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Abstract. Let H be an infinite-dimensional complex Hilbert space and let
A, B ∈ L(H), where L(H) is the algebra of operators on H into itself. Let
δAB : L(H) → L(H) denote the generalized derivation δAB(X) = AX−XB.
This note will initiate a study on the class of pairs (A, B) such that R(δAB) =
R(δB∗A∗); i.e. R(δAB) is self-adjoint.

Introduction. Let L(H) the algebra of all bounded operators on an
infinite dimensional complex Hilbert space H. The generalized derivation oper-
ator δAB associated with (A,B), defined on L(H) by δAB(X) = AX − XB was
systematically studied for the first time in [6]. The properties of such operators
have been studied extensively (see for example [2, 5, 8, 9, 10]).

The D-symmetric operators (A is D-symmetric if R(δA) is self-adjoint,
where R(δA) is the closure of the range R(δA) of δA in the norm topology ) were
studied by J. H. Anderson, J. W. Bunce, J. A. Deddens and J. P. Williams [1],
S. Bouali and J. Charles [3, 4] and J. G. Stampfli [8].
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We consider the class of pairs (A,B) such that R(δAB) is self-adjoint,
we call such pairs D-symmetric. In this work we extend the results of the D-
symmetric operators to D-symmetric pairs.

In the first part we give some properties and characterizations which
concern the D-symmetric pairs. The second part contains a description of the
sets:

C(A,B) = {C ∈ L(H), CL(H) + L(H)C ⊂ R(δAB)}

and

I(A,B) = {Z ∈ L(H), ZR(δAB) + R(δAB)Z ⊂ R(δAB)}

which generalize those introduced by J. P. Williams in [10].

Notations.
1. Let K(H) be the ideal of all compact operators. For A ∈ L(H), let [A]

denote the coset of A in the Calkin algebra C(H) = L(H)/K(H).

2. C1(H) is the ideal of trace class operators.

3. For A,B ∈ L(H), R(δAB)
U

denotes the ultraweak closure of R(δAB),
and L(H)′U denotes the bounded linear forms in ultraweak topology.

4. Let M be a subspace of L(H). We denote the orthogonal of M in the
duality L(H), L(H)′ by M o.

5. For g and ω two vectors in H, we define g ⊗ ω ∈ L(H) as follows:

g ⊗ ω(x) =< x,ω > g for all x ∈ H.

1. Properties of D-symmetric Pairs.

Definition 1.1. Let A,B ∈ L(H).

(1) If R(δAB) is self-adjoint i.e. R(δAB) = R(δB∗A∗), we say that (A,B)
is D-symmetric pair of operators. We denote the set of such pairs by GD(H).

(2) Let δ[A][B] the generalized derivation operator defined on C(H) by

δ[A][B]([X]) = [δAB(X)]. If R(δ[A][B]) is self-adjoint i.e. R(δ[A][B]) = R(δ[B∗][A∗]),
we say that ([A], [B]) is D-symmetric in C(H).

Lemma 1.1. If A,B ∈ L(H), then

R(δAB)0 ' R(δAB)0 ∩ K(H)0 ⊕ ker (δBA) ∩ C1(H).
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The proof of Lemma 1.1 is the same as the proof of Theorem 3 in [11].

Theorem 1.1. For A, B ∈ L(H) the following are equivalent:
(1). (A,B) is D-symmetric;
(2). a. ([A], [B]) is D-symmetric in C(H), and

b. BT = TA implies BT ∗ = T ∗A for all T ∈ C1(H);
(3). c. ([A], [B]) is D-symmetric in C(H), and

d. R(δAB)
U

= R(δB∗A∗)
U
.

P r o o f. Note that R(δAB)
U

is self-adjoint if and only if R(δAB)0∩L(H)′U

is self-adjoint. Using Lemma 1.1 we have

R(δAB)0 ∩ L(H)′U ' ker (δBA) ∩ C1(H).

Consequently we obtain: R(δAB)
U

is self-adjoint if and only if ker (δBA)∩C1(H)
is self-adjoint. Thus (2) ⇔ (3).

The equivalence of (1) and (2) is a consequence of Lemma 1.1. �

Theorem 1.2. Let A,B ∈ L(H). If there exists λ ∈ IC such that (B −
λ)(A − λ) = (A − λ)2 = 0, A − λ 6= 0 and B − λ 6= 0, then (A,B) is not
D-symmetric.

P r o o f. Since for all λ ∈ IC, R(δAB) = R(δ(A−λ)(B−λ)), we may assume
without loss of generality that λ = 0. The condition A∗A 6= 0 (A 6= 0) implies
that there exists an vector f = Ah 6= 0, such that A∗f 6= 0. Then Bf = 0. Since
A∗B∗ = 0, we choose g 6= 0 such that A∗g = 0. We put A∗f = ω;

〈ω, f〉 = 〈A∗f, f〉 = 〈f,Af〉 = 〈f,A2h〉 = 0

i.e. ω and f are orthogonal. If X = ‖ω‖−2(g ⊗ ω) and Y ∈ L(H), then it follows
that:

〈(B∗X − XA∗)f, g〉 = 〈B∗Xf, g〉 − 〈XA∗f, g〉

= 〈0, g〉 − 〈Xω, g〉

= −〈g, g〉

= −‖g‖2

and
〈(AY − Y B)f, g〉 = 〈Y f,A∗g > − < 0, g〉 = 0.

Suppose that B∗X − XA∗ ∈ R(δAB)
U
. Then there exists a net (Yα)α ⊂ L(H)

such that, for all x and y in H, we have:

〈(AYα − YαB)x, y〉 −→ 〈(B∗X − XA∗)x, y〉.
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So that,

0 = 〈(AYα − YαB)f, g〉 −→ 〈(B∗X − XA∗)f, g〉 = −‖g‖2.

It follows that g = 0; this proves that B∗X −XA∗ /∈ R(δAB)
U
. Consequently we

obtain that (A,B) is not D-symmetric by Theorem 1.1. �

Theorem 1.3. If H is separable, then GD(H) is not norm-closed in
(L(H))2.

P r o o f. Let {en}n≥1 be an orthonormal basis for H. Define a sequence
of operators (Sn)n≥1 as follows:

Sn(ek) =







1

n
e2, if k = 1;

ek+1, if k ≥ 2.

Corollary 3 in [7] asserts that for every n ≥ 1 K(H) ⊂ R(δSn
). It follows from

[11, Corollary 1, p. 277] that {Sn}
′ ∩ C1(H) = {0}, then Theorem 1.1 implies

that (Sn, Sn) ∈ GD(H) for all n ≥ 1. Let

S(ek) =

{

0, if k = 1;
ek+1, if k ≥ 2.

It is clear that ‖(Sn, Sn) − (S, S)‖ −→ 0. Let f = e1 + e2, ω = e3 and g = e1.
Since S∗f = 0, Sf = ω and Sg = 0, It follows from the proof of Theorem 1.2
that (S∗, S∗) is not D-symmetric. Thus (S, S) /∈ GD(H), which completes the
proof. �

2. Properties and Descriptions of C(A, B) and I(A, B). Con-
sider the natural closed subalgebras of L(H) associated with (A,B):

C(A,B) = {C ∈ L(H), CL(H) + L(H)C ⊂ R(δAB)}

and
I(A,B) = {Z ∈ L(H), ZR(δAB) + R(δAB)Z ⊂ R(δAB)}

It is clear that; if R(δAB) is norm-dense in L(H), I(A,B) = C(A,B) = L(H) (for
example A = 2B = 2I). Thus C(A,B) 6= {0} and I(A,B) contains non-scalar
operators in general.

Theoren 2.1. If (A,B) is D-symmetric, then:
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ı. C(A,B) and I(A,B) are norm closed C∗−algebras in L(H);
ıı. C(A,B) is a two-sided ideal of I(A,B).

P r o o f. ı. It is clear that C(A,B) and I(A,B) are norm closed algebras
in L(H). Since R(δAB) is self-adjoint, C(A,B) and I(A,B) are C∗−algebras.

ıı. If Z ∈ I(A,B) and C ∈ C(A,B), then for all X ∈ L(H) we have:

X(CZ) = (XC)Z ∈ R(δAB)Z ⊂ R(δAB),

and (CZ)X = C(ZX) ∈ R(δAB). Thus C(A,B) is a right ideal of I(A,B). Since
C(A,B) and I(A,B) are C∗−algebras, C(A,B) is a two-sided ideal of I(A,B). �

Lemma 2.1. Let A, B ∈ L(H), then;

I(A,B) = {Z ∈ L(H), δZ(A)L(H) + L(H)δZ(B) ⊂ R(δAB)}.

P r o o f. If Z ∈ I(A,B) and X ∈ L(H), then

δZ(A)X = ZδAB(X) − δAB(ZX), and XδZ(B) = δAB(X)Z − δAB(XZ).

This implies that δZ(A)X ∈ R(δAB) and XδZ(B) ∈ R(δAB). Thus

δZ(A)L(H) + L(H)δZ(B) ⊂ R(δAB).

The reverse inclusion follows from the identities:

ZδAB(X) = δZ(A)X + δAB(ZX), and δAB(X)Z = XδZ(B) + δAB(XZ).
2

Theorem 2.2. Let A, B ∈ L(H). If R(δAB) does not contain any
nonzero positive operator, then C(A,B) = {0} and I(A,B) = {A}′ ∩ {B}′.

P r o o f. If C ∈ C(A,B) then CC∗ ∈ R(δAB); consequently we have
C = 0. Thus C(A,B) = {0}.

Let Z ∈ I(A,B), δZ(A)L(H) ⊂ R(δAB) and L(H)δZ(B) ⊂ R(δAB) by
Lemma 2.1.

Consequently we obtain δZ(A)(δZ(A))∗ = (δZ(B))∗δZ(B) = 0. Thus
Z ∈ {A}′ ∩ {B}′.

Conversely; if Z ∈ {A}′ ∩ {B}′, then δZ(A) = δZ(B) = 0. It follows from
Lemma 2.1 that Z ∈ I(A,B). �
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I. Acta Sci. Math. (Szeged) 58 (1993), 517–525.

[4] S. Bouali, J. Charles , Extension de la notion d’opérateurs d-symétriques
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