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Abstract. Some new criteria for the oscillation of all solutions of second
order differential equations of the form
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are established. our results generalize and extend some known oscillation
criterain in the literature.
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1. Introduction. We are concerned with the oscillation of solutions of
second order differential equations with damping of the following form
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and the more general equation
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where r ∈ C[[t0,∞),R+], p ∈ C[[t0,∞), [0,∞)], q ∈ C[[t0,∞),R], ψ ∈ C[R,R+]

and g ∈ C1[R,R] such that xg(x) > 0 for x 6= 0 and
d

dx
g(x) > 0 for x 6= 0. ϕ

is defined and continuous on R × R − {0} with uϕ(u, v) > 0 for uv 6= 0 and
ϕ(λu, λv) = λϕ(u, v) for 0 < λ <∞ and (u, v) ∈ R ×R − {0}.

By the oscillation of equation (E1) [(E2)], we mean a function
x ∈ C1 ([Tx,∞) ,R) for some Tx ≥ t0, which has the property that
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∈ C1 ([Tx,∞) ,R) and satisfies equation (E1) [(E2)] on

[Tx,∞).
A solution of equation (E1) [(E2)] is called oscillatory if it has arbitrarly

large zeros otherwise, it is called nonoscillatory. Finally, equation (E1) [(E2)] is
called oscillatory if all its solutions are oscillatory.

In Section 2 we provide sufficient conditions for the oscillation of all so-
lutions of (E1). Several particular cases of (E1) have been discussed in the liter-
ature. To cite a few examples, the differential equation
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has been studied by Hsu and yeh [2] Kusano and Naito [4] Kusano, Yoshida [5], Li
and Yeh [6], [7], [8], [9], [10] and Lian, Yeh and Li [11]. A more general equation
than (E3)
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has been considered by Ayanlar and Tiryaki [1] and Wu et al. [16]. Our re-
sults include, as special cases, known oscillation theorems for (E3) and (E4). In
particular, we extend and improve the results obtained in [12], [16] and [14].

In Section 3 we will establish some oscillation criteria for equation (E2).
Several particular cases of (E2) have been discussed in the literature. The differ-
ential equation
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established by Manojlovic [13]. Wong and Agarwal [15] considered a special case
of this equation as
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Our results in this section generalize and improve Manojlovic [13].

2. Oscillation results for (E1). In order to discuss our main results,
we need the following well-known inequality which is due to Hardy et al. [3,
Theorem 41].

Lemma 1. If X and Y are nonnegative, then

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0, λ > 1,

where equality holds if and only if X = Y .

Theorem 1. Suppose that

(1) ϕ(1, z) ≥ z for all z 6= 0,

(2) 0 < ψ(x) ≤ γ for all x,

and there exist differentiable functions

k , ρ : [t0,∞) → (0,∞),

and the continuous function

H : D ≡ {(t, s) : t ≥ s ≥ t0} → R and h : D0 ≡ {(t, s) : t > s ≥ t0} → R,
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where H has a continuous nonpositive partial derivative on D with respect to the

second variable such that

H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0,

and

h(t, s) = −
∂

∂s
(H(t, s)k(s)) −
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H(t, s)k(s) for all (t, s) ∈ D0.

Then equation (E1) is oscillatory if
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P r o o f. On the contrary we assume that (E1) has a nonoscillatory solu-
tion x(t). We suppose without loss of generality that x(t) > 0 for all t ∈ [t0,∞).
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This and equation (E1) imply
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Multiply the above inequality by H(t, s)k(s) and integrate from T to t we obtain
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the previous inequality becomes
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for all t > s ≥ T . Moreover, by (4), we also have for every t ≥ T,

∫ t

T
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We use the above inequality for T = T0 to obtain
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≤

{
∫ T0

t0

k(s)ρ(s) |q(s)| ds+ k(T0) |ω(T0)|

}

<∞

which contradicts the assumption (3). This completes the proof. �

Corollary 1. If the condition (3) is replaced by the condition

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)k(s)q(s)ds = ∞,

and

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α

(H(t, s)k(s))α−1 ds <∞,

then the conclusion of Theorem 1 remains valid.

Theorem 2. Suppose that (1) and (2) hold, and let the functions H, h,

ρ and k be the same as in Theorem 1. Moreover, assume that

(6) 0 < inf
s≥ t0

[

lim
t→∞

inf
H(t, s)

H(t, t0)

]

≤ ∞,

and

(7) lim
t→∞

sup
1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α

(H(t, s)k(s))α−1 <∞,

hold. If there exists a function Ω ∈ C([t0,∞),R) such that

(8) lim
t→∞

sup

∫ t

t0

Ω
α/(α−1)
+ (s)

(k(s)ρ(s)r(s))1/(α−1)
= ∞,

and for every T ≥ t0,

(9)

lim
t→∞

sup
1

H(t, T )

∫ t

T

[

H(t, s)ρ(s)k(s)q(s) −
γρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds ≥ Ω(T ),

where Ω+(t) = max{Ω(t), 0} for t ≥ t0, then equation (E1) is oscillatory.

P r o o f. On the contrary we assume that (E1) has a nonoscillatory solu-
tion x(t). We suppose without loss of generality that x(t) > 0 for all t ∈ [t0,∞).
Defining ω(t) as in the proof of Theorem 1, we obtain (4) and (5) . Then, for
t > T ≥ t0 we have

lim
t→∞

sup
1

H(t, T )

∫ t

T

[

H(t, s)k(s)ρ(s)q(s) −
γρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds ≤ k(T )ω(T ).



402 E. M. Elabbasy, W. W. Elhaddad

Thus, by (9) we have

(10) Ω(T ) ≤ k(T )ω(T ) for all T ≥ T0,

and

(11) lim
t→∞

sup
1

H(t, T0)

∫ t

T0

H(t, s)ρ(s)k(s)q(s)ds ≥ Ω(T0).

Let

F (t) =
1

H(t, T0)

∫ t

T0

|h(t, s)| |ω(s)| ds,

G(t) =
(α− 1)

H(t, T0)

∫ t

T0

H(t, s)k(s)[ρ(s)r(s)]
−1

α−1 |ω(s)|
α

α−1 ds,

for t > T0. Then by (4) and (11), we get that

lim
t→∞

inf |G(t) − F (t)| ≤ k(T0)ω(T0)

− lim
t→∞

sup
1

H(t, T0)

∫ t

T0

H(t, s)ρ(s)k(s)q(s)ds

(12) ≤ k(T0)ω(T0) − Ω(T0) <∞.

Now, we claim that

(13)

∫ ∞

T0

k(s)
|ω(s)|α/(α−1)

[ρ(s)r(s)]1/(α−1)
<∞.

Suppose to the contrary that

(14)

∫ ∞

T0

k(s)
|ω(s)|α/(α−1)

[ρ(s)r(s)]1/(α−1)
= ∞.

By (6), there is a positive constant η satisfying

(15) inf
s ≥ t0

[

lim
t→∞

inf
H(t, s)

H(t, t0)

]

> η.

On the other hand, by (14) for any positive number µ there exists a T1 > T0 such
that

∫ t

T0

k(s)
|ω(s)|α/(α−1)

[ρ(s)r(s)]1/(α−1)
ds ≥

µ

(α− 1) η
for all t ≥ T1.



Oscillation Criteria for Nonlinear Differential Equations . . . 403

So for all t ≥ T1

G(t) =
(α− 1)

H(t, T0)

∫ t

T0

H(t, s)d

[

∫ s

T0

k(u)
|ω(u)|α/(α−1)

[ρ(u)r(u)]1/(α−1)
du

]

=
(α− 1)

H(t, T0)

∫ t

T0

[

−∂H(t, s)

∂s

]

d

[

∫ s

T0

k(u)
|ω(u)|α/(α−1)

[ρ(u)r(u)]1/(α−1)
du

]

ds

≥
(α− 1)

H(t, T0)

∫ t

T1

[

−∂H(t, s)

∂s

]

d

[

∫ s

T0

k(u)
|ω(u)|α/(α−1)

[ρ(u)r(u)]1/(α−1)
du

]

ds

(16) ≥
µ

(α− 1) η

(α− 1)

H(t, T0)

∫ t

T1

[

−∂H(t, s)

∂s

]

ds =
µH(t, T1)

ηH(t, T0)
.

From (15) we have

lim
t→∞

inf
H(t, T1)

H(t, t0)
> η > 0.

So there exists T2 ≥ T1 such that
H(t, T1)

H(t, t0)
≥ η for all t ≥ T2. Therefore by (16)

G(t) ≥ µ for all t ≥ T2, and since µ is arbitrary constant, we conclude that

(17) lim
t→∞

G(t) = ∞.

Next, consider a sequence {tn}
∞
n=1 in (T0,∞) with limn→∞ tn = ∞ and such

that

lim
n→∞

[G(tn) − F (tn)] = lim
t→∞

sup [G(t) − F (t)] .

In view of (12), there exists a constant M such that

(18) G(tn) − F (tn) ≤M for all sufficient large n.

It follows from (17) that

(19) lim
n→∞

G(tn) = ∞.

This and (18) give

(20) lim
n→∞

F (tn) = ∞.
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Then, by (18) and (19),

F (tn)

G(tn)
− 1 ≥

−M

G(tn)
>

−1

2
for n large enough.

Thus,

F (tn)

G(tn)
>

1

2
for n large enough.

This and (20) imply that

(21) lim
n→∞

Fα(tn)

Gα−1(tn)
= ∞.

On the other hand, by the Holder’s inequality, we have

F (tn) =
1

H(tn, T0)

∫ tn

T0

|h(tn, s)| |ω(s)| ds

≤

{

α− 1

H(tn, T0)

∫ tn

T0

H(tn, s)k(s)
|ω(s)|α/(α−1)

[ρ(s)r(s)]1/(α−1)
ds

}(α−1)/α

×

{

1

(α− 1)α−1H(tn, T0)

∫ tn

T0

ρ(s)r(s) |h(tn, s)|
α

(H(tn, s)k(s))
α−1 ds

}1/α

≤
G(α−1)/α(tn)

(α− 1)(α−1)/α

{

1

H(tn, T0)

∫ tn

T0

ρ(s)r(s) |h(tn, s)|
α

(H(tn, s)k(s))
α−1 ds

}1/α

,

and therefore,

Fα(tn)

G(α−1)(tn)
≤

1

(α− 1)(α−1)H(tn, T0)

∫ tn

T0

ρ(s)r(s) |h(tn, s)|
α

(H(tn, s)k(s))
α−1 ds

≤
1

(α− 1)(α−1)ηH(tn, t0)

∫ tn

t0

ρ(s)r(s) |h(tn, s)|
α

(H(tn, s)k(s))
α−1 ds,

for all large n. It follows from (21) that

(22) lim
n→∞

1

H(tn, t0)

∫ tn

t0

ρ(s)r(s) |h(tn, s)|
α

(H(tn, s)k(s))
α−1 ds = ∞,
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that is,

lim
t→∞

1

H(t, t0)

∫ t

T0

ρ(s)r(s) |h(t, s)|α

(H(t, s)k(s))α−1 ds = ∞,

which contradicts (7). Hence, (13) holds. Then, it follows from (10) that

∫ t

T0

Ω
α/(α−1)
+ (s)

[k(s)ρ(s)r(s)]1/(α−1)
ds ≤

∫ t

T0

k(s)
|ω(s)|α/(α−1)

[ρ(s)r(s)]1/(α−1)
ds <∞,

which contradicts (8). This completes the proof of Theorem 2. �

Theorem 3. Suppose that (1) and (2) hold, and let the functions H, h,

ρ and k be the same as in Theorem 1. such that (6) and

(23) lim
t→∞

inf
1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)k(s)q(s)ds <∞,

hold. If there exists a function Ω ∈ C([t0,∞),R) such that (8) hold for every

T ≥ t0 and

(24)

lim
t→∞

inf
1

H(t, T )

∫ t

T

[

H(t, s)ρ(s)k(s)q(s) −
γρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds ≥ Ω(T ),

then equation (E1) is oscillatory.

P r o o f. Without loss of generality, we may assume that there exists a
solution x(t) of equation (E1) such that x(t) 6= 0 on [T0,∞) for some sufficiently
large T0 ≥ t0. Define ω(t) as of Theorem 1. As in the proofs of Theorem 1 and
2, we can obtain (4), (5) and (10). From (23) it follow that

lim
t→∞

sup |G(t) − F (t)| ≤ k(t0)ω(t0)

− lim
t→∞

inf
1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)k(s)q(s)ds

< ∞,(25)

where F (t) and G(t) are defined as in the proof of Theorem 2. By (24) we have

Ω(t0) ≤ lim
t→∞

inf
1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)k(s)q(s)ds

− lim
t→∞

inf
1

H(t, t0)

∫ t

t0

γρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1 ds.
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This and (23) imply that

lim
t→∞

inf
1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α

(H(t, s)k(s))α−1 <∞,

considering a sequence {tn}
∞
n=1 in (T0,∞) with limn→∞ tn = ∞ and such that

lim
n→∞

1

H(tn, t0)

∫ tn

t0

ρ(s)r(s) |h(tn, s)|
α

(H(tn, s)k(s))
α−1 ds

(26) = lim
t→∞

inf
1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α

(H(t, s)k(s))α−1 ds <∞.

Now, suppose that (14) holds. With the same argument as in Theorem 2, we
conclude that (17) is satisfied. By (25), there exists a constant M such that (18)
is fulfilled. Then, following the procedure of the proof of Theorem 2, we see that
(22) holds, which contradicts (26). This contradiction proves that (26) fails. The
remainder of the proof is similar to that of Theorem 2, so we omit the details.
This completes the proof of Theorem 3. �

Theorem 4. Suppose that (1) and (2) hold, and let the functions H, h,

ρ and k be the same as in Theorem 1 such that (6), and

(27) lim
t→∞

inf
1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α

(H(t, s)k(s))α−1 ds <∞,

hold. If there exists a function Ω ∈ C([t0,∞),R) such that (8) and (24) hold for

every T ≥ t0, then equation (E1) is oscillatory.

Remark 1. If p(t) ≡ 0, and ψ(x) ≡ 1, then the above Theorems 1, 2
and 4 extend and improve Theorems 1, 2 and 3 of Manojlovic [12], and Theorems
1 − 3 reduce to Theorems 1 − 3 of Wang [14], respectively.

Remark 2. If p(t) ≡ 0, then Theorems 1 − 4, extend and improve
Theorems 1 − 4 of Wu et al., [16].

Example 1. Consider the differential equation

d

dt

(

t−
3
2 (1 + e−|x(t)|)

dx

dt

)

+ t−5/2x(t) = 0 for t ≥ t0 > 0.

We note that

α = 2, r(t) = t−
3
2 , q(t) = t−5/2 and ψ(x) = 1 + e−|x(t)|.
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let

ρ(s) = s, k(s) = s and H(t, s) = (t− s)2.

Then

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[

H(t, s)ρ(s)k(s)q(s) −
γρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds

= lim
t→∞

sup
1

(t− t0)2

∫ t

t0

(

t2s
−1
2 − 2ts

1
2 + s

3
2 − 8s

−1
2 + 8s

−1
2 t− s

−3
2 t2
)

ds = ∞.

Hence, this equation is oscillatory by Theorem 1. However, none of the results of
[12], [14] and [16] are applicable for this equation.

Example 2. Consider the differential equation

d

dt

(

2 + cos2 (ln t)

1 + 3 cos2 (ln t)

1 + 3x2(t)

2 + x2(t)

d

dt
x(t)

)

+
1

t

d

dt
x(t) +

1

t2
x(t) = 0,

for t ≥ t0 = 1. We note that

α = 2, r(t) =
2 + cos2 (ln t)

1 + 3 cos2 (ln t)
, q(t) =

1

t2
, p(t) =

1

t
,

and

0 < ψ(x) =
1 + 3x2

2 + x2
≤ 3.

If we take

ρ(s) = 1, k(s) = s and H(t, s) = (t− s)2,

then h(t, s) = 2s(t− s) and

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[

H(t, s)ρ(s)k(s)q(s) −
γρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds

= lim
t→∞

sup
1

(t− 1)2

∫ t

1

[

(t− s)2
1

s
− 3s

(

2 + sin2 (ln s)

1 + 3 sin2 (ln s)

)]

ds

≥ lim
t→∞

sup
1

(t− 1)2

∫ t

1

[

(t− s)2
1

s
− 6s

]

ds
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= lim
t→∞

sup
1

(t− 1)2

[

t2 ln t−
9

2
t2 + 2t+

5

2

]

= ∞.

Hence by Theorem 1 this equation is oscillatory. One such solution of this equa-
tion is x(t) = cos (ln t).

3. Oscillation creteria for (E2).

Theorem 5. Suppose that (1) and

(28)

d

dx
g(x)

(ψ(x) |g(x)α−2|)1/(α−1)
≥ δ > 0 for x 6= 0,

hold, and let the functions H, h, ρ and k be the same as in Theorem 1. Then

equation (E2) is oscillatory if

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[

H(t, s)ρ(s)k(s)q(s) −
β1−αρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds = ∞,

where β = δ
α−1 .

P r o o f. Let x(t) a nonoscillatory solution of equation (E2). Without loss
of generality, we may assume that x(t) 6= 0 on [T0,∞) for some sufficiently large
T0 ≥ t0. Define ω(t) as

ω(t) = ρ(t)

r(t)ψ(x)

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

α−2
dx

dt

g(x)
for t ≥ t0.

Thus,

d

dt
ω(t) =

d

dt
ρ(t)

ρ(t)
ω(t) + ρ(t)

d

dt

(

r(t)ψ(x)

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

α−2
dx

dt

)

g(x)

−

d

dx
g(x)

(ψ(x) |g(x)α−2|)1/(α−1)

|ω(t)|
α

α−1

[ρ(t)r(t)]1/(α−1)
.
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This and equation (E2) imply

d

dt
ω(t) ≤

d

dt
ρ(t)

ρ(t)
ω(t) − ρ(t)[q(t) + p(t)ϕ(1,

ω(t)

ρ(t)
)]

−

d

dx
g(x)

(ψ(x) |g(x)α−2|)1/(α−1)

|ω(t)|
α

α−1

[ρ(t)r(t)]1/(α−1)
.

From (1) and (28) we have

d

dt
ω(t) ≤

d

dt
ρ(t)

ρ(t)
ω(t) − ρ(t)q(t) − p(t)ω(t) −

δ

[ρ(t)r(t)]1/(α−1)
|ω(t)|

α
α−1 .

Multiply the above inequality by H(t, s)k(s) and integrate from T to t we obtain

∫ t

T
H(t, s)k(s)ρ(s)q(s)ds ≤

∫ t

T
H(t, s)k(s)







d

ds
ρ(s)

ρ(s)
− p(s)






ω(s)ds

−

∫ t

T
H(t, s)k(s)

d

ds
ω(s)ds− δ

∫ t

T
H(t, s)k(s)[γρ(s)r(s)]

−1
α−1 |ω(s)|

α
α−1 ds.

Since

−

∫ t

T
H(t, s)k(s)

d

ds
ω(s)ds = H(t, T )k(T )ω(T ) +

∫ t

T

∂

∂s
(H(t, s)k(s))ω(s)ds.

The previous inequality becomes

∫ t

T
H(t, s)k(s)ρ(s)q(s)ds ≤ H(t, T )k(T )ω(T ) +

∫ t

T
|h(t, s)ω(s)| ds

(29) − (α− 1)

∫ t

T

βH(t, s)k(s) |ω(s)|(α−1)/α

[ρ(s)r(s)]1/(α−1)
ds.

Define

X =
1

α

[

β(1−α)/α [H(t, s)k(s)](1−α)/α [ρ(s)r(s)]1/α |h(t, s)|
]

,
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Y =
(

β(α−1)/α [H(t, s)k(s)](α−1)/α [ρ(s)r(s)]−1/α |ω(s)|
)1/(α−1)

.

Then use the lemma 1, we have

|h(t, s)ω(s)| − (α− 1)
βH(t, s)k(s) |ω(s)|

α
α−1

[ρ(s)r(s)]1/(α−1)
≤
β1−αρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1 .

From (29) we have

∫ t

T
H(t, s)k(s)ρ(s)q(s)ds ≤ H(t, T )k(T )ω(T ) +

∫ t

T

β1−αρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1 ds,

or
∫ t

T

[

H(t, s)k(s)ρ(s)q(s) −
β1−αρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds ≤ H(t, T )k(T )ω(T ).

The remainder of the proof proceeds as in the proof of Theorem 1. The proof is
complete. �

Following the procedure of the proof of Theorem 2 and 3, we can also
prove the following theorems.

Theorem 6. Suppose that (1) and (28) hold, and let the functions H, h,

ρ and k be the same as in Theorem 1. If there exist a functions Ω ∈ C([t0,∞),R)
such that

(30) lim
t→∞

inf
1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α

(H(t, s)k(s))α−1 ds <∞,

and that for every T ≥ t0,

(31)

lim
t→∞

inf
1

H(t, T )

∫ t

T

[

H(t, s)ρ(s)k(s)q(s) −
β1−αρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds ≥ Ω(T ),

and (8) hold, then every solution of (E2) is oscillatory.

Theorem 7. Suppose that (1) and (28) hold, and let the functions H, h,

ρ and k be the same as in Theorem 1. If there exist a function Ω ∈ C([t0,∞),R)
such that

(32) lim
t→∞

inf
1

H(t, T )

∫ t

T
H(t, s)ρ(s)k(s)q(s)ds <∞,
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and that (8) and (31) hold, then every solution of (E2) is oscillatory.

Theorem 8. Suppose that (1) and (28) hold, and let the functions H, h,

ρ and k be the same as in Theorem 1. If there exist a function Ω ∈ C([t0,∞),R)
such that

(33) lim
t→∞

sup
1

H(t, t0)

∫ t

t0

ρ(s)r(s) |h(t, s)|α

(H(t, s)k(s))α−1 ds <∞,

and that for every T ≥ t0,

(34)

lim
t→∞

sup
1

H(t, T )

∫ t

T

[

H(t, s)ρ(s)k(s)q(s) −
β1−αρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds ≥ Ω(T ),

and (8) hold, then every solution of (E2) is oscillatory.

Remark 3. If p(t) ≡ 0, then Theorem 5, 6 and 8 extend and improve
Theorem 1, 3 and 2 of Manojlovic [13].

Example 3. Consider the differential equation

d

dt

(

t−1x2(t)
dx(t)

dt

)

+ t−2x3(t) = 0 for t ≥ t0 > 0.

We note that

α = 2 and

d

dx
g(x)

ψ(x)
= 3.

Let

ρ(s) = 1, k(s) = s and H(t, s) = (t− s)2.

Then

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[

H(t, s)ρ(s)k(s)q(s) −
β1−αρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds

= lim
t→∞

sup
1

(t− t0)2

∫ t

t0

{
t2

s
− 2t+ s−

t2

12s
+

t

2s
−

3

4
}ds = ∞.

Hence, this equation is oscillatory by Theorem 5. However the result of Mano-
jlovic [13] do not apply to this equation.
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Example 4. Consider the differential equation

d

dt

(

2 + sin2 (ln t)

1 + 3 sin2 (ln t)

1 + 3x2(t)

2 + x2(t)

dx

dt
(t)

)

+
1

t

dx

dt
+

(x(t) + x3(t))

t2(1 + 3 sin2 (ln t))
= 0,

for t ≥ t0 = 1. We note that

d

dx
g(x)

ψ(x)
= 2 + x2 ≥ 2 = δ.

If we take

ρ(s) = 1, k(s) = s and H(t, s) = (t− s)2,

then h(t, s) = 2s(t− s) and

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[

H(t, s)ρ(s)k(s)q(s) −
β1−αρ(s)r(s) |h(t, s)|α

αα (H(t, s)k(s))α−1

]

ds

= lim
t→∞

sup
1

(t− 1)2

∫ t

1

[(

(t− s)2

s(1 + 3 sin2 (ln s))

)

−
s

2

(

2 + sin2 (ln s)

1 + 3 sin2 (ln s)

)

]

ds

≥ lim
t→∞

sup
1

(t− 1)2

∫ t

1

[(

(t− s)2

4s

)

− s

]

ds

= lim
t→∞

sup
1

(t− 1)2

[

1

4
t2 ln t−

7

8
t2 +

1

2
t+

3

8

]

= ∞.

Hence by Theorem 1 this equation is oscillatory. One such solution of this equa-
tion is x(t) = sin (ln t).
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