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A generalization of the classical Duhamel principle for the pluriparabolic equation

∂u

∂t1
+ · · ·+ ∂u

∂tn
=

∂2u

∂x2
+ F (x, t1, . . . , tn) in 0 ≤ x ≤ a, 0 ≤ tk ≤ Tk

with time-nonlocal initial value conditions of the form

χk,τ{u(x, t1, . . . , tk−1, τ, tk+1, . . . , tn)} = fk(x, t1, . . . , tk−1, tk+1, . . . , tn)

with linear functionals χk on C[0, Tk] (k = 1, . . . , n), a space-local boundary value condition
of the form

u(0, t1, . . . , tn) = ψ(t1, . . . , tn)

and a space-nonlocal boundary value condition of the form

Φξ{u(ξ, t1, . . . , tn)} = φ(t1, . . . , tn)

with a linear functional Φ on C1[0, a] is proposed. To this end two non-classical convolutions
φ

t1...tn∗ ψ and F
xt1...tn∗ G are used: the �rst one for functions of t1, . . . , tn only and the second

� for functions of x, t1, . . . , tn. The corresponding Duhamel representation takes the following
form: If Ω(x, t1, . . . , tn) is a solution for the boundary value problem for the special choice
F ≡ 0, fk ≡ 0, ψ ≡ 0 and φ ≡ 1, then for ψ ≡ 0, fk ≡ 0, k = 1, . . . , n (under some additional
assumptions for smoothness of the boundary function φ and the function F )

u(x, t1, . . . , tn) =
∂n

∂t1 . . . ∂tn
(Ω

t1...tn∗ φ) +
∂n

∂t1 . . . ∂tn
(Ω

xt1...tn∗ F ).
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1. Introduction

In the present paper it is proposed a generalization of the classical Duhamel
principle for the pluriparabolic equation

∂u

∂t1
+ · · ·+ ∂u

∂tn
=

∂2u

∂x2
+ F (x, t1, . . . , tn) in 0 ≤ x ≤ a, 0 ≤ tk ≤ Tk (1)

with local and nonlocal boundary value conditions (BVCs) of the form: nonlocal
initial conditions

χk,τ{u(x, t1, . . . , tk−1, τ, tk+1, . . . , tn)} = fk(x, t1, . . . , tk−1, tk+1, . . . , tn) (2)

(k = 1, . . . , n), and local and nonlocal boundary conditions

u(0, t1, . . . , tn) = ψ(t1, . . . , tn), Φξ{u(ξ, t1, . . . , tn)} = φ(t1, . . . , tn). (3)

Here χk, k = 1, . . . , n are linear functionals on C[0, Tk] and Φ is a linear func-
tional on C1[0, a].

Such problems for a pluriparabolic equation with energy functional of the
form

Φξ{u(ξ, t1, . . . , tn)} =
∫ a

0
u(ξ, t1, . . . , tn)dξ (4)

are considered by J.R. Cannon [3], A. Bouziani [2], S. Mesloub [9].

2. Convolutions

Our basic tool for obtaining explicit solutions of the problem considered
are some multidimensional non-classical convolutions. Their construction begins
with the simplest one-dimensional case (Dimovski [5]).

Consider the elementary one-dimensional BVP in C[0, Tk]

y′ − µy = f(t), χk{y} = 0. (5)

For the sake of some technical simpli�cations we assume that the constant func-
tion {1} does not belong to the kernel of the functional χk, k = 1, . . . , n, i.e.
χk{1} 6= 0. Then without any loss of generality we can assume χk{1} = 1. Its
solution is

y = rk(f, µ)(tk) =
∫ tk

0
eµ(tk−σ)f(σ)dσ−χk

{∫ σ

0
eµ(τ−σ)f(ξ)dξdσ

}
eµtk

Gk(µ)
, (6)



Exact Solutions of a Non-local Pluriparabolic Problems 55

where Gk(µ) = χk,τ{eµτ} is the exponential indicatrix of the functional χk. Our
assumption χk{1} 6= 0 is equivalent to Gk(0) 6= 0, i.e. µ = 0 is not an eigenvalue
of BVP (5). Then instead of (6) we may consider the special case

rk(f, 0) = lkf =
∫ tk

0
f(σ)dσ − χk

(∫ σ

0
f(ξ)dξdσ

)
(7)

which de�nes a right inverse operator lk of d

dtk
on the space C[0, Tk] satisfying

the following identity
lkf

′(tk) = f(tk)− χk,τf(τ). (8)

Theorem 1. (Dimovski [5]) The operation

(f
tk∗ g)(tk) = χk,τ

(∫ tk

τ
f(tk + τ − σ)g(σ)dσ

)
, (9)

where the subscript τ means that χk acts on the variable τ only, is a commutative
and associative in C[0, Tk] such that

lkf(tk) = {1} tk∗ f(tk) (10)

and
rk(f, µ)(tk) =

{
eµtk

Gk(µ)

}
tk∗ f(tk). (11)

Next we need an one-dimensional convolution, connected with d2

dx2
in

C1[0, a]. Consider the elementary BVP

y′′ + λ2y = f(x), y(0) = 0, Φ{y} = 0 (12)

with a non-zero linear functional Φ on C1[0, a]. In order it to have a solution,
it is necessary to assume Φξ{ξ} 6= 0. Again, without essential loss of generality,
one can assume Φξ{ξ} = 1. The solution is

y = R−λ2f(x) =
1
λ

∫ x

0
sinλ(x−ξ)f(ξ)dξ−Φξ

{
1
λ

∫ x

0
sinλ(a− ξ)f(ξ)dξ

}
sinλx

λE(λ)
,

(13)
where E(λ) = Φξ

{
sinλξ

λ

}
is the sine-indicatrix of the functional Φ. For a

simpli�cation of the next consideration it is useful to assume that λ = 0 is not
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an eigenvalue of (12). Since E(0) = Φξ{ξ} by the above assumptions we have
E(0) = 1. Now

R0f(x) = Lf(x) =
∫ x

0
(x− ξ)f(ξ)dξ − xΦξ

{∫ ξ

0
(ξ − η)f(η)dη

}
(14)

de�nes a right inverse operator L of d2

dx2
on the space C[0, a] satisfying the

identity
Lf ′′(x) = f(x) + [xΦ(1)− 1]f(0)− xΦξ[f(ξ)]. (15)

Theorem 2. (Dimovski [5]) The operation

(f
x∗ g)(x) =

− 1
2
Φ̃ξ

[∫ ξ

x
f(ξ + x− η)g(η)dη −

∫ ξ

−x
f(|ξ − x− η|)g(|η|)sgn (ξ − x− η)ηdη

]
,

(16)

where Φ̃ξ = Φξ ◦
∫ ξ
0 , is commutative and associative in C[0, a] such that

Lf(x) = {x} x∗ f(x) (17)

and
R−λ2f(x) =

{
sinλx

λE(λ)

}
x∗ f(x). (18)

Next the following multidimensional generalizations of the Duhamel con-
volution are given.

Theorem 3. The operation

(φ
t1...tn∗ ψ)(t1, . . . , tn) =

χn,τn . . . χ1,τ1

[∫ tn

τn

. . .

∫ t1

τ1

φ(t1 + τ1 − σ1, . . . , tn + τn − σn)ψ(σ1, . . . , σn)dσ1 . . . dσn

]

(19)

for φ, ψ ∈ C([0, T1]× · · · × [0, Tn]) is bilinear, commutative and associative and

l1 . . . lnφ = {1} t1...tn∗ φ. (20)

Using de�nition (19) of the operation φ
t1...tn∗ ψ on C([0, T1] × · · · × [0, Tn]), we
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de�ne a (n + 1)-dimensional convolution in C([0, a]× [0, T1]× · · · × [0, Tn]).
De�nition 1. For F,G ∈ C([0, a]× [0, T1]× · · · × [0, Tn]), let

(F
xt1...tn∗ G)(x, t1, . . . , tn)

= −1
2
Φ̃ξ

[∫ ξ

x
F (ξ + x− η, t1, . . . , tn)

t1...tn∗ G(η, t1, . . . , tn)dη

−
∫ ξ

−x
F (|ξ − x− η|, t1, . . . , tn)

t1...tn∗ G(|η|, t1, . . . , tn)sgn (ξ − x− η)ηdη

]
.

(21)

Theorem 4. The operation de�ned by (21) is bilinear, commutative
and associative in C([0, a]× [0, T1]× · · · × [0, Tn]) such that

Ll1 . . . lnf = {x} xt1...tn∗ f. (22)

S k e t c h o f t h e p r o o f. The proof of both Theorems 1 and 2 goes
along the same line. First, we verify the assertions for products

φ(t1, . . . , tn) = φ1(t1) . . . φn(tn) ψ(t1, . . . , tn) = ψ1(t1) . . . ψn(tn),

or

F (x, t1, . . . , tn) = f(x)φ1(t1) . . . φn(tn) G(x, t1, . . . , tn) = g(x)ψ1(t1) . . . ψn(tn)

and reduce them to the one dimensional assertions. Next we approximate the
arbitrary functions φ, ψ and F,G by products, e.g. by polynomials.

The following analogues of the identities (8) and (15) hold for functions
u ∈ C([0, a]× [0, T1]× · · · × [0, Tn]):

lkutk(x, t1, . . . , tn) = u(x, t1, . . . , tn)− χk,τk
[u(x, t1, . . . , τk, . . . , tn)] (23)

(k = 1, . . . , n) and

Luxx(x, t1, . . . , tn)
= u(x, t1, . . . , tn) + [xΦ(1)− 1]u(0, t1, . . . , tn)− xΦξ[u(ξ, t1, . . . , tn)]. (24)
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3. Rings of multipliers of convolution algebras
In what follows, let C = C([0, a]×[0, T1]×· · ·×[0, Tn]) and let

(
C, ∗) be the

respective convolution algebra. We follow a standard procedure for constructing
of an operational calculus for BVP (1) � (3) based on convolution (21) and its
multipliers as outlined in Dimovski [5].

Let us remind the notion of multiplier of the algebra (C, ∗) (Larsen, [7]).
An operator M : C → C is said to be a multiplier of the convolution algebra
(C, ∗), i� the relation

M(f ∗ g) = (Mf) ∗ g

holds for arbitrary f, g ∈ C.
The multipliers of (C, ∗) form a commutative ring M without annihilators

with respect to the usual multiplication of operators. Let N be the multiplicative
set of the non-divisors of 0 of the ring M. N evidently is nonempty since at least
the identity operator and the multiplier convolution operator L = {x}∗ are non-
divisors of 0. Another examples are the operators lk.

Consider the formal fractions A/B where A ∈ M, B ∈ N.
De�nition 2. The ring M = N−1M of the multiplier fractions is the

quotient of the ring M×N with respect to the equivalence relation

(A,B) ∼ (C, D) ⇔ AD = BC,

i.e. M = M×N/ ∼.
Theorem 5. The ring M of the multiplier fractions contains subrings

isomorphic to: a) R, b)
(
C[0, a],

x∗
)
, c)

(
C[0, Tk],

tk∗
)
, d) (C, ∗).

P r o o f. a) The correspondence α 7−→ αL

L
, α ∈ R is an embedding

R ↪→M;

b) The correspondence f 7−→ (Lf)
x∗

L
is an embedding

(
C[0, a],

x∗
)

↪→M;

c) The correspondence ϕ 7−→ (lkϕ)
tk∗

lk
is an embedding

(
C[0, Tk],

tk∗
)

↪→
M;

d) The correspondence u 7−→ {u}∗
I

where I is the identity operator of C

is an embedding (C, ∗) ↪→M.
The veri�cation is immediate. Let us prove for example b). Let f, g ∈

C[0, a]. We are to prove that

f
x∗ g 7−→ (Lf)

x∗
L

· (Lg)
x∗

L
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Indeed,

f
x∗ g 7−→ {L(f

x∗ g)}∗
L

=
L

[
{L(f

x∗ g)}∗
]

L2
=

{
(Lf)

x∗ (Lg)
}

x∗
L2

=

[
(Lf)

x∗
L

] [
(Lg)

x∗
L

]
.

Here we make use of the convolution property

L(f
x∗ g) = (Lf)

x∗ g = f
x∗ (Lg).

For every φ ∈ C([0, T1]×· · ·× [0, Tn]) the partial convolution (19) de�nes
a multiplier acting on F ∈ C as follows

φ
t1...tn∗ F. (25)

The corresponding equivalence class in M is called constant with respect to x
and is denoted by

[φ]x (26)

Similarly, let f ∈ C([0, a]× [0, T1]×· · ·× [0, Tk−1]× [0, Tk+1]×· · ·× [0, Tn]). The
partial convolution operator

f
xt1...tk−1tk+1...tn∗ (27)

de�nes a multiplier in an obvious manner. Its class is called constant with respect
to tk and is denoted by

[f ]tk . (28)

4. Algebraization of the BVP (1)�(3)
Crucial for the algebraization of the problem are the reciprocal elements

to L and l1, . . . , ln in M. Let they be denoted by S, s1, . . . , sn, respectively.
Now

S{x} = SL = 1, sklk = 1 (k = 1, . . . , n) (29)

where 1 denotes the unit of the algebra M. For a function u = u(x, t1, . . . , tn)
this together with (23) and (24) gives

utk = sku− [χk,τ{u(x, t1, . . . , τ . . . , tn)}]tk (k = 1, . . . , n). (30)
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and the last term is a constant with respect to the variable tk. Similarly,

uxx = Su + (xΦ(1)− 1)u(0, t1, . . . , tn) + [φ(t1, . . . , tn)]x (31)

and the last term is a constant with respect to the variable x. Suppose u =
u(x, t1, . . . , tn) is a solution to the boundary value problem (1)�(3). Then (30)
and (31) reduce the BVP (1)�(3) to a simple linear algebraic equation for the
function u:

(s1 + · · ·+ sn − S)u = (xΦ(1)− 1)ψ(t1, . . . , tn) + [φ(t1, . . . , tn)]x

+
n∑

k=1

[fk(x, t1, . . . , tk−1, tk+1, . . . , tn)]tk + {F (x, t1, . . . , tn)}. (32)

De�nition 3. A function u ∈ C([0, a]× [0, T1]× · · · × [0, Tn]) is a weak
solution to BVP (1)�(3) if it satis�es (32).

In order to reveal the basic ideas, we restrict BVP (1)�(3) to the case

χk,τ{u(x, t1, . . . , tk−1, τ, tk+1, . . . , tn)} = 0, k = 1, . . . , n (33)
and

u(0, t1, . . . , tn) = 0, Φξ{u(ξ, t1, . . . , tn)} = φ(t1, . . . , tn). (34)

Suppose s1 + · · · + sn − S = Σ is a non-divisor of zero. Then 1
Σ

is well
de�ned. If u is a weak solution of BVP (1),(33) and (34) then formally we obtain

u =
1
Σ

[φ(t1, . . . , tn)]x +
1
Σ
{F (x, t1, . . . , tn)}. (35)

In order to interpret (35) as a function, we need some algebraic manipulations:

u=(s1 . . . sn)
1

(s1 . . . sn)Σ
[φ(t1, . . . , tn)]x+(s1 . . . sn)

1
(s1 . . . sn)Σ

{F (x, t1, . . . , tn)}.
(36)

Assuming that 1
(s1 . . . sn)Σ

can be interpreted as a continuous function
Ω(x, t1, . . . , tn) then it can be considered as a weak solution of the homogeneous
problem with φ ≡ 1. Indeed, the product l1 . . . ln can be interpreted as the
numerical multiplier [1]x, i.e.

l1 . . . ln = {1} t1...tn∗ .

Hence
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Ω(x, t1, . . . , tn) = (s1 . . . sn)
1

(s1 . . . sn)Σ
l1 . . . ln. (37)

Now we can formulate the following conditional theorem of existence (a
generalization of Duhamel principle).

Theorem 6. If BVP (1),(33) and (34) has a weak solution Ω for F ≡ 0,
φ ≡ 1, then

Ω(x, t1, . . . , tn) =
1

(s1 . . . sn)Σ
(38)

and the BVP (1),(33) and (34) with �arbitrary� F and φ also has a weak solution
of the form

u(x, t1, . . . , tn) =
∂n

∂t1 . . . ∂tn
(Ω

t1...tn∗ φ) +
∂n

∂t1 . . . ∂tn
(Ω

xt1...tn∗ F ), (39)

provided F and φ have continuous partial derivatives
∂nF

∂t1 . . . ∂tn
and

∂nφ

∂t1 . . . ∂tn
.

The proof requires some di�erentiation properties of the convolutions in-
volved, but here we will not enter into details.

5. Uniqueness of the solution for BVP (1)�(3).
Theorem 6 is a conditional theorem of existence of solution of BVP (1)�

(3). As for the uniqueness problem we can state a more de�nite assertion. To this
end, we study the uniqueness for BVP (1)�(3) by means of the spectral properties
of the one-dimensional problems that compose it, taking advantage from the
fact that these problems are better studied. The eigenvalues µ

(k)
m (k = 1, . . . , n;

m = 1, . . . ,∞) for (5) are the zeros of the indicatrices Gk(µ) = χk,τ {eµτ}. The
projections on the respective eigenspaces are

p
k,µ

(k)
m

(φ) = − 1
2πi

∫

Γ
µ
(k)
m

rk(φ, µ)dµ = −




1
2iπ

∫

Γ
µ
(k)
m

eµtkdµ

Gk(µ)





tk∗ φ, (40)

where Γ
µ

(k)
m

is a small contour around the eigenvalue µ
(k)
m (see [6]).

We will prove a theorem for uniqueness of the solution of BVP (1)�(3)
under some additional restrictions on the time-functionals χk (k = 1, . . . , n).

De�nition 4. A linear functional χk on C[0, Tk] is called strongly
nonlocal if its support includes the endpoints of the interval [0, Tk], i.e. 0, Tk ∈
suppχk. The corresponding BVPs are called strongly nonlocal.
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Further we consider only strongly nonlocal BVPs with respect to the time
variables. In the case of simple eigenvalues µ

(k)
m the respective eigenspaces are

one-dimensional and spanned on the functions eµ
(k)
m tk and, moreover,

p
k,µ

(k)
m

(φ) = φ
tk∗

{
− eµ

(k)
m tk

G′
k(µ

(k)
m )

}
. (41)

Similarly the eigenvalues λl (l = 1, . . . ,∞) for (12) are the zeros of E(λ) =

Φ
{

sinλξ

λ

}
.

In order to state the uniqueness result, we need a lemma:
Lemma 1. The following equalities hold

S{sinλlx} = −λ2
l sinλlx and sk{eµ

(k)
m tk} = µ(k)

m eµ
(k)
m tk , (42)

k = 1, . . . , n; l, m = 1, . . . ,∞.
P r o o f. It is enough to apply (8) and (15).
It is easily seen that

Σ
{

sinλlxeµ
(1)
m1

t1 . . . eµ
(n)
mn tn

}
= (µ(1)

m1
+· · ·+µ(n)

mn
+(λl)2)

{
sinλlxeµ

(1)
m1

t1 . . . eµ
(n)
mn tn

}

(43)
and if µ

(1)
m1 + · · ·+ µ

(n)
mn + (λl)2 = 0, then Σ is a divisor of zero.

If there is no dispersion relation of this form, i.e if
µ(1)

m1
+ · · ·+ µ(n)

mn
+ (λl)2 6= 0 (44)

for each combination of eigenvalues µ
(1)
m1 , . . .µ

(n)
mn , λl, then Σ is a non-divisor of

0.
Lemma 2. (Multidimensional Schwartz-Leontiev theorem) If φ ∈

C([0, T1]× . . . [0, Tk]) and
n∏

k=1

p
k,µ

(k)
m

(φ) = 0 (45)

for all combinations of eigenvalues, then φ ≡ 0.
P r o o f. The proof of Lemma 2 follows from the one-dimensional Schwartz-

Leontiev theorem (see [1], p. 198, [6], pp. 92-93, [10] and [8], pp. 260-261).
P r o o f o f P r o p o s i t i o n 1. Suppose that Σ is a divisor of 0, i.e. that

for some u

[s1 + · · ·+ sn − S]u(x, t1, . . . , tn) = 0.

Let

um1...mn(x, t1, . . . , tn) = u(x, t1, . . . , tn)
t1...tn∗ {eµ

(1)
m1

t1 . . . eµ
(n)
mn tn}.
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Now, from (41) it follows
um1...mn(x, t1, . . . , tn) = U(x)eµ

(1)
m1

t1 . . . eµ
(n)
mn tn

and the function U(x) must satisfy
(µ(1)

m1
+ · · ·+ µ(n)

mn
− S)U = 0

Now (44) and [5], Theorem 1.4.1 guarantee the existence of (µ(1)
m1 + · · ·+ µ

(n)
mn −

S)−1 and hence U = 0. Equivalently the function U must satisfy
d2U

dx2
− (µ(1)

m1
+ · · ·+ µ(n)

mn
)U = 0

and U(0) = 0, Φ(U) = 0 and since (44) implies that µ
(1)
m1 + · · · + µ

(n)
mn is not an

eigenvalue of (12), then U ≡ 0.
Remark. The assumption that the eigenvalues are simple is a technical

one and is used only to simplify the above argument. The proof for multiple
eigenvalues µ

(k)
mk is somewhat more involved, but the conclusion is the same.

Now we can state
Theorem 7. The conditions that (44) holds for all possible combina-

tions of eigenvalues of the one-dimensional eigenvalue problems are su�cient for
uniqueness of the solution of BVP (1)�(3), provided all the time nonlocal BVCs
are strong.

Example. Consider the BVP

∂u

∂t1
+

∂u

∂t2
=

∂2u

∂x2
+ F (x, t1, t2) in 0 ≤ x ≤ 1, 0 ≤ t1, t2 ≤ T (46)

with nonlocal initial condition of the form
1

µ− 1
[µu(x, t1, 0)− u(x, t1, T )] = 0

1
µ− 1

[µu(x, 0, t2)− u(x, T, t2)] = 0 (47)

(Dezin nonlocal conditions, see [4]) and local and nonlocal energy boundary
conditions

u(0, t1, t2) = 0 and
∫ 1

0
u(x, t1, t2)dx = φ(t1, t2). (48)

The spectral properties of the last problem (Samarskiy-Ionkin spectral problem)
are studied from operational calculus point of view in [5], Theorem 3.4.4. The
eigenvalues are 2nπ with multiplicity two and the corresponding eigenspaces are
spanned on the functions sin 2nπx and x cos 2nπx.

Since the eigenvalues of the corresponding one dimensional problems with
Dezin condition are of the form µ

(k)
m =

1
T

(ln |µ|+2m(k)πi), k = 1, 2, m(k) ∈ Z we
can have dispersion relation only if the imaginary part (of the sum corresponding
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to (44)) is zero i.e. if m(1) = m(2) = 0 or m(1) = −m(2). In both cases the
condition 2

T
lnµ 6= (2πn)2 for all n ∈ N guarantees that the real part is nonzero

and hence that there is no dispersion relation of the form µ
(1)
m1+µ

(2)
m2+(2nπ)2 = 0.
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