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ABSTRACT. We provide a local convergence analysis for Steffensen’s method
in order to solve a generalized equation in a Banach space setting. Using
well known fixed point theorems for set—valued maps [13] and Holder type
conditions introduced by us in [2] for nonlinear equations, we obtain the
superlinear local convergence of Steffensen’s method. Our results compare
favorably with related ones obtained in [11].

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution z* of the generalized equation

(1.1) 0€ F(z) + G(x),
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where F' is a continuous mapping from an open subset D of a Banach space X
into itself, and G is a set—valued map from X into the subsets of X with closed
graph. We approximate x* using Steffensen’s method [2], [4], [11]:

(1'2) 0e F(mk) + [xkag(xk);F}(xk+1 - xk) + G(xk+1)7 (mO € D)? (k S N)v

where g : D — X is a continuous mapping, and [z,y; F] € L(X) is a divided
difference of order one satisfying

(1.3) [z,y; F](x —y) = F(x) — F(y) forall z,y € X with x #y.

Note that if F' is Fréchet—differentiable at x then [z, z; F| = F'(x).

The main advantage of our method (1.2) is that it does not need to
evaluate any Fréchet derivative. Moreover our method extends several methods
and allows to have a finer error bounds on the distances ||z — z*|| (k > 0). This
last observation is very important in computational mathematics [4].

If G = 0 in (1.2), then we obtain Steffensen’s method, studied by us
[2]-[4] and others [1], [11]. Moreover if g(x) = z or g(zp) = zk_1, then we
obtain the classical Newton’s method and Secant method respectively [3], [6], [9].
Furthermore, if F' is Fréchet—différentiable and g(xz) = z, method (1.2) reduces
to Newton’s method, studied in [2], [4], [7], [8] under various conditions.

In particular, Hilout in [11] using condition introduced in [2] (see hypoth-
esis (H1)) provided a local convergence analysis for Steffensen’s method (1.2).
Here, we are motivated by optimization considerations. Using weaker conditions
and under less computational cost, we also show the superlinear local convergence
of Steffensen’s method. Moreover our approach has the additional advantages:

(a) smaller radius of convergence;
and

(b) a larger choice of initial guesses .
Finally, note that optimization problems, systems of linear and nonlinear com-
plementarity problems, equilibrium problems, variational problems can be for-
mulated like equation (1.1) [6], [13]-[17].

2. Preliminaries. In order to make the paper as self contained as
possible we recall some terminology introduced in [3], [5], [7], [11]. The distance
from a point = to a set A in the metric space (Z, p) is defined by dist (z, A) =
inf{p(z,y), y € A}. The excess e from the set A to the set C is given by
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e(A,C) = sup{dist (z,C), = € A}. Let A : X =2 X be a set—valued map, we
denote by gph A = {(z,y) € X x X, y € A(z)} and A~ (y) = {x € X, y € A(x)}
is the inverse of A. We call B,(z) the closed ball centered at z with radius .

Definition 2.1. A set-valued A is said to be pseudo—Lipschitz around
(z0,Y0) € gph A with modulus M if there exist constants a and b such that

(2.1) sup dist (z, A(y")) < M|y’ —4"||, for all ¢’ and y" in By(zp).
z€A(y")NBa(yo)

We have an equivalent definition in terms of excess by replacing the in-
equality (2.1) by

(2.2)  e(A(y')N Ba(yo), A(y")) < M|y —4"||, for all ¥’ and 3" in By(xg).

The pseudo—Lipschitzness property has been introduced by Aubin [5] and he was

the first to define this concept as a continuity property. This property is also

called “Aubin continuity”. For more characterizations and applications of this

concept, the reader could be referred to ([17] and the references given there).
We will need the following lemma (due to Dontchev and Hager [7]).

Lemma 2.2. Let (Z,p) be a complete metric space, let ¢ a set—valued
map from Z into the closed subsets of Z, let ng € Z and let r and \ be such that
0<A<1 and
(a) dist (no, #(mo)) < (1 —A),

(b) e(d(x1) N Br(mo), d(w2)) < A p(x1,22), Vo1, 22 € Br(no),
then ¢ has a fized—point in B,(no). That is, there exists x € By(ng) such that
x € ¢(x). If ¢ is single—valued, then x is the unique fixed point of ¢ in B,(ng).

Lemma 2.2 is a generalization of a fixed—point theorem given in [13] where
in assertion (b) of the Lemma 2.2 the excess e is replaced by the Pompeiu—
Hausdorff distance. In the sequel, the distance p in Lemma 2.2 is replaced by the
norm.

We suppose that, for every distinct points z and y in a neighborhood V'
of x*, there exists a first order divided difference of F' at these points. We will
need the following assumptions on a neighborhood V' of x*:
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(HO) |lg(x) — g(x®)|| < apl|lz — x=*||, ap € [0,1] for all z € V and g(z*) = z*,
(H1) There exist vy, v1 > 0 such that for all z,y in V
[z, 2"; F] = [z, g(x); F]|| < wolla™ — g(z)||",

Iz, y; F] = [z, 9(2); FII| < wnilly = g(@)[”, p € [0,1],

The assumption (H1) is called a (vg,v1,p)-Holder continuity property of
divided difference. Note that if p = 1 then F' has a Lipschitz continuous divided
difference.

(H2) The set-valued map (F(z*) + G)~! is M-pseudo-Lipschitz around (0, z*),

(H3) For all z,y € V, we have ||[z,y; F]|| < d, |F(z) — F(z*)|| < doy |z — =¥,
and Md < 1.

Remark 2.3. The assumption (H3) implies that F'is d—Lipschitz on V.

Remark 2.4. Herndndez and Rubio [9, 10] show a semilocal result
of convergence of the Secant method to solve a nonlinear equation using w-—
conditioned divided difference, i.e., one replaces in (H1) the right term of the
inequality by w(||x — ul|, ||y — v||) where w from R} x R to Ry is a continuous
nondecreasing function in both variables.

3. Local convergence analysis. We need to introduce some standard
notations. First, let us define the set—valued map @) : X = X by

(3.1) Q(z) = F(z*) + G(x).

For k € N and z, defined in (1.2), we consider the quantity

(3.2) Zi(x) = F(x™) — F(xg) — [xg, g(xk); F(z — zk).

Finally, define the set—valued map v : X = X by

(3.3) () = Q7 (Zk(x)).
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We provide the main local convergence result:

Theorem 3.1. We suppose that assumptions (HO)—(H3) are satisfied.
M v ag
1-Md
starting point xo in Bs(x*) (xo and x* distinct), there exists a sequence (xy)
defined by (1.2) which satisfies

For every constant C' > = Cy, one can find § > 0 such that for every

(3.4) k1 — 2| < Cllay — 2|PF.

The proof of Theorem 3.1 is by induction on k, we first state a result
which is the starting point of our algorithm.

Proposition 3.2. Under the assumptions of Theorem 3.1, there exists
d > 0 such that for every starting point xo in Bs(z*) (xo and x* distinct), the
set—valued map o has a fixed point x1 in Bs(z*) satisfying

(3.5) lz1 = ™|l < Cllzo — 2" |P*.

Remark 3.3. The point x7 is a fixed point of g if and only if the
following holds

(3.6) 0 € F(zo) + [z0, 9(w0); Fl(21 — m0) + G(21).
An easy computation of xp shows that the set—valued mapping ¥ has a fixed
point xxy1 in X. This process is useful to prove the existence of (x}) satisfying

(1.2).

Proof of Proposition 3.2. By hypothesis (H2) there exist positive
numbers M, a and b such that

(37)  e(Q7'(Y)NBa(z"), Q7 (y") < Mlly' —y"Il, Vy'.y" € By(0).
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Fix 0 > 0 such that Bs(z*) CV C D and

b 1 b
— : . ptl . .
(3.8) 0 < o mm{a : T (toor U5 2d0}'

The main idea of the proof of Proposition 3.2 is to show that both assertions
(a) and (b) of Lemma 2.2 hold; where 19 := x*, ¢ is the function vy defined by
(3.3) and where r and A are numbers to be set. According to the definition of
the excess e, we have

(3.9) dist (", o (a*)) < e(Q—1<o> n B(s(x*),wo(a:*)).

Note that for z € Bs(2*) using (H0) we can have

lg() — 27| < llg(z) — g(«")|| < aollz — 27| < [lz — 27| <6,

which implies g(z) € Bs(z*). Moreover, for all point z¢ in Bs(z*) (zp and z*
distinct) we have

1Zo(2")I| = [|[F(z") = F(x0) = [w0, g(w0); F(z" — mo)|l.
By assumptions (H0)—(H1) we deduce

120l = 1I([e0. 275 F) = [z0, g(ao): F1) (a* = o)
(3.10) < lwo, 2™ F] = [wo, g(wo); FII| [lz* — xol|
< v lle” = gao)|” Jla* — o]
< g ol ||z* — xp|PHL

Then (3.8) yields, Zy(z*) € By(0).
Using (3.7) we have

(3.11) €<Q_1(0)“Bé<$*)v¢o($*)> - €<Q_1(0)ﬂst(x*)vQ—l[ZO(gC*)O

M vy oP ||z* — xo||PH!

IN

By the inequality (3.9), we get
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(3.12) dist (%, (x*)) < M vy oP ||z* — zo||PTL.

Since C(1 — M d) > M vy of), there exists A € [M d,1] such that C(1 — ) >
M vy ozg and

(3.13) dist (z*, 4o (z*)) < C (1 = \) [Jzg — «*|PT.

By setting r := 19 = C ||zg — 2*||P™! we can deduce from the inequality (3.13)
that the assertion (a) in Lemma 2.2 is satisfied.

Now, we show that condition (b) of Lemma 2.2 is satisfied.

By (3.8) we have rp < § < a and moreover for x € Bs(z*) we have

(3.14)
| Zo ()] | F'(x*) — F(x0) — [%0, 9(z0); F](x — o)
[F(z*) — F(z)|| + | F(z) — F(z0) — [%0, g(z0); F](z — z0)]|

1F(z*) = F(2)ll + ll[zo, z; F] = [x0, g(z0); FI|| lz — 2ol

IAIA I

Using the assumptions (H0)—(H1) and (H3) we obtain

1Zo()l| < dlla” =zl +v1 [lz = g(@o)IP [l — ol
(3.15) < dz” =zl + v (o — 27| + [l2" = g(zo) )P |z — ol
< dé+1q (1+a0)p6p(25):d5+2V1 (1+040)p5p+1.

Then by (3.8) we deduce that for all x € Bs(z*) we have Zy(z) € By(0). Then it
follows that for all 2/, 2" € B, (z*) we have

e(o(x') N By, (27),¢o(2")) < e(tho(z") N Bs(2™), o (2")),

which yields by (3.7)

e(vo(') N By (%), Yo (")) M || Zo(z") = Zo(=")]|

(3.16) =
' < M ||[zo, g(o); f]|| [|=" — 2|

Using (H3) and the fact that A > M d, we obtain

(3.17) e(¥o(z') N By (2%), ¥o(a”)) < M d|j2” — 2| < A |2 — 2|
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and thus condition (b) of Lemma 2.2 is satisfied. Since both conditions of Lemma
2.2 are fulfilled, we can deduce the existence of a fixed point z; € B,,(z*) for the
map tg. This finishes the proof of Proposition 3.2. O

Proof of Theorem 3.1. Keeping n9 = z* and setting r := r; =
C||z* —z||P*!, the application of Proposition 3.2 to the map 1/, gives the existence
of a fixed point zy; for 15, which is an element of B, («*). This last fact implies
the inequality (3.4), which is the desired conclusion. O

Example 3.4. Simple example illustrating the algorithm presented in
this paper is given by a variational inequalities problems, i.e., if K is a convex
set in R™ and h is a function from K to R"™, the variational inequality problem
consists of seeking ko in K such that

(3.18) For each k € K, (h(ko),k—Fko) > 0

where (-,-) is the usual scalar product on R™.
Let T be a convex indicator function of K and O denotes the subdiffer-
ential operator. Then the problem (3.18) is equivalent to problem

(3.19) 0 € h(ko) + H (ko)

with H = 0Zk. H is also called the normal cone of K. The variational inequality
problem (3.18) is equivalent to (3.19) which is a generalized equation in the form
(1.1). Consequently, the problem (3.18) can be studied using our method (1.2).

Remark 3.5. In order for us to compare our results with the corre-
sponding ones in [11], let us introduce stronger conditions used in [11] to prove a
result similar to Theorem 3.1

(HO)" g is a—Lipschitz on V, o € [0,1] and g(z*) = z*,

(H1)" There exists v > 0 such that for all z,y,u and w in V

I,y F] = fu, w; FI| < v(llz = ull” + lly = wl[”), p €[0,1],
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(H3)" For all x,y € V, we have ||[z,y; f]|| < d and M d < 1.

Define also parameters 6 and C{, by

b 1 b
! i . ptl . .
(3.20) 0 mln{a ; 1/4 S (to7 Vo o },

and
Mvo?

21 b= .
(3.21) Co=1"/4d
Clearly,
(3.22) v S v S,
(3.23) ap < a,
and
(3.24) do < d,

. 2 V" d . .
hold in general and —, —, — and 5. can be arbitrarily large [3], [4]. It then
o 1

Qg 0
follows from the definition of C, C" (C" > CY), (3.8) and (3.20)—(3.24) that

(3.25) Cc <,
and
(3.26) 56 < dp.

Moreover in case any of (3.22)—(3.24) holds as a strict inequality, then so do (3.25)
and (3.26). Hence, the claims us made in the introduction have been justified.

4. Variant of method and conclusion. In this section we consider
a variant of Steffensen—type algorithm (1.2) by replacing in the first argument of
divided difference xy by yr = 5 xx + (1 — ) xx_1, more precisely, we associate
to (1.1) the following algorithm (k =1,2,...)

xg and x1 are given as starting points
(4.1) Y =B 2+ (L — B) zp_1; B s fixed in [0, 1]
0 € F(zg) + [y, 9(zx); Fl (@1 — 2k) + G(2p41)
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Note that this method is considered in [12] in the particular case g(z) = x. The
local convergence result of algorithm (4.1) is as follows

Theorem 4.1. Suppose that (H0)—(H3) are checked. For every C' >
Mui[2(1 = B)P + o]
1-Md
points xg and x1 in By (x*) and a sequence (x1,) defined by (4.1) which satisfies:

, there exist v > 0 such that, for every distinct starting

(4.2) l2pr1 — 2" < Clzy, — 2% max {[lar — 27|17, [l2p—1 — 2"}

The proof of Theorem 4.1 is almost identical to Theorem 3.1. It is enough
to make some modifications by replacing the mappings (3.2) and (3.3) by Z;.(z) :=
F(z*) — F(zg) — [yg, 9(xx); F(x — z) and ¢} (z) :== Q71 (Z},(z)) respectively and
choosing the constant v such that

b 1 b
4_ ] . p+1 . . X
(43) 7<mm{“’ \/4u1 (2P(1—5)P+ag+1)’{'70’72d0}

O

Remark 4.2. A remark identical to Remark 3.5 can now follow for
Theorem 4.1.

Conclusion. We provided a local convergence, for Steffensen—type
methods for solving generalized equations. Method (1.2) generalizes the Stef-
fensen’s method restricted to nonlinear equations [2].

For f = 1, our method (4.1) is no longer valid, but if F' is Fréchet dif-
ferentiable (4.1) is equivalent to Newton-type method (see [6]) to solve (1.1), we
have then the quadratically convergence result for p = 1.

Our results have improved the corresponding ones in [11].
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