 0$ and $\phi \equiv 1$, then for $\psi \equiv 0, f_{k} \equiv 0, k=1, \ldots, n$ (under some additional assumptions for smoothness of the boundary function ϕ and the function F)

$$
u\left(x, t_{1}, \ldots, t_{n}\right)=\frac{\partial^{n}}{\partial t_{1} \ldots \partial t_{n}}\left(\Omega_{*}^{t_{1} \ldots t_{n}} \phi\right)+\frac{\partial^{n}}{\partial t_{1} \ldots \partial t_{n}}\left(\Omega^{x t_{1} \ldots t_{n}} F\right) .
$$

MSC 2010: 44A35, 44A40
Key Words: operational calculus, nonlocal boundary conditions, pluriparabolic equations

1. Introduction

In the present paper it is proposed a generalization of the classical Duhamel principle for the pluriparabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t_{1}}+\cdots+\frac{\partial u}{\partial t_{n}}=\frac{\partial^{2} u}{\partial x^{2}}+F\left(x, t_{1}, \ldots, t_{n}\right) \quad \text { in } \quad 0 \leq x \leq a, 0 \leq t_{k} \leq T_{k} \tag{1}
\end{equation*}
$$

with local and nonlocal boundary value conditions (BVCs) of the form: nonlocal initial conditions

$$
\begin{equation*}
\chi_{k, \tau}\left\{u\left(x, t_{1}, \ldots, t_{k-1}, \tau, t_{k+1}, \ldots, t_{n}\right)\right\}=f_{k}\left(x, t_{1}, \ldots, t_{k-1}, t_{k+1}, \ldots, t_{n}\right) \tag{2}
\end{equation*}
$$

($k=1, \ldots, n$), and local and nonlocal boundary conditions

$$
\begin{equation*}
u\left(0, t_{1}, \ldots, t_{n}\right)=\psi\left(t_{1}, \ldots, t_{n}\right), \quad \Phi_{\xi}\left\{u\left(\xi, t_{1}, \ldots, t_{n}\right)\right\}=\phi\left(t_{1}, \ldots, t_{n}\right) . \tag{3}
\end{equation*}
$$

Here $\chi_{k}, k=1, \ldots, n$ are linear functionals on $C\left[0, T_{k}\right]$ and Φ is a linear functional on $C^{1}[0, a]$.

Such problems for a pluriparabolic equation with energy functional of the form

$$
\begin{equation*}
\Phi_{\xi}\left\{u\left(\xi, t_{1}, \ldots, t_{n}\right)\right\}=\int_{0}^{a} u\left(\xi, t_{1}, \ldots, t_{n}\right) d \xi \tag{4}
\end{equation*}
$$

are considered by J.R. Cannon [3], A. Bouziani [2], S. Mesloub [9].

2. Convolutions

Our basic tool for obtaining explicit solutions of the problem considered are some multidimensional non-classical convolutions. Their construction begins with the simplest one-dimensional case (Dimovski [5]).

Consider the elementary one-dimensional BVP in $C\left[0, T_{k}\right]$

$$
\begin{equation*}
y^{\prime}-\mu y=f(t), \quad \chi_{k}\{y\}=0 . \tag{5}
\end{equation*}
$$

For the sake of some technical simplifications we assume that the constant function $\{1\}$ does not belong to the kernel of the functional $\chi_{k}, k=1, \ldots, n$, i.e. $\chi_{k}\{1\} \neq 0$. Then without any loss of generality we can assume $\chi_{k}\{1\}=1$. Its solution is

$$
\begin{equation*}
y=r_{k}(f, \mu)\left(t_{k}\right)=\int_{0}^{t_{k}} e^{\mu\left(t_{k}-\sigma\right)} f(\sigma) d \sigma-\chi_{k}\left\{\int_{0}^{\sigma} e^{\mu(\tau-\sigma)} f(\xi) d \xi d \sigma\right\} \frac{e^{\mu t_{k}}}{G_{k}(\mu)}, \tag{6}
\end{equation*}
$$

where $G_{k}(\mu)=\chi_{k, \tau}\left\{e^{\mu \tau}\right\}$ is the exponential indicatrix of the functional χ_{k}. Our assumption $\chi_{k}\{1\} \neq 0$ is equivalent to $G_{k}(0) \neq 0$, i.e. $\mu=0$ is not an eigenvalue of BVP (5). Then instead of (6) we may consider the special case

$$
\begin{equation*}
r_{k}(f, 0)=l_{k} f=\int_{0}^{t_{k}} f(\sigma) d \sigma-\chi_{k}\left(\int_{0}^{\sigma} f(\xi) d \xi d \sigma\right) \tag{7}
\end{equation*}
$$

which defines a right inverse operator l_{k} of $\frac{d}{d t_{k}}$ on the space $C\left[0, T_{k}\right]$ satisfying the following identity

$$
\begin{equation*}
l_{k} f^{\prime}\left(t_{k}\right)=f\left(t_{k}\right)-\chi_{k, \tau} f(\tau) \tag{8}
\end{equation*}
$$

Theorem 1. (Dimovski [5]) The operation

$$
\begin{equation*}
\left(f_{*}^{t_{k}} g\right)\left(t_{k}\right)=\chi_{k, \tau}\left(\int_{\tau}^{t_{k}} f\left(t_{k}+\tau-\sigma\right) g(\sigma) d \sigma\right) \tag{9}
\end{equation*}
$$

where the subscript τ means that χ_{k} acts on the variable τ only, is a commutative and associative in $C\left[0, T_{k}\right]$ such that

$$
\begin{equation*}
l_{k} f\left(t_{k}\right)=\{1\} \stackrel{t_{k}}{*} f\left(t_{k}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{k}(f, \mu)\left(t_{k}\right)=\left\{\frac{e^{\mu t_{k}}}{G_{k}(\mu)}\right\} \stackrel{t_{k}}{*} f\left(t_{k}\right) . \tag{11}
\end{equation*}
$$

Next we need an one-dimensional convolution, connected with $\frac{d^{2}}{d x^{2}}$ in $C^{1}[0, a]$. Consider the elementary BVP

$$
\begin{equation*}
y^{\prime \prime}+\lambda^{2} y=f(x), \quad y(0)=0, \quad \Phi\{y\}=0 \tag{12}
\end{equation*}
$$

with a non-zero linear functional Φ on $C^{1}[0, a]$. In order it to have a solution, it is necessary to assume $\Phi_{\xi}\{\xi\} \neq 0$. Again, without essential loss of generality, one can assume $\Phi_{\xi}\{\xi\}=1$. The solution is
$y=R_{-\lambda^{2}} f(x)=\frac{1}{\lambda} \int_{0}^{x} \sin \lambda(x-\xi) f(\xi) d \xi-\Phi_{\xi}\left\{\frac{1}{\lambda} \int_{0}^{x} \sin \lambda(a-\xi) f(\xi) d \xi\right\} \frac{\sin \lambda x}{\lambda E(\lambda)}$,
where $E(\lambda)=\Phi_{\xi}\left\{\frac{\sin \lambda \xi}{\lambda}\right\}$ is the sine-indicatrix of the functional Φ. For a simplification of the next consideration it is useful to assume that $\lambda=0$ is not
an eigenvalue of (12). Since $E(0)=\Phi_{\xi}\{\xi\}$ by the above assumptions we have $E(0)=1$. Now

$$
\begin{equation*}
R_{0} f(x)=L f(x)=\int_{0}^{x}(x-\xi) f(\xi) d \xi-x \Phi_{\xi}\left\{\int_{0}^{\xi}(\xi-\eta) f(\eta) d \eta\right\} \tag{14}
\end{equation*}
$$

defines a right inverse operator L of $\frac{d^{2}}{d x^{2}}$ on the space $C[0, a]$ satisfying the identity

$$
\begin{equation*}
L f^{\prime \prime}(x)=f(x)+[x \Phi(1)-1] f(0)-x \Phi_{\xi}[f(\xi)] \tag{15}
\end{equation*}
$$

Theorem 2. (Dimovski [5]) The operation

$$
\begin{align*}
& (f \stackrel{x}{*} g)(x)= \\
& -\frac{1}{2} \widetilde{\Phi}_{\xi}\left[\int_{x}^{\xi} f(\xi+x-\eta) g(\eta) d \eta-\int_{-x}^{\xi} f(|\xi-x-\eta|) g(|\eta|) \operatorname{sgn}(\xi-x-\eta) \eta d \eta\right] \tag{16}
\end{align*}
$$

where $\widetilde{\Phi}_{\xi}=\Phi_{\xi} \circ \int_{0}^{\xi}$, is commutative and associative in $C[0, a]$ such that

$$
\begin{equation*}
L f(x)=\{x\} \stackrel{x}{*} f(x) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{-\lambda^{2}} f(x)=\left\{\frac{\sin \lambda x}{\lambda E(\lambda)}\right\} \stackrel{x}{*} f(x) \tag{18}
\end{equation*}
$$

Next the following multidimensional generalizations of the Duhamel convolution are given.

Theorem 3. The operation

$$
\begin{align*}
& \quad\left(\phi^{t_{1} \ldots t_{n}} *\right)\left(t_{1}, \ldots, t_{n}\right)= \\
& \chi_{n, \tau_{n}} \ldots \chi_{1, \tau_{1}}\left[\int_{\tau_{n}}^{t_{n}} \ldots \int_{\tau_{1}}^{t_{1}} \phi\left(t_{1}+\tau_{1}-\sigma_{1}, \ldots, t_{n}+\tau_{n}-\sigma_{n}\right) \psi\left(\sigma_{1}, \ldots, \sigma_{n}\right) d \sigma_{1} \ldots d \sigma_{n}\right] \tag{19}
\end{align*}
$$

for $\phi, \psi \in C\left(\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$ is bilinear, commutative and associative and

$$
\begin{equation*}
l_{1} \ldots l_{n} \phi=\{1\}^{t_{1} \ldots t_{n}} \phi \tag{20}
\end{equation*}
$$

Using definition (19) of the operation $\phi^{t_{1} \ldots t_{n}} \psi$ on $C\left(\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$, we
define a $(n+1)$-dimensional convolution in $C\left([0, a] \times\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$.
Definition 1. For $F, G \in C\left([0, a] \times\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$, let

$$
\begin{align*}
& \left(F^{x t_{1} \ldots t_{n}} \nLeftarrow\right)\left(x, t_{1}, \ldots, t_{n}\right) \\
& \quad=-\frac{1}{2} \widetilde{\Phi_{\xi}}\left[\int_{x}^{\xi} F\left(\xi+x-\eta, t_{1}, \ldots, t_{n}\right)^{t_{1} \ldots t_{n}} G\left(\eta, t_{1}, \ldots, t_{n}\right) d \eta\right. \\
& \left.\quad-\int_{-x}^{\xi} F\left(|\xi-x-\eta|, t_{1}, \ldots, t_{n}\right)^{t_{1} \ldots t_{n}} G\left(|\eta|, t_{1}, \ldots, t_{n}\right) \operatorname{sgn}(\xi-x-\eta) \eta d \eta\right] . \tag{21}
\end{align*}
$$

Theorem 4. The operation defined by (21) is bilinear, commutative and associative in $C\left([0, a] \times\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$ such that

$$
\begin{equation*}
L l_{1} \ldots l_{n} f=\{x\}^{x t_{1} \ldots t_{n}} f \tag{22}
\end{equation*}
$$

Sketch of the proof. The proof of both Theorems 1 and 2 goes along the same line. First, we verify the assertions for products

$$
\phi\left(t_{1}, \ldots, t_{n}\right)=\phi_{1}\left(t_{1}\right) \ldots \phi_{n}\left(t_{n}\right) \quad \psi\left(t_{1}, \ldots, t_{n}\right)=\psi_{1}\left(t_{1}\right) \ldots \psi_{n}\left(t_{n}\right)
$$

or
$F\left(x, t_{1}, \ldots, t_{n}\right)=f(x) \phi_{1}\left(t_{1}\right) \ldots \phi_{n}\left(t_{n}\right) \quad G\left(x, t_{1}, \ldots, t_{n}\right)=g(x) \psi_{1}\left(t_{1}\right) \ldots \psi_{n}\left(t_{n}\right)$
and reduce them to the one dimensional assertions. Next we approximate the arbitrary functions ϕ, ψ and F, G by products, e.g. by polynomials.

The following analogues of the identities (8) and (15) hold for functions $u \in C\left([0, a] \times\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right):$

$$
\begin{equation*}
l_{k} u_{t_{k}}\left(x, t_{1}, \ldots, t_{n}\right)=u\left(x, t_{1}, \ldots, t_{n}\right)-\chi_{k, \tau_{k}}\left[u\left(x, t_{1}, \ldots, \tau_{k}, \ldots, t_{n}\right)\right] \tag{23}
\end{equation*}
$$

$(k=1, \ldots, n)$ and

$$
\begin{align*}
& L u_{x x}\left(x, t_{1}, \ldots, t_{n}\right) \\
& \quad=u\left(x, t_{1}, \ldots, t_{n}\right)+[x \Phi(1)-1] u\left(0, t_{1}, \ldots, t_{n}\right)-x \Phi_{\xi}\left[u\left(\xi, t_{1}, \ldots, t_{n}\right)\right] \tag{24}
\end{align*}
$$

3. Rings of multipliers of convolution algebras

In what follows, let $C=C\left([0, a] \times\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$ and let $(C, *)$ be the respective convolution algebra. We follow a standard procedure for constructing of an operational calculus for BVP (1) - (3) based on convolution (21) and its multipliers as outlined in Dimovski [5].

Let us remind the notion of multiplier of the algebra $(C, *)$ (Larsen, [7]). An operator $M: C \rightarrow C$ is said to be a multiplier of the convolution algebra $(C, *)$, iff the relation

$$
M(f * g)=(M f) * g
$$

holds for arbitrary $f, g \in C$.
The multipliers of $(C, *)$ form a commutative ring \mathfrak{M} without annihilators with respect to the usual multiplication of operators. Let \mathfrak{N} be the multiplicative set of the non-divisors of 0 of the ring \mathfrak{M}. \mathfrak{N} evidently is nonempty since at least the identity operator and the multiplier convolution operator $L=\{x\} *$ are nondivisors of 0 . Another examples are the operators l_{k}.

Consider the formal fractions A / B where $A \in \mathfrak{M}, B \in \mathfrak{N}$.
Definition 2. The ring $\mathcal{M}=\mathfrak{N}^{-1} \mathfrak{M}$ of the multiplier fractions is the quotient of the ring $\mathfrak{M} \times \mathfrak{N}$ with respect to the equivalence relation

$$
(A, B) \sim(C, D) \Leftrightarrow A D=B C
$$

i.e. $\mathcal{M}=\mathfrak{M} \times \mathfrak{N} / \sim$.

Theorem 5. The ring \mathcal{M} of the multiplier fractions contains subrings isomorphic to: a) $\left.\mathbb{R}, b)(C[0, a], \stackrel{x}{*}), c)\left(C\left[0, T_{k}\right] \stackrel{t_{k}}{*}\right), d\right)(C, *)$.

Proof. a) The correspondence $\alpha \longmapsto \frac{\alpha L}{L}, \alpha \in \mathbb{R}$ is an embedding $\mathbb{R} \hookrightarrow \mathcal{M} ;$
b) The correspondence $f \longmapsto \frac{(L f)_{*}^{*}}{L}$ is an embedding $(C[0, a], \stackrel{x}{*}) \hookrightarrow \mathcal{M}$;
c) The correspondence $\varphi \longmapsto \frac{\left(l_{k} \varphi\right)^{t_{k}}}{l_{k}}$ is an embedding $\left(C\left[0, T_{k}\right], \stackrel{t_{k}}{*}\right) \hookrightarrow$ $\mathcal{M} ;$
d) The correspondence $u \longmapsto \frac{\{u\} *}{I}$ where I is the identity operator of C is an embedding $(C, *) \hookrightarrow \mathcal{M}$.

The verification is immediate. Let us prove for example b). Let $f, g \in$ $C[0, a]$. We are to prove that

$$
f \stackrel{x}{*} g \longmapsto \frac{(L f) \stackrel{x}{*}}{L} \cdot \frac{(L g) \stackrel{x}{*}}{L}
$$

Indeed,

$$
\begin{gathered}
f \stackrel{x}{*} g \longmapsto \frac{\left\{L\left(f^{*} * g\right)\right\} *}{L}=\frac{L[\{L(f \stackrel{x}{*} g)\} *]}{L^{2}}=\frac{\{(L f) \stackrel{x}{*}(L g)\}_{*}^{x}}{L^{2}} \\
=\left[\frac{(L f)_{*}^{*}}{L}\right]\left[\frac{(L g)_{*}^{x}}{L}\right] .
\end{gathered}
$$

Here we make use of the convolution property

$$
L(f \stackrel{x}{*} g)=(L f) \stackrel{x}{*} g=f \stackrel{x}{*}(L g)
$$

For every $\phi \in C\left(\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$ the partial convolution (19) defines a multiplier acting on $F \in C$ as follows

$$
\begin{equation*}
\phi^{t_{1} \ldots t_{n}} F . \tag{25}
\end{equation*}
$$

The corresponding equivalence class in \mathcal{M} is called constant with respect to x and is denoted by

$$
\begin{equation*}
[\phi]_{x} \tag{26}
\end{equation*}
$$

Similarly, let $f \in C\left([0, a] \times\left[0, T_{1}\right] \times \cdots \times\left[0, T_{k-1}\right] \times\left[0, T_{k+1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$. The partial convolution operator

$$
\begin{equation*}
f \stackrel{x t_{1} \ldots t_{k-1} t_{k+1} \ldots t_{n}}{*} \tag{27}
\end{equation*}
$$

defines a multiplier in an obvious manner. Its class is called constant with respect to t_{k} and is denoted by

$$
\begin{equation*}
[f]_{t_{k}} \tag{28}
\end{equation*}
$$

4. Algebraization of the BVP (1)-(3)

Crucial for the algebraization of the problem are the reciprocal elements to L and l_{1}, \ldots, l_{n} in \mathcal{M}. Let they be denoted by S, s_{1}, \ldots, s_{n}, respectively. Now

$$
\begin{equation*}
S\{x\}=S L=1, \quad s_{k} l_{k}=1 \quad(k=1, \ldots, n) \tag{29}
\end{equation*}
$$

where 1 denotes the unit of the algebra \mathcal{M}. For a function $u=u\left(x, t_{1}, \ldots, t_{n}\right)$ this together with (23) and (24) gives

$$
\begin{equation*}
u_{t_{k}}=s_{k} u-\left[\chi_{k, \tau}\left\{u\left(x, t_{1}, \ldots, \tau \ldots, t_{n}\right)\right\}\right]_{t_{k}} \quad(k=1, \ldots, n) \tag{30}
\end{equation*}
$$

and the last term is a constant with respect to the variable t_{k}. Similarly,

$$
\begin{equation*}
u_{x x}=S u+(x \Phi(1)-1) u\left(0, t_{1}, \ldots, t_{n}\right)+\left[\phi\left(t_{1}, \ldots, t_{n}\right)\right]_{x} \tag{31}
\end{equation*}
$$

and the last term is a constant with respect to the variable x. Suppose $u=$ $u\left(x, t_{1}, \ldots, t_{n}\right)$ is a solution to the boundary value problem (1)-(3). Then (30) and (31) reduce the BVP (1)-(3) to a simple linear algebraic equation for the function u :

$$
\begin{align*}
&\left(s_{1}+\cdots+s_{n}-S\right) u=(x \Phi(1)-1) \psi\left(t_{1}, \ldots, t_{n}\right)+\left[\phi\left(t_{1}, \ldots, t_{n}\right)\right]_{x} \\
&+\sum_{k=1}^{n}\left[f_{k}\left(x, t_{1}, \ldots, t_{k-1}, t_{k+1}, \ldots, t_{n}\right)\right]_{t_{k}}+\left\{F\left(x, t_{1}, \ldots, t_{n}\right)\right\} \tag{32}
\end{align*}
$$

Definition 3. A function $u \in C\left([0, a] \times\left[0, T_{1}\right] \times \cdots \times\left[0, T_{n}\right]\right)$ is a weak solution to BVP (1)-(3) if it satisfies (32).

In order to reveal the basic ideas, we restrict BVP (1)-(3) to the case

$$
\begin{equation*}
\chi_{k, \tau}\left\{u\left(x, t_{1}, \ldots, t_{k-1}, \tau, t_{k+1}, \ldots, t_{n}\right)\right\}=0, \quad k=1, \ldots, n \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
u\left(0, t_{1}, \ldots, t_{n}\right)=0, \quad \Phi_{\xi}\left\{u\left(\xi, t_{1}, \ldots, t_{n}\right)\right\}=\phi\left(t_{1}, \ldots, t_{n}\right) \tag{34}
\end{equation*}
$$

Suppose $s_{1}+\cdots+s_{n}-S=\Sigma$ is a non-divisor of zero. Then $\frac{1}{\Sigma}$ is well defined. If u is a weak solution of BVP $(1),(33)$ and (34) then formally we obtain

$$
\begin{equation*}
u=\frac{1}{\Sigma}\left[\phi\left(t_{1}, \ldots, t_{n}\right)\right]_{x}+\frac{1}{\Sigma}\left\{F\left(x, t_{1}, \ldots, t_{n}\right)\right\} \tag{35}
\end{equation*}
$$

In order to interpret (35) as a function, we need some algebraic manipulations: $u=\left(s_{1} \ldots s_{n}\right) \frac{1}{\left(s_{1} \ldots s_{n}\right) \Sigma}\left[\phi\left(t_{1}, \ldots, t_{n}\right)\right]_{x}+\left(s_{1} \ldots s_{n}\right) \frac{1}{\left(s_{1} \ldots s_{n}\right) \Sigma}\left\{F\left(x, t_{1}, \ldots, t_{n}\right)\right\}$.

Assuming that $\frac{1}{\left(s_{1} \ldots s_{n}\right) \Sigma}$ can be interpreted as a continuous function $\Omega\left(x, t_{1}, \ldots, t_{n}\right)$ then it can be considered as a weak solution of the homogeneous problem with $\phi \equiv 1$. Indeed, the product $l_{1} \ldots l_{n}$ can be interpreted as the numerical multiplier $[1]_{x}$, i.e.

$$
l_{1} \ldots l_{n}=\{1\}^{t_{1} \ldots t_{n}} .
$$

Hence

$$
\begin{equation*}
\Omega\left(x, t_{1}, \ldots, t_{n}\right)=\left(s_{1} \ldots s_{n}\right) \frac{1}{\left(s_{1} \ldots s_{n}\right) \Sigma} l_{1} \ldots l_{n} \tag{37}
\end{equation*}
$$

Now we can formulate the following conditional theorem of existence (a generalization of Duhamel principle).

Theorem 6. If $B V P(1),(33)$ and (34) has a weak solution Ω for $F \equiv 0$, $\phi \equiv 1$, then

$$
\begin{equation*}
\Omega\left(x, t_{1}, \ldots, t_{n}\right)=\frac{1}{\left(s_{1} \ldots s_{n}\right) \Sigma} \tag{38}
\end{equation*}
$$

and the BVP (1),(33) and (34) with "arbitrary" F and ϕ also has a weak solution of the form

$$
\begin{equation*}
u\left(x, t_{1}, \ldots, t_{n}\right)=\frac{\partial^{n}}{\partial t_{1} \ldots \partial t_{n}}\left(\Omega^{t_{1} \ldots t_{n}} \phi\right)+\frac{\partial^{n}}{\partial t_{1} \ldots \partial t_{n}}\left(\Omega^{x t_{1} \ldots t_{n}} F\right), \tag{39}
\end{equation*}
$$

provided F and ϕ have continuous partial derivatives

$$
\frac{\partial^{n} F}{\partial t_{1} \ldots \partial t_{n}} \quad \text { and } \quad \frac{\partial^{n} \phi}{\partial t_{1} \ldots \partial t_{n}} .
$$

The proof requires some differentiation properties of the convolutions involved, but here we will not enter into details.

5. Uniqueness of the solution for BVP (1)-(3).

Theorem 6 is a conditional theorem of existence of solution of BVP (1)(3). As for the uniqueness problem we can state a more definite assertion. To this end, we study the uniqueness for BVP (1)-(3) by means of the spectral properties of the one-dimensional problems that compose it, taking advantage from the fact that these problems are better studied. The eigenvalues $\mu_{m}^{(k)}(k=1, \ldots, n$; $m=1, \ldots, \infty)$ for (5) are the zeros of the indicatrices $G_{k}(\mu)=\chi_{k, \tau}\left\{e^{\mu \tau}\right\}$. The projections on the respective eigenspaces are

$$
\begin{equation*}
p_{k, \mu_{m}^{(k)}}(\phi)=-\frac{1}{2 \pi i} \int_{\Gamma_{\mu_{m}^{(k)}}} r_{k}(\phi, \mu) d \mu=-\left\{\frac{1}{2 i \pi} \int_{\Gamma_{\mu_{m}^{(k)}}} \frac{e^{\mu t_{k}} d \mu}{G_{k}(\mu)}\right\} \stackrel{t_{k}}{*} \phi, \tag{40}
\end{equation*}
$$

where $\Gamma_{\mu_{m}^{(k)}}$ is a small contour around the eigenvalue $\mu_{m}^{(k)}$ (see [6]).
We will prove a theorem for uniqueness of the solution of BVP (1)-(3) under some additional restrictions on the time-functionals $\chi_{k}(k=1, \ldots, n)$.

Definition 4. A linear functional χ_{k} on $C\left[0, T_{k}\right]$ is called strongly nonlocal if its support includes the endpoints of the interval $\left[0, T_{k}\right]$, i.e. $0, T_{k} \in$ $\operatorname{supp} \chi_{k}$. The corresponding BVPs are called strongly nonlocal.

Further we consider only strongly nonlocal BVPs with respect to the time variables. In the case of simple eigenvalues $\mu_{m}^{(k)}$ the respective eigenspaces are one-dimensional and spanned on the functions $e^{\mu_{m}^{(k)} t_{k}}$ and, moreover,

$$
\begin{equation*}
p_{k, \mu_{m}^{(k)}}(\phi)=\phi \stackrel{t_{k}}{*}\left\{-\frac{e^{\mu_{m}^{(k)} t_{k}}}{G_{k}^{\prime}\left(\mu_{m}^{(k)}\right)}\right\} . \tag{41}
\end{equation*}
$$

Similarly the eigenvalues $\lambda_{l}(l=1, \ldots, \infty)$ for (12) are the zeros of $E(\lambda)=$ $\Phi\left\{\frac{\sin \lambda \xi}{\lambda}\right\}$.

In order to state the uniqueness result, we need a lemma:
Lemma 1. The following equalities hold

$$
\begin{equation*}
S\left\{\sin \lambda_{l} x\right\}=-\lambda_{l}^{2} \sin \lambda_{l} x \quad \text { and } \quad s_{k}\left\{e^{\mu_{m}^{(k)} t_{k}}\right\}=\mu_{m}^{(k)} e^{\mu_{m}^{(k)} t_{k}} \tag{42}
\end{equation*}
$$

$k=1, \ldots, n ; l, m=1, \ldots, \infty$.
Proof. It is enough to apply (8) and (15).
It is easily seen that
$\Sigma\left\{\sin \lambda_{l} x e^{\mu_{m_{1}}^{(1)} t_{1}} \ldots e^{\mu_{m_{n}}^{(n)} t_{n}}\right\}=\left(\mu_{m_{1}}^{(1)}+\cdots+\mu_{m_{n}}^{(n)}+\left(\lambda_{l}\right)^{2}\right)\left\{\sin \lambda_{l} x e^{\mu_{m_{1}}^{(1)} t_{1}} \ldots e^{\mu_{m_{n}}^{(n)} t_{n}}\right\}$
and if $\mu_{m_{1}}^{(1)}+\cdots+\mu_{m_{n}}^{(n)}+\left(\lambda_{l}\right)^{2}=0$, then Σ is a divisor of zero.
If there is no dispersion relation of this form, i.e if

$$
\begin{equation*}
\mu_{m_{1}}^{(1)}+\cdots+\mu_{m_{n}}^{(n)}+\left(\lambda_{l}\right)^{2} \neq 0 \tag{44}
\end{equation*}
$$

for each combination of eigenvalues $\mu_{m_{1}}^{(1)}, \ldots \mu_{m_{n}}^{(n)}, \lambda_{l}$, then Σ is a non-divisor of 0 .

Lemma 2. (Multidimensional Schwartz-Leontiev theorem) If $\phi \in$ $C\left(\left[0, T_{1}\right] \times \ldots\left[0, T_{k}\right]\right)$ and

$$
\begin{equation*}
\prod_{k=1}^{n} p_{k, \mu_{m}^{(k)}}(\phi)=0 \tag{45}
\end{equation*}
$$

for all combinations of eigenvalues, then $\phi \equiv 0$.
Proof. The proof of Lemma 2 follows from the one-dimensional SchwartzLeontiev theorem (see [1], p. 198, [6], pp. 92-93, [10] and [8], pp. 260-261).

Proof of Proposition 1. Suppose that Σ is a divisor of 0 , i.e. that for some u

$$
\left[s_{1}+\cdots+s_{n}-S\right] u\left(x, t_{1}, \ldots, t_{n}\right)=0
$$

Let

$$
\left.u_{m_{1} \ldots m_{n}}\left(x, t_{1}, \ldots, t_{n}\right)=u\left(x, t_{1}, \ldots, t_{n}\right)^{t_{1} \ldots t_{n}} \not \approx e^{\mu_{m_{1}}^{(1)} t_{1}} \ldots e^{\mu_{m_{n}}^{(n)} t_{n}}\right\}
$$

Now, from (41) it follows

$$
u_{m_{1} \ldots m_{n}}\left(x, t_{1}, \ldots, t_{n}\right)=U(x) e^{\mu_{m_{1}}^{(1)} t_{1}} \ldots e^{\mu_{m_{n}}^{(n)} t_{n}}
$$

and the function $U(x)$ must satisfy

$$
\left(\mu_{m_{1}}^{(1)}+\cdots+\mu_{m_{n}}^{(n)}-S\right) U=0
$$

Now (44) and [5], Theorem 1.4.1 guarantee the existence of $\left(\mu_{m_{1}}^{(1)}+\cdots+\mu_{m_{n}}^{(n)}-\right.$ $S)^{-1}$ and hence $U=0$. Equivalently the function U must satisfy

$$
\frac{d^{2} U}{d x^{2}}-\left(\mu_{m_{1}}^{(1)}+\cdots+\mu_{m_{n}}^{(n)}\right) U=0
$$

and $U(0)=0, \Phi(U)=0$ and since (44) implies that $\mu_{m_{1}}^{(1)}+\cdots+\mu_{m_{n}}^{(n)}$ is not an eigenvalue of (12), then $U \equiv 0$.

Remark. The assumption that the eigenvalues are simple is a technical one and is used only to simplify the above argument. The proof for multiple eigenvalues $\mu_{m_{k}}^{(k)}$ is somewhat more involved, but the conclusion is the same.

Now we can state
Theorem 7. The conditions that (44) holds for all possible combinations of eigenvalues of the one-dimensional eigenvalue problems are sufficient for uniqueness of the solution of $B V P(1)-(3)$, provided all the time nonlocal BVCs are strong.

Example. Consider the BVP

$$
\begin{equation*}
\frac{\partial u}{\partial t_{1}}+\frac{\partial u}{\partial t_{2}}=\frac{\partial^{2} u}{\partial x^{2}}+F\left(x, t_{1}, t_{2}\right) \quad \text { in } \quad 0 \leq x \leq 1,0 \leq t_{1}, t_{2} \leq T \tag{46}
\end{equation*}
$$

with nonlocal initial condition of the form

$$
\begin{equation*}
\frac{1}{\mu-1}\left[\mu u\left(x, t_{1}, 0\right)-u\left(x, t_{1}, T\right)\right]=0 \quad \frac{1}{\mu-1}\left[\mu u\left(x, 0, t_{2}\right)-u\left(x, T, t_{2}\right)\right]=0 \tag{47}
\end{equation*}
$$

(Dezin nonlocal conditions, see [4]) and local and nonlocal energy boundary conditions

$$
\begin{equation*}
u\left(0, t_{1}, t_{2}\right)=0 \quad \text { and } \int_{0}^{1} u\left(x, t_{1}, t_{2}\right) d x=\phi\left(t_{1}, t_{2}\right) \tag{48}
\end{equation*}
$$

The spectral properties of the last problem (Samarskiy-Ionkin spectral problem) are studied from operational calculus point of view in [5], Theorem 3.4.4. The eigenvalues are $2 n \pi$ with multiplicity two and the corresponding eigenspaces are spanned on the functions $\sin 2 n \pi x$ and $x \cos 2 n \pi x$.

Since the eigenvalues of the corresponding one dimensional problems with Dezin condition are of the form $\mu_{m}^{(k)}=\frac{1}{T}\left(\ln |\mu|+2 m^{(k)} \pi i\right), k=1,2, m^{(k)} \in \mathbb{Z}$ we can have dispersion relation only if the imaginary part (of the sum corresponding
to (44)) is zero i.e. if $m^{(1)}=m^{(2)}=0$ or $m^{(1)}=-m^{(2)}$. In both cases the condition $\frac{2}{T} \ln \mu \neq(2 \pi n)^{2}$ for all $n \in \mathbb{N}$ guarantees that the real part is nonzero and hence that there is no dispersion relation of the form $\mu_{m_{1}}^{(1)}+\mu_{m_{2}}^{(2)}+(2 n \pi)^{2}=0$.

Acknowledgements. The authors are supported by Grant No D ID 02/25/2009 "ITMSFA" of the National Science Fund - Ministry of Education, Youth and Science of Bulgaria and by Grant No 174, of NSF of Bulgaria.

References

[1] N.S. Bozhinov, Convolutional Representations of Commutants and Multipliers, Pub. House of BAS, Sofia (1988).
[2] A. Bouziani, On the solvability of nonlocal pluriparabolic problems, Electronic Journal of Differential Equations, Vol. 2001, No 21 (2001), 1-16; http://ejde.math.swt.edu or http://ejde.math.unt.edu.
[3] J.R. Cannon, The solution of heat equation subject to specification of energy, Quart. Appl. Math., 21 (1963), 155-160.
[4] G. Chobanov, I. Dimovski, Extension of the Duhamel principle for the heat equation with Dezin's initial condition, Annuaire de l'Univ. de Sofia "St. Kliment Ohridski", Fac. de Mathematiques et Informatique, Livre 1 - Mathematiques et Mecanique, 93 (1999), 73-92.
[5] I.H. Dimovski, Convolutional Calculus, Kluwer, Dordrecht - N.Y. - London (1990).
[6] I.H. Dimovski, R.I. Petrova, Finite integral transforms for non-local boundary value problems. In: Generalized Functions and Convergence (Eds.: P. Antosik, A. Kaminski), World Scientific, Singapore (1990), 89-103.
[7] R. Larsen, An Introduction to the Theory of Multipliers, Berlin-HeidelbergNew York (1972).
[8] A.F. Leontiev, Series of Exponents. Moscow, Nauka (1976) (Russian).
[9] S. Mesloub, On a nonlocal problem for a pluriparabolic equation Proc. of the Institute of Mathematics of NAS of Bielorussia, 6 (2000), 116.
[10] L. Schwartz, Approximation d'une fonction quelconque par des sommes d'exponentielles imaginaires, Ann. Fac. Sci de l'Univ. de Toulouse, 6 (1943), 110-175.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
"Acad. G. Bontchev" Str., Block 8
Sofia-1113, BULGARIA
Received: October 21, 2011
e-mails: ${ }^{1}$ chobanov@math.bas.bg, ${ }^{2}$ dimovski@math.bas.bg

