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Abstract. In the present note, it is proved that there donot exist warped
product semi-slant submanifolds in a Sasakian manifold other than contact
CR-warped product submanifolds and thus the results obtained in [8] are
generalized.

1. Introduction. Bishop and O’Neill [1] introduced the notion of
warped product manifolds and obtained results which reveal important geometric
properties of these manifolds. Many physical applications of these manifolds are
recently discovered e.g., the space around a black hole or a massive star is mod-
eled on warped product manifolds. To be more precise, the best relativistic model
of the Schwarzchild space time describing the neighbourhoods of stars or black
holes is given as a warped product (c.f. [10]). Recently B. Y. Chen [5] initiated
the study of warped product CR-submanifolds of Kaehler manifolds. B. Sahin
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[11], extending the study of Chen, proved that there donot exist proper warped
product semi-slant submanifolds in a Kaehler manifold. Hesegawa and Mihai
[7] initiated the study of contact CR-warped product submanifolds in Sasakian
manifolds. They obtained a sharp relationship between the warping function f
of a warped product CR-submanifold and the squared norm of the second funda-
mental form. K. Matsumoto and Mihai [9] studied warped product submanifolds
in a Sasakian space form. They also worked out variuous inequalities regarding
the squared norm of mean curvature vector of warped products in a Sasakian
space form and derived some important applications. In view of the physical ap-
plications of these manifolds, the question of existance or non existanc of warped
product submanifolds assumes significant in general. In the present note, we have
adressed the same problem by studying warped product semi-slant submanifold
of a Sasakian manifold.

2. Preliminaries. Let M be a (2m + 1)-dimensional almost contact
manifold i.e., a manifold endowed with an almost contact structure (φ, ξ, η) where
φ is a (1, 1) tensor field, ξ is a vector field and η is a 1-form such that

φ2 = −I + η ⊗ ξ, φ(ξ) = 0, η(ξ) = 1, η ◦ φ = 0.

The almost contact structure is said to be normal if on the product manifold
M × R, the induced almost complex structure J defined by

J

(

U, λ
d

dt

)

=

(

φU − λξ, η(U)
d

dt

)

,

is integrable, where U is tangent to M , t is the coordinate function on R and λ
is a smooth function on M × R. The condition for an almost contact structure
to be normal is equivalent to the vanishing of the torsion tensor [φ, φ] + 2dη ⊗ ξ
where [φ, φ] denotes the Nijenhuis tensor of φ.

On an almost contact manifold, there exists a Riemannian metric g which
is compatible with the contact structure (φ, ξ, η) i.e.,

(2.1) g(φU, φV ) = g(U, V ) − η(U)η(V ),

from which it can be observed that

(2.2) g(U, ξ) = η(U),
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for any U, V ∈ T (M). In this case, the Riemannian manifold (M, g) is called an
almost contact metric manifold. An almost contact metric structure is called a
contact metric structure if dη = Φ where Φ is the fundamental 2-form defined by

Φ(U, V ) = g(U, φV ).

A normal contact metric manifold is called a Sasakian manifold. It is known that
an almost contact metric manifold is Sasakian if and only if

(2.3) (∇Uφ)V = −g(U, V )ξ + η(V )U,

and,

(2.4) ∇Uξ = φU,

where ∇ is the Riemannian connection on M .
Let M be a submanifold of an almost contact metric manifold M . Then

the induced Riemannian metric on M is denoted by the same symbol g and the
induced connection by ∇. If TM and TM denote the tangent bundle on M and
on M respectively, then the Gauss and Weingarten formulae are written as:

(2.5) ∇UV = ∇UV + h(U, V ),

(2.6) ∇UN = −ANU + ∇⊥

UN,

for U, V ∈ TM and N ∈ T⊥M , where ∇⊥ denotes the induced connection in the
normal bundle T⊥M . AN and h denote the shape operator of the immersion and
the second fundamental respectively. The two are related as :

(2.7) g(ANU, V ) = g(h(U, V ), N),

For any U ∈ TM , we write

(2.8) φU = TU + FU,

where TU and FU are respectively the tangential and normal components of φU .
Similarly, for N ∈ T⊥M , we decompose φN into tangential and normal parts as:

(2.9) φN = BN + CN.

The covariant derivatives of T and F are defined as:

(2.10) (∇UT )V = ∇UTV − T∇UV,
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(2.11) (∇UF )V = ∇⊥

UFV − F∇UV,

for any U, V ∈ TM .
Making use of equations (2.3)–(2.6) and (2.8)–(2.11), we obtain that

(2.12) (∇UT )V = AFV U + Bh(U, V ) − g(U, V )ξ + η(V )U,

and,

(2.13) (∇UF )V = Ch(U, V ) − h(U, TV ).

A submanifold M of an almost contact metric manifold M tangential to
the structure vector field ξ is called an invariant submanifold if φ-preserves all
tangent spaces of M , that is φTx(M) ⊂ Tx(M) for every x ∈ M . A submanifold
M tangent to ξ is called an anti-invariant submanifold if φ maps a tangent space
of M into the normal space, i.e., φTx(M) ⊂ T⊥

x (M) for all x ∈ M where T⊥
x (M)

denotes the normal space at x ∈ M . The above definitions have been generalized
in several ways:

(i) A submanifold M tangent to ξ, is called a contact CR-Submanifold if there
exists a differentiable distribution D : x −→ Dx ⊂ Tx(M) such that D
is invariant with respect to φ and the complementry distribution D⊥ is
anti-invariant with respect to φ.

(ii) A submanifold M tangent to ξ is called a slant submanifold if for all non
zero vector U tangent to M and independent with ξ, the angle θ(U) between
φU and Tx(M) is a constant i.e., it doesnot depend on the choice of x ∈ M
and U ∈ Tx(M) [8].

(iii) A submanifold M is called a semi-slant submanifold if it is endowed with
two orthogonal complementry distributions D and D0 where D is invariant
with respect to φ and D0 is slant i.e., θ(U) between φU and D0

x is constant
for each U ∈ D0

x and x ∈ M [3].

It is clear that invariant and anti-invariant submanifolds are CR-Submani-
folds (resp., slant submanifolds) with D⊥ = {0} (resp. θ = 0) and D = {0} (resp.
θ = π/2). It is also clear that contact CR-submanifolds and slant submanifolds
are particular semi-slant submanifolds with θ = π/2 and D = {0} respectively.

A submanifold M of an almost contact metric manifold M is a slant
submanifold if and only if

(2.14) T 2 = −λ(−I + η ⊗ ξ),
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for some real number λ ∈ [0, 1]. Furthermore, in such case if θ is the slant angle
of M , then λ = cos2 θ [4]. Hence,

(2.15) g(TU, TV ) = cos2 θ(g(U, V ) − η(U)η(V )),

(2.16) g(FU,FV ) = sin2 θ(g(U, V ) − η(U)η(V )),

for any U, V ∈ TM .

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f a positive
differentiable function on M1. Then the warped product M1 ×f M2 is a product
manifold M1 × M2 endowed with a Riemannian metric g given by

g = g1 + f2g2.

More explicitly, if U is a tangent vector on M = M1 ×f M2 then

‖U‖2 = ‖dπ1U‖2 + f2(p)‖dπ2U‖2,

where πi(i = 1, 2) are the canonical projections of M onto M1 and M2 respectively
and dπi are their differentials.

Theorem 2.1 [1]. Let M1 ×f M2 be a warped product manifold. Then

for any X,Y ∈ TM1 and Z,W ∈ TM2,

(i) ∇XY ∈ TM1,

(ii) ∇XZ = ∇ZX =

(

Xf

f

)

Z,

(iii) nor(∇ZW ) = −
g(Z,W )

f
∇f ,

where nor(∇ZW ) is the component of ∇ZW in TM1 and ∇f is the gradient of

f defined by

g(∇f, U) = Uf.

Corollary 2.1. On a warped product manifold M = M1 ×f M2,

(i) M1 is totally geodesic in M .

(ii) M2 is totally umbilical in M .
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3. Semi-Slant Submanifolds as Warped Products. Let M be
a Sasakian manifold. Throughout the section, we denote by MT an invariant
submanifold of M and Mθ, a slant submanifold of M with slant angle θ. Our aim
in this section is to study warped product submanifolds MT ×f Mθ and Mθ×f MT .
We further assume that the structure vector field ξ is tangential to the underlying
warped product submanifolds.

From equations (2.4) and (2.5), we have

(3.1) ∇Xξ = φX,

(3.2) h(X, ξ) = 0,

for any X ∈ TMT whereas for Z ∈ TMθ, we get

(3.3) ∇Zξ = TZ.

(3.4) h(Z, ξ) = FZ.

Matsumoto and Mihai [9] proved

Theorem 3.1 [9]. If M = M1 ×f M2 is a warped product submanifold

of a Sasakian manifold M where M1 and M2 are any submanifolds of M with ξ
tangential to M2. Then M is a Riemannian product.

Hence, the possible non trivial semi-slant warped product submanifolds
are Mθ ×f MT and MT ×f Mθ with ξ tangential to Mθ and MT respectively.

For θ = π/2 the above warped products are known as warped product con-
tact CR-submanifold and contact CR-warped product submanifolds respectively.
Hesegawa and Mihai [7] showed the the warped product contact CR-submanifolds
with ξ tangential to MT are non existant.

Theorem 3.2. Let M be a (2m + 1)-dimensional Sasakian manifold.

Then there do not exist warped product submanifolds Mθ ×f MT on M such that

Mθ is a slant submanifold tangent to ξ and MT is an invariant submanifold of M .

P r o o f. Let M = Mθ ×f MT be a submanifold of M with ξ tangential to
Mθ. Then by Theorem 2.1,

(3.5) ∇XZ = ∇ZX = (Z ln f)X,
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for any X ∈ TMT and Z ∈ TMθ. In particular for Z = ξ, we get ξf = 0. Now
by equations (3.1) and (3.5), it follows that

φX = ∇Xξ = (ξ ln f)X = 0.

Thus MT can not exist and the Theorem is proved.

Now, we obtain same important relations for later use

Lemma 3.1. Let M = MT ×f Mθ be a warped product semi-slant sub-

manifold of a Sasakian manifold M such that MT is an invariant submanifold

tangent to ξ and Mθ a slant submanifold of M with slant angle θ 6= 0, then

(i) g(h(X,Y ), FZ) = 0.

(ii) g(h(X,W ), FZ) = g(h(X,Z), FW ).

(iii) g(h(φX,Z), FW ) = (X ln f)g(Z,W ).

for any X,Y ∈ TMT and Z,W ∈ TMθ

P r o o f. By Corollary 2.1, MT is totally geodesic in M and therefore by
formula (2.10), (∇XT )Y ∈ TMT for all X,Y ∈ TMT . Using this fact in equation
(2.12), we deduce that

g(Bh(X,Y ), Z) = 0,

for all X,Y ∈ TMT and Z ∈ TMθ. The above equation is equivalent to

g(h(X,Y ), FZ) = 0.

This prove (i). Now, by Theorem (2.1),

(3.6) ∇XZ = ∇ZX = (X ln f)Z.

Taking account of (3.6) in (2.10) and (2.12), it follows that

AFZX + Bh(X,Z) = 0,

which proves that

(3.7) g(h(X,W ), FZ) = g(h(X,Z), FW ).

Further, by equations (2.10) and (3.6), we obtain that

(3.8) (∇ZT )X = (TX ln f)Z − (X ln f)TZ,
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whereas by formula (2.12)

(3.9) (∇ZT )X = Bh(X,Z) + η(X)Z.

From the above two equations, it follows that

g(Bh(φX,Z),W ) = −(X ln f)g(Z,W ) − (TX ln f)g(TZ,W ),

which on making use of (3.7) yields

(3.10) g(h(φX,Z), FW ) = (X ln f)g(Z,W ),

for X ∈ TMT and Z,W ∈ TMθ. This proves statement (iii).

Theorem 3.3. There does not exist a warped product semi-slant subman-

ifold in a Sasakian manifold other than a contact CR-warped product submanifold.

P r o o f. Consider a warped product submanifold M = MT ×f Mθ of a
Sasakian manifold M with ξ tangential to MT . On replacing X by φX in equation
(3.10), we get

η(X)g(h(Z, ξ), FW ) − g(h(X,Z), FW ) = (φX ln f)g(Z,W ).

The above relation on making use of formula (3.4) and (2.16) yields

(3.11) g(h(X,Z), FW ) = (η(X) − csc2 θ(φX ln f))g(FZ,FW ),

for any X ∈ TMT and Z,W ∈ TMθ.

If we denote by D0 the tangent bundle of Mθ and ν the orthogonal com-
plement of FD0 i.e.,

T⊥M = FD0 ⊕ ν,

then we may write

h(X,Z) = hFD0(X,Z) + hν(X,Z),

where hFD0(X,Z) ∈ FD0 and hν(X,Z) ∈ ν. In view of the above decomposition,
equation (3.11) yields

(3.12) hFD0(X,Z) = (η(X) − csc2 θ(φX ln f))FZ.
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On the other hand by equations (3.8) and (3.9), we have

(TX ln f)Z − (X ln f)TZ = Bh(X,Z) + η(X)Z.

Taking product with TZ and using the formula (2.15), the above equation implies
that

(3.13) g(h(X,Z), FTZ) = cos2 θ(X ln f)g(Z,Z).

From equations (3.12) and (3.13), it follows that either θ = π
2

or X(ln f) = 0.
This proves the assertion.
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