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ABSTRACT. Let H be an infinite-dimensional complex Hilbert space and let
A, B € L(H), where L(H) is the algebra of operators on H into itself. Let
dap: L(H) — L(H) denote the generalized derivation d4p(X) = AX — XB.

This note will initiate a study on the class of pairs (A, B) such that R(04p) =
R(6pa+); i.e. R(6ap) is self-adjoint.

Introduction. Let £(H) the algebra of all bounded operators on an
infinite dimensional complex Hilbert space H. The generalized derivation oper-
ator d4p associated with (A, B), defined on L(H) by dap(X) = AX — X B was
systematically studied for the first time in [6]. The properties of such operators
have been studied extensively (see for example [2, 5, 8, 9, 10]).

The D-symmetric operators (A is D-symmetric if R(54) is self-adjoint,
where R(d4) is the closure of the range R(d4) of d4 in the norm topology ) were
studied by J. H. Anderson, J. W. Bunce, J. A. Deddens and J. P. Williams [1],
S. Bouali and J. Charles [3, 4] and J. G. Stampfli [8].
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We consider the class of pairs (A, B) such that R(dap) is self-adjoint,
we call such pairs D-symmetric. In this work we extend the results of the D-
symmetric operators to D-symmetric pairs.

In the first part we give some properties and characterizations which
concern the D-symmetric pairs. The second part contains a description of the
sets:

C(A,B) = {C € L(H), CLH)+ LH)C C RGap)}

and

I(A,B)={Z € L(H), ZR(5aB) +R(6a)Z C R(34p)}

which generalize those introduced by J. P. Williams in [10].

Notations.

1. Let K(H) be the ideal of all compact operators. For A € L(H), let [A]
denote the coset of A in the Calkin algebra C(H) = L(H)/K(H).

2. C1(H) is the ideal of trace class operators.

3. For A,B € L(H), R(dAB)U denotes the ultraweak closure of R(d4p),
and L£(H)'"Y denotes the bounded linear forms in ultraweak topology.

4. Let M be a subspace of L(H). We denote the orthogonal of M in the
duality L(H), L(H)" by M°.

5. For g and w two vectors in H, we define g @ w € L(H) as follows:

gRw(x) =<z,w>g foralze H.

1. Properties of D-symmetric Pairs.

Definition 1.1. Let A, B € L(H).

(1) If R(6aB) is self-adjoint i.e. R(dap) = R(dp+a+), we say that (A, B)
is D-symmetric pair of operators. We denote the set of such pairs by GD(H).
(2) Let diu(p) the generalized derivation operator defined on C(H) by

6[A][B]([X]> = [5AB(X)] IfR((g[A][B]) 18 self—adjomt 1.€. R((S[A][B]) = R(d[B*][A*]),
we say that ([A],[B]) is D-symmetric in C(H).

Lemma 1.1. If A, B € L(H), then

R(648)° ~ R(645)° NK(H)® @ ker (6p4) N C1(H).
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The proof of Lemma 1.1 is the same as the proof of Theorem 3 in [11].
Theorem 1.1. For A, B € L(H) the following are equivalent:
(1). (A4, B) is D-symmetric;
(2). a. ([A],[B]) is D-symmetric in C(H), and

b. BT =TA implies BT* =T*A for all T € C1(H);
(3). ¢. ([4],[B]) is D-symmetric in C(H), and

U U

d. R(6ap) =R(0p=a+) .

Proof. Note that R((SAB)U is self-adjoint if and only if R(645)°NL(H)"Y
is self-adjoint. Using Lemma 1.1 we have

R(6ap)° N L(H)Y ~ker (654) NC1(H).

Consequently we obtain: R(éAB)U is self-adjoint if and only if ker (dpa) NC1(H)
is self-adjoint. Thus (2) < (3).
The equivalence of (1) and (2) is a consequence of Lemma 1.1. O

Theorem 1.2. Let A,B € L(H). If there exists A\ € @' such that (B —
NA-AN)=A-N2=0, A—)X#0and B— )\ # 0, then (A,B) is not
D-symmetric.

Proof. Since for all A € @, R(6a) = R(J(a—x)(B—))), We may assume
without loss of generality that A = 0. The condition A*A # 0 (A # 0) implies
that there exists an vector f = Ah # 0, such that A*f # 0. Then Bf = 0. Since
A*B* =0, we choose g # 0 such that A*g = 0. We put A*f = w;

(w, f) = (A" f. ) = (f,Af) = (f, A%h) = 0

i.e. wand f are orthogonal. If X = |jw||2(g ®w) and Y € L(H), then it follows
that:

(B*X —XA")f,g) = (B*Xf,g)—(XA"f,g)
= (0,9) — (Xw,g)
= —{9,9)
= —lgl?

and
<(AY—YB)f7g> = <Yf7A*g > =< Oug> =0.

Suppose that B*X — X A* € R(éAB)U. Then there exists a net (Y, )o C L(H)
such that, for all z and y in H, we have:

<(AYa - YozB)m7y> - <(B*X - XA*)xay>'
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So that,
0= ((AYa = YaB)f,g) — ((B*X — XA*)f, g) = —|lg/*.

It follows that g = 0; this proves that B*X — X A* ¢ R((SAB)U. Consequently we
obtain that (A, B) is not D-symmetric by Theorem 1.1. O

Theorem 1.3. If H is separable, then GD(H) is not norm-closed in
(L(H)).
Proof. Let {e;}n>1 be an orthonormal basis for H. Define a sequence
of operators (Sy)n,>1 as follows:
1 .
Sn(ek) _ 562, if k= 1,
€k+1, if k > 2.

Corollary 3 in [7] asserts that for every n > 1 K(H) C R(dg,). It follows from
[11, Corollary 1, p. 277] that {S,} NC1(H) = {0}, then Theorem 1.1 implies
that (Sp,S,) € GD(H) for all n > 1. Let

0, if k=1,
Sler) = { errr, if k> 2.

It is clear that ||(Sn,Sn) — (S,9)| — 0. Let f = e1 + e2, w = e3 and g = e;.
Since S*f =0, Sf = w and Sg = 0, It follows from the proof of Theorem 1.2
that (S*,S5*) is not D-symmetric. Thus (S,S) ¢ GD(H), which completes the
proof. O

2. Properties and Descriptions of C(A, B) and Z(A, B). Con-
sider the natural closed subalgebras of L(H) associated with (A, B):

C(A,B)={CeL(H), CLH)+ L(H)C C R(ap)}

and

I(A,B)={Z € L(H), ZR(5aB) +R(6a)Z C R(34p)}

It is clear that; if R(dap) is norm-dense in L(H), Z(A, B) = C(A, B) = L(H) (for
example A = 2B = 2I). Thus C(A4, B) # {0} and Z(A, B) contains non-scalar
operators in general.

Theoren 2.1. If (A, B) is D-symmetric, then:
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1. C(A, B) and Z(A, B) are norm closed C*—algebras in L(H);

u. C(A, B) is a two-sided ideal of (A, B).

Proof. 1. It is clear that C(A, B) and Z(A, B) are norm closed algebras
in £L(H). Since R(dap) is self-adjoint, C(A, B) and Z(A, B) are C*—algebras.

w. If Z € Z(A,B) and C € C(A, B), then for all X € L(H) we have:

X(CZ)=(XC)Z € R(6aB)Z C R(6aB),

and (CZ)X = C(ZX) € R(6ap). Thus C(A, B) is a right ideal of Z(A, B). Since
C(A, B) and Z(A, B) are C*—algebras, C(A, B) is a two-sided ideal of Z(A, B). O

Lemma 2.1. Let A, B € L(H), then;

T(A,B) = {Z € L(H), 5z(A)L(H) + L(H)oz(B) C R(ap)}-

Proof. If Z € Z(A,B) and X € L(H), then

6z(A)X = Z(SAB(X) - (5AB(ZX>, and X(gz(B> = (5AB(X)Z — 5AB(XZ)

This implies that §z(A)X € R(dap) and X0z(B) € R(dap). Thus

dz(A)L(H)+ L(H)oz(B) C R(04B).
The reverse inclusion follows from the identities:

ZdAB(X) = (5z(A)X —|—(5AB(ZX), and 5AB(X)Z = X(Sz(B> —|—(5AB(XZ>
O

Theorem 2.2. Let A, B € L(H). If R(6ap) does not contain any
nonzero positive operator, then C(A, B) = {0} and Z(A,B) = {A} n{B}'.

Proof. If C € C(A,B) then CC* € R(dap); consequently we have
C =0. Thus C(4, B) = {0}.

Let Z € Z(A,B), 6z(A)L(H) C R(dap) and L(H)dz(B) C R(dap) by
Lemma 2.1.

Consequently we obtain 07(A)(dz(A))* = (0z(B))*6z(B) = 0. Thus
Z e {AY n{BY}.

Conversely; if Z € {A}Y N{B}, then 6;(A) = dz(B) = 0. It follows from
Lemma 2.1 that Z € Z(A,B). O
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