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Abstract. In this article, we study a general iterative procedure of the
following form

0 ∈ f(xk) + F (xk+1),

where f is a function and F is a set valued map acting from a Banach
space X to a linear normed space Y, for solving generalized equations in the
nonsmooth framework.

We prove that this method is locally Q-linearly convergent to x∗ a solu-
tion of the generalized equation

0 ∈ f(x) + F (x)

if the set-valued map

[f(x∗) + g(·) − g(x∗) + F (·)]−1

is Aubin continuous at (0, x∗), where g : X → Y is a function, whose Fréchet
derivative is L−Lipschitz.
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1. Introduction. In this study we present an iterative procedure for
solving nonsmooth generalized equations of the form:

(1) find x ∈ X such that 0 ∈ f(x) + F (x),

where f is a fuction and F is a set-valued map acting from a Banach space X to
the linear normed space Y.

The generalized equations were introduced by S. M. Robinson in the
1970’s as a general tool for describing, analyzing, and solving different prob-
lems in a unified manner, for a survey of earlier results see [12]. For example,
when F = {0}, (1) is an equation; when F is the positive orthant in Rn, (1) is
a system of inequalities; when F is the normal cone to a convex and closed set
in X, (1) represent variational inequalities. For other examples, the reader could
refer to [2].

To solve (1), in [2] and [3] A. L. Dontchev introduced a Newton type
sequence of the form

(2) 0 ∈ f(xk) + ∇f(xk)(xk+1 − xk) + F (xk+1), k = 0, 1, . . . ,

where ∇f(xk) is the Fréchet derivative of f at the point xk. He also proved the
stability of the method (2), the Kantorovich-type theorem and the convergence
of an approximate Newton-type method. The main tool used for obtaining a Q-
quadratically convergence to a solution x∗ of the generalized equation (1) is the
Aubin continuity of (f+F )−1 and the Lipschitz property of the Fréchet derivative
∇f .

A. Pietrus, in [9], extended this study to the function f whose Fréchet
derivative satisfies the Hölder condition, he showed that the convergence is su-
perlinear and proved, in [10], the stability of the method (2) in this mild differ-
entiability context. When the function f do not possesses Fréchet derivative one
cannot use the classical approximations, based on Taylor expansion. To overcome
this difficulty, M. H. Geoffroy and A. Pietrus, in [7], introduced an extension of
the concept of point-based approximation, introduced by S. Robinson [13], so
called (n, α)-point-based approximation and established local convergence the-
orem. More precisely, M. H. Geoffroy and A. Pietrus considered the following
method

0 ∈ A(xk, xk+1) + F (xk+1)

where A : X×X → Y is a (n, α)-point-based approximation for f. Although this
method does not require any smoothness property on f several existing methods
are subsumed within this relation when f is smooth; for example it recovers a
Newton-type method (2).
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In this paper we present a more different approach. We study the local
convergence of the method

(3) 0 ∈ f(xk) + F (xk+1)

under some mild conditions for the function f and the set-valued map F. We
do not suppose that the function f possesses Fréchet derivative or any kind of
approximation; in this study f is only a Lipschitz function.

This paper is organized as follows: in Section 2, we recall a few preliminary
results, in Section 3, we give an extension of the Basic Majorant theorem which
has been proved in [11] and in Section 4, we prove that the method (3) is locally
convergent.

Throughout this paper all the norms are denoted by ‖ · ‖. The distance
from a point x ∈ X to the set a ⊂ X is dist(x,A) = inf{‖x − y‖ : y ∈ A}. The
inverse F−1 of the map F is defined as F−1 = {x ∈ X : y ∈ F (x)} and graphF is
the set {(x, y) ∈ X×Y : y ∈ F (x)}. We denote by Ba(x) the closed ball centered
at x with radius a.

2. Preliminaries. In this section, we collect some definitions and re-
sults that we shall need to prove our results. We employ the following concept
introduced by Aubin [1].

Definition 2.1. A set-valued map Γ : Y → 2X is said to be M− pseudo-

Lipschitz arround (y0, x0) ∈ graphF if there exist neighborhoods V of y0 and U
of x0 such that

sup
x ∈ Γ(y1) ∩ U

dist(x,Γ(y2)) ≤M‖y1 − y2‖

for every y1, y2 ∈ V.

Equivalently, Γ is M−pseudo-Lipschitz arround (y0, x0) ∈ graphΓ if there
exist positive constants a and b such that for every y1, y2 ∈ Bb(y0) and for every
x1 ∈ Γ(y1) ∩Ba(x0) there exists x2 ∈ Γ(y2) such that

‖x1 − x2‖ ≤M‖y1 − y2‖.

Let A and C be two subsets of X, if we denote by e(C,A) the excess from
the set A to the set C (semi-distance of Hausdorff)

e(C,A) = sup{dist(x,A) : x ∈ C}
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then we have an equivalent definition of M−pseudo-Lipschitz set-valued map:

e(Γ(y1) ∩Ba(x0),Γ(y2)) ≤M‖y1 − y2‖

for all y1, y2 ∈ Bb(y0).

In [5], the above property is called the Aubin continuity and the maps
satisfying this property are called Aubin continuous. In [4], Dontchev and Hager
use the above property to establish an inverse mapping theorem for set-valued
maps, moreover they prove the following fixed point statement.

Lemma 2.2. Let (X, ρ) be a complete metric space, let Φ map X to the

closed subsets of X, let η0 ∈ X, r and λ be such that 0 ≤ λ < 1 and

(a) dist(η0,Φ(η0)) < r(1 − λ)

(b) e(Φ(x1) ∩Br(η0),Φ(x2)) ≤ λρ(x1, x2) for all x1, x2 ∈ Br(η0).

Then Φ has a fixed point in Br(η0). That is, there exists x ∈ Br(η0) such

that x ∈ Φ(x). If Φ is single-valued, then x is the unique fixed point of Φ in

Br(η0).

The previous lemma is a generalization of a fixed point theorem in Ioffe-
Tikhomirov [6] where in (b) the excess e is replaced by the Hausdorff distance.

3. Basic Majorant Theorem. In this section we give a generalization
of Rheinboldt’s Basic Majorant Theorem [11]. The main tool is the majorizing
sequence, due to Kantorovich and Akilov [8].

Definition 3.1. Let {xk} be a sequence in the metric space (X, ρ). A

real non-negative sequence {tk} is called a majorizing sequence for {xk} if

ρ(xk+1, xk) ≤ tk+1 − tk, k = 0, 1, . . .

Note that any majorizing sequence {tk} for {xk} is necessarily nonde-
creasing.

Lemma 3.2. Let (X, ρ) be metric space, let {tk}, tk ∈ R, tk ≥ 0 is a

majorizing sequence for {xk}, xk ∈ X. Then:

(i) For m > k ≥ 0

(4) ρ(xm, xk) ≤ tm − tk.
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(ii) If limk→∞ tk = t∗ < +∞ exists, then {xk} is a Cauchy sequence in X.
Moreover, if X is complete, limk→∞ xk also exists and

(5) ρ(x∗, xk) ≤ t∗ − tk, k = 0, 1, . . .

P r o o f. For m > k ≥ 0 we have

ρ(xm, xk) ≤
m−1
∑

j=k

ρ(xj+1, xj) ≤
m−1
∑

j=k

(tj+1 − tj) = tm − tk.

Hence, if limk→∞ tk = t∗ < +∞ exists, then {xk} is a Cauchy sequence in X,
and, therefore, if X is complete, limk→∞ xk = x∗ also exists and for m → ∞ we
obtain the error estimate (5). This completes the proof. �

The following class of functions shall be used.

Definition 3.3. A function ϕ : Q ⊂ R3 → R is said to be of class Γ3(Q)
if it has the following properties:

(a) The domain Q is a hypercube Q = J1×J2×J3, where each Ji is an interval

of the form [0, a], [0, a) or [0,∞).

(b) ϕ is non-negative and isotone on Q, i.e., if (u
(i)
1 , u

(i)
2 , u

(i)
3 ) ∈ Q, i = 1, 2

and u
(1)
j ≤ u

(2)
j , j = 1, 2, 3, then

0 ≤ ϕ(u
(1)
1 , u

(1)
2 , u

(1)
3 ) ≤ ϕ(u

(2)
1 , u

(2)
2 , u

(2)
3 ).

(c) ϕ is a strictly increasing function in the first argument, i.e., if (u
(i)
1 , u2, u3)

∈ Q, i = 1, 2 and u
(1)
1 < u

(2)
1 , then

ϕ(u
(1)
1 , u2, u3) < ϕ(u

(2)
1 , u2, u3).

Let ϕ ∈ Γ3(Q), Q = J1 × J2 × J3. Consider a difference equation of the
form

(6) tk+1 − tk = ϕ(tk − tk−1, tk, tk−1)

for given t0 and t1. Then the solution {tk} of the difference equation (6) is said
to exist for given t0, t1, if

tk+1 − tk ∈ J1, tk ∈ J2 ∩ J3
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for all k ≥ 0.
Using this notation Rheinboldt proved, in [11], a general convergence

theorem for the process

xk+1 = G(xk), k = 0, 1, . . . ,

where G : D ⊂ X → X is an operator on the complete metric space (X, ρ),
ϕ ∈ Γ3(Q), x0 ∈ D and

ρ(G(G(x)), G(x)) ≤ ϕ(ρ(G(x), x), ρ(G(x), x0), ρ(x, x0)),

whenever x,G(x) ∈ D. Using these assumptions, the convergence of the iterative
process xk+1 = G(xk) in X is deduced from the convergence of the majorizing
sequence {tk}, where t0 = 0, t1 = ρ(G(x0), x0).

Here we prove a generalization of Rheinboldt’s theorem for set-valued
maps.

Theorem 3.4. Let (X, ρ) be a complete metric space, let F maps X to

the closed subsets of X, let r > 0, ϕ ∈ Γ3(Q) and x0 ∈ X be such that

(a) for t0 = 0, t1 > dist(F (x0), x0) the solution {tk} of the difference equation

(6) exists and limk→∞ tk = t∗ ≤ r.
(b) e(F (x) ∩ Br(x0), F (y)) ≤ ϕ(ρ(x, y), ρ(y, x0), ρ(x, x0)) whenever x, y ∈

Br(x0).
(c) limt↑t∗ ϕ(t∗ − t, t∗, t) = 0.

Then there exists a sequence {xk} such that xk+1 ∈ F (xk), k = 0, 1, 2, . . .
and the solution of (6) majorizes {xk}. Moreover, limk→∞ xk = x∗ exists, x∗ is

a fixed point of F in Bt∗(x0), that is, x∗ ∈ F (x∗) ∩ Bt∗(x0), and the following

estimate holds

ρ(x∗, xn) ≤ t∗ − tn.

P r o o f. The proof follows by induction. Since dist(F (x0), x0) < t1, there
exists x1 ∈ F (x0), such that

ρ(x1, x0) < t1 − t0 = t1.

It is obvious, that the sequence tk is nondecreasing, and tk ≤ t∗, k = 0, 1, . . .
Hence

ρ(x1, x0) < t1 ≤ t∗ ≤ r,

i.e., x1 ∈ Br(x0).
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Proceeding by induction, let us assume that there are points x1, x2, . . . , xn

∈ Br(x0) such that xk ∈ F (xk−1) and

ρ(xk, xk−1) < tk − tk−1

for k = 1, 2, . . . , n. Then, using condition (a) and (b), we have

e(F (xn−1) ∩Br(x0), F (xn)) ≤ ϕ(ρ(xn, xn−1), ρ(xn, x0), ρ(xn−1, x0))

< ϕ(tn − tn−1, tn, tn−1) = tn+1 − tn.

This implies that there exists xn+1 ∈ F (xn) such that

ρ(xn+1, xn) < tn+1 − tn.

Further,

ρ(xn+1, x0) ≤
n

∑

j=0

ρ(xj+1, xj) <

n
∑

j=0

(tj+1 − tj) = tn+1 ≤ t∗ ≤ r.

Thus, {xn} is majorized by {tn} and, using Lemma 3.2, limt→∞ xn = x∗

also exists and
ρ(x∗, xn) ≤ t∗ − tn, n = 0, 1, . . .

Taking n = 0 in the last inequality, we have

ρ(x∗, x0) ≤ t∗ ≤ r

or, equivalently, x∗ ∈ Bt∗(x0). By assumption (b)

dist(xn, F (x∗)) ≤ e(F (xn−1) ∩Br(x0), F (x∗))

≤ ϕ(ρ(x∗, xn−1), ρ(x
∗, x0), ρ(xn−1, x0))

≤ ϕ(t∗ − tn−1, t
∗, tn−1).

Hence, by assumption (c)

lim
n→∞

dist(xn, F (x∗)) = 0.

The triangle inequality implies that

dist(x∗, F (x∗)) ≤ ρ(x∗, xn) + dist(xn, F (x∗)

≤ ρ(x∗, xn) + ϕ(t∗ − tn−1, t
∗, tn−1).
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which approaches zero as n increases. Since F (x∗) is closed, we conclude that
x∗ ∈ F (x∗), i.e., x∗ is a fixed point of F in Bt∗(x0). This completes the proof. �

Now, we show that Lemma 2.2 can be derived from Theorem 3.4 as a
corollary. Taking

ϕ(ρ(y, x), ρ(y, x0), ρ(x, x0)) = λρ(y, x),

where 0 ≤ λ < 1, the difference equation (6) becomes

(7) λ(tk − tk−1) = tk+1 − tk.

By setting t0 = 0 and t1 = r(1 − λ), and using (7), we have

t2 − t1 = λ(t1 − t0) = λt1 = λr(1 − λ).

Hence,

t2 = t1 + λr(1 − λ) = r(1 − λ2).

It is readily seen, by induction, that

tn = r(1 − λn).

Now, since 0 ≤ λ < 1, limn→∞ tn = r and the condition (a) of Theorem 3.4 is
satisfied. The conditions (b) and (c) are obvious.

In the case when

ϕ(u− v, u, v) = h(u) − h(v)

we call h a first integral of the difference equation (6). Then we can state the
following proposition:

Proposition 3.5. Let h : [0,∞) ⊂ R → R be continuous and nonde-

creasing function, h(0) > 0, let t∗ is the smallest positive fixed point of h, let

ϕ ∈ Γ3(Q), where Q = J × J × J , J = [0, t∗] and

(8) ϕ(u− v, u, v) = h(u) − h(v)

for all 0 ≤ v < u. Then the sequence

(9) t0 = 0, tn+1 = h(tn)

for n = 0, 1, . . . , is the solution of the difference equation (6).
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P r o o f. For n ≤ 1, using (8), we have

ϕ(tn − tn−1, tn, tn−1) = h(tn) − h(tn−1) = tn+1 − tn.

Hence {tk} is a solution of the difference equation (6).

Now we prove the convergence of the solution {tk}. We know that t0 =
0 < t∗. Since h is nondecreasing h(0) ≤ h(t∗), i.e. t1 ≤ t∗. Proceeding by
induction we obtain tn ≤ t∗. Therefore, {tk} is convergent and if limn→∞ tn =
t̄ ≤ t∗, by letting n → ∞ in (9) we obtain, by the continuity of h, h(t̄) = t̄, and,
since t∗ is the smallest positive fixed point of h we have t̄ = t∗, i.e. limn→∞ tn = t∗.
This completes the proof. �

Now, from Theorem 3.4 and Proposition 3.5 it is readily obtain the fol-
lowing proposition:

Proposition 3.6. Let (X, ρ) be a complete metric space, let F maps X
to the closed subsets of X, let r > 0, ϕ ∈ Γ3(Q), where Q = J × J × J , J = [0, r]
and x0 ∈ X be such that

(a) e(F (x) ∩ Br(x0), F (y)) ≤ ϕ(ρ(x, y), ρ(y, x0), ρ(x, x0)) whenever x, y ∈
Br(x0).

(b) there exists a continuous nondecreasing function h : [0,∞) ⊂ R → R such

that h(0) > dist(F (x0), x0),

ϕ(u− v, u, v) = h(u) − h(v)

for all 0 ≤ v < u, and let t∗ ≤ r is the smallest positive fixed point of h.

Then there exists a sequence {xk} such that xk+1 ∈ F (xk), k = 0, 1, 2, . . .
and the solution of (6) t0 = 0, tn+1 = h(tn), n = 0, 1, . . . majorizes {xk}.
Moreover, limk→∞ xk = x∗ exists, x∗ is a fixed point of F in Bt∗(x0), that is,

x∗ ∈ F (x∗) ∩Bt∗(x0), and the folloing estimate holds

ρ(x∗, xn) ≤ t∗ − tn.

We have already seen that Lemma 2.2 can be derived from Theorem 3.4
as a corollary. In this case the majorizing sequence is tn = r(1 − λn). Define
h(t) = λt+ (1 − λ)r. Then it is obvious that h(t0) = h(0) = (1 − λ)r = t1. Since
ϕ(u−v, u, v) = λ(u−v) = h(u)−h(v) and h(r) = r, all conditions of Proposition
3.6 are fulfilled. Hence Proposision 3.6 contains as special case Lemma 2.2.
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4. Local convergence analysis of method (3). As we mentioned
it in the introduction, our purpose is to present an iterative procedure for solving
the following nonsmooth generalized equation (1):

0 ∈ f(x) + F (x).

From now on, we make the following assumptions (we recall that x∗ denotes a
solution of (1)):

(H1) f : X → Y is Lipschitz with a constant K in an open neighborhood
Ω of x∗.

(H2) F : X → 2Y is a set-valued map with closed graph.
(H3) There exists a Fréchet differentiable in Ω function g : X → Y such

that
(f(x∗) + g(·) − g(x∗) + F (·))−1

be Aubin continuous at (0, x∗) with a constant M for growth.
(H4) The Fréchet derivative ∇g of g is Lipschitz continuous with a con-

stant L.
(H5) ‖∇g(x∗)‖ ≤ p < 1/M .

(H6) The constants M , K and p are such that
2MK

1 −Mp
< 1.

Then, we can state our main result which reads as follows:

Theorem 4.1. Let x∗ be a solution of (1) and suppose that the assump-

tion (H1)–(H6) are satisfied. Then for every c such that
2MK

1 −Mp
< c < 1 one can

find δ > 0 such that for every starting point x0 ∈ Bδ(x
∗), there exists a sequence

{xk} for (1), defined by (3), which satisfies

(10) ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖

that is, the sequence {xk} is Q-linearly convergent to x∗.

Before proving Theorem 4.1, we need to introduce some notations. First,
define the set-valued map from X into the subsets of Y by

P (x) = f(x∗) + g(x) − g(x∗) + F (x)

and the map Φ0 for x0 fixed in X by

x→ Φ0(x) = P−1(f(x∗) + g(x) − g(x∗) − f(x0))

from X to the closed subsets of X.
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One can note that x1 ∈ X is a fixed point of Φ0 if and only if

f(x∗) + g(x1) − g(x∗) − f(x0) ∈ P (x1),

or, equivalently,

0 ∈ f(x0) + F (x1),

i.e., x1 is a solution of the equation (3).

Once xk is computed, we prove that the map

x→ Φk(x) = P−1(f(x∗) + g(x) − g(x∗) − f(xk))

has a fixed point xk+1. This process allows us to show the existence of a sequence
{xk} satisfying (3).

Now, we state a result, which is the starting point of our algorithm. It is
an efficient tool to prove Theorem 4.1 and reads as follows:

Proposition 4.2. Under the assumptions of Theorem 4.1 there exists

δ > 0 such that for all x0 6= x∗ and x0 ∈ Bδ(x
∗), the map

Φ0(x) = P−1(f(x∗) + g(x) − g(x∗) − f(x0))

has a fixed point x1 in Bδ(x
∗) satisfying ‖x1 − x∗‖ ≤ c‖x∗ − x0‖.

P r o o f o f P r o p o s i t i o n 4.2. By hypothesis (H3), there exist positive
numbers a and b such that

(11) e(P−1(y′) ∩Ba(x
∗), P−1(y′′)) ≤M‖y′ − y′′‖,

whenever y′, y′′ ∈ Bb(0). Fix c such that 2MK/(1 −Mp) < c < 1. Choose
δ > 0 such that Bδ(x

∗) ⊂ Ω, ‖f(x∗) − f(x)‖ ≤ b/2, ‖g(x∗) − g(x)‖ ≤ b/2 for all
x ∈ Bδ(x

∗) and

(12) δ < min

(

a;
1 −Mp

CML

)

.

According to the definition of the excess e we have

dist(x∗,Φ0(x
∗)) ≤ e(P−1(0) ∩Bδ(x

∗), P−1(f(x∗) − f(x0))).

Moreover, for all x0 ∈ Bδ(x
∗) we have ‖f(x∗) − f(x0)‖ ≤ b/2 which implies that

f(x∗) − f(x0) ∈ Bb(0).
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Then from (11) one has

dist(x∗,Φ0(x
∗)) ≤M‖f(x∗) − f(x0)‖ ≤MK‖x∗ − x0‖ < c(1 −Mp)‖x∗ − x0‖/2

Denote α = c(1 −Mp)‖x∗ − x0‖/2. For any x ∈ Bδ(x
∗) we have

‖f(x∗) + g(x) − g(x∗) − f(x0)‖ ≤ ‖f(x∗) − f(x0)‖ + ‖g(x) − g(x∗)‖ ≤ b.

which implies that f(x∗) + g(x) − g(x∗) − f(x0) ∈ Bb(0).

By setting r0 := c‖x∗ − x0‖ < δ, for any x′, x′′ ∈ Bδ(x
∗) we obtain

e(Φ0(x
′) ∩Br0

(x∗),Φ0(x
′′))

≤ e(P−1(f(x∗) + g(x′) − g(x∗) − f(x0)) ∩Bδ(x
∗),

P−1(f(x∗) + g(x′′) − g(x∗) − f(x0)))

≤M‖g(x′) − g(x′′)‖
≤M(‖g(x′′) − g(x′) −∇g(x′)(x′′ − x′)‖

+‖(∇g(x′) −∇g(x∗))(x′′ − x′)‖ + ‖∇g(x∗)(x′′ − x′)‖)
≤M(L‖x′′ − x′‖2/2 + L‖x′ − x∗‖.‖x′′ − x′‖ + p‖x′′ − x′‖).

Let

ϕ(w, u, v) = M(Lw2/2 + Lvw + pw).

Then it is easy to show that ϕ ∈ Γ3(Q), Q = J × J × J, J = [0, δ]. Denote
L1 = ML, p1 = Mp. It is readily seen that

ϕ(u− v, u, v) = ψ(u) − ψ(v),

where ψ(t) = L1t
2/2 + p1t+ α and ψ is evidently nondecreasing and has a fixed

point

t∗ =
1 −

√
1 − 2h

h
· α

1 − p1
,

where,using (12),

h =
L1α

(1 − p1)2
≤ 1

2
.

Since c < 1 we have

t∗ =
2

1 +
√

1 − 2h
· α

1 − p1
≤ 2α

1 − p1
= c‖x∗ − x0‖ < δ.
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Since all conditions of Proposision 3.6 are fulfilled, we can deduce the existence
of a fixed point x1 ∈ Bδ(x

∗) such that

‖x1 − x∗‖ < c‖x∗ − x0‖.

Then the proof of Proposition 4.2 is complete. �

P r o o f o f Th e o r em 4.1. We have x1 ∈ Br0
(x∗). That is

‖x1 − x∗‖ ≤ r0 = c‖x∗ − x0‖.

Proceeding by induction, keeping x∗ and setting rk = c‖x∗−xk‖, the application
of Proposition 4.2 to the map Φk gives the existence of a fixed point xk+1 for Φk

in Brk
(x∗), which implies (10).

That completes the proof of the Theorem 4.1. �

Acknowledgment. The autor thanks the anonymous referee for the
corrections and constructive suggestions which led to improvement of the paper.
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