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SUPERSYMMETRY AND GHOSTS

IN QUANTUM MECHANICS
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Abstract. A standard supersymmetric quantum system is defined by a

Hamiltonian Ĥ =
1

2
(Q̂∗Q̂+Q̂Q̂∗), where the super-charge Q̂ satisfies Q̂2 = 0,

Q̂ commutes with Ĥ . So we have Ĥ ≥ 0 and the quantum spectrum of Ĥ is
non negative.
On the other hand Pais-Ulhenbeck proposed in 1950 a model in quantum-

field theory where the d’Alembert operator 2 =
∂2

∂t2
− 4x is replaced by

fourth order operator 2(2 +m2), in order to eliminate the divergences oc-
curing in quantum field theory.
But then the Hamiltonian of the system, obtained by second quantization,
has large negative energies called “ghosts” by physicists. We report here
on a joint work with A. Smilga (SUBATECH, Nantes) where we consider a
similar problem for some models in quantum mechanics which are invariant
under supersymmetric transformations. We show in particular that “ghosts”
are still present.
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1. Introduction and Preliminaries. In this paper our aim is to
discuss some recent results obtained in a joint work [16] with A. Smilga (SUB-
ATECH, Nantes) and to give a pedagogical presention more suitable for math-
ematicians (it is our hope!). To explain our supersymmetric models we shall
first present the Pais-Ulhenbeck oscillators [15] leading directly to the presence
of ghosts.

To eliminate the divergences appearing in quantum field theory, Pais and
Ulhenbeck (1950) proposed to start with a differential operator of order 4 in time
instead of order 2. Usually the classical field theory starts with the box operator

2 =
∂2

∂t2
−4x, where t ∈ R, x ∈ R

3. Pais and Ulhenbeck have introduced the

following fourth order operator 2(2+m2). After a canonical second quantization
procedure, they get a sum of quantum oscillators.

But doing this we easily see that quantum fields with (large) negative
energy appear. Physicists do not like solutions with negative energy, they call
them “ghosts” because they have no physical meaning. In quantum field theory
also exist ghosts, introduced by Faddev-Popov in their quantization theory of
fields with gauge symmetry.

In [16] we consider systems with (super)-time derivatives of order greater
than one in their Lagrangians and invariant under supersymmetric transfor-
mations. These transformations are defined using super-analysis calculus with
bosonic and fermionic classical degree of freedom. Quantum models are obtained
after canonical quantization.

A standard quantum supersymmetric system is determined by a quantum

Hamiltonian Ĥ, H is usually a classical1 Hamiltonian, and supercharges Q̂, ˆ̃Q
such that

Ĥ =
1

2
[ ˆ̃Q, Q̂]+(1)

[Q̂, Ĥ ] = [ ˆ̃Q, Ĥ] = 0(2)

ˆ̃Q2 = Q̂2 = 0(3)

ˆ̃Q = Q̂∗,(4)

where Q̃ = Q̄ (complex conjugate, so ˆ̃Q is the Hermitian conjugate of Q̂)), [., .]+

1In all of this paper linear operators, in some Hilbert space, will be denoted with a hat
above. In concrete case Â means some quantization of a “classical observable” A, for example
the Weyl-Wigner quantization of smooth functions A defined on the phase space R

d × R
d, in

the Hilbert space L2(Rd).
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is the anticommutator, [Â, B̂]+ := ÂB̂ + B̂Â (the commutator will be denoted
indifferently [Â, B̂] = [Â, B̂]− = ÂB̂ − B̂Â).

In particular we have Ĥ ≥ 0 and spect(Ĥ) ⊆ [0,+∞[.

In our examples we shall see that the systems satisfy the supersymmetry

equations (1), (2), (3) but ˆ̃Q 6= Q̂∗, so it will be no more true that the energy
spectrum of Ĥ is non negative. Our aim is to analyze as far as possible the
spectrum of Ĥ.

These Preliminaries will be rather long because we shall recall for non
specialists (like the author of this paper!) what is supersymmetry, as well from
the quantum and classical point of view. We shall also explain what is the
Pais-Ulhenbeck oscillator because it is one of the first model with higher order
derivatives leading to ghosts.

1.1. The Pais-Ulhenbeck oscillator. Here we follow the presentation
of Mannheim [14]. More technical details are given in Appendix A.

Let us consider the classical field equation

2(2 +m2)Φ(t, x) = 0, t ∈ R, x ∈ R
3,

were 2 =
∂2

∂t2
−4x is the d’Alembert operator.

As usual to quantize this equation, we first compute harmonic solutions
Φk(t, x) = q(t)eikx, k ∈ R

3. So q satisfies the 4th order differential equation

d4

dt4
q + (2k2 +m2)

d2

dt2
q + (k4 + k2m2)q = 0.(5)

Remark that for the Klein-Gordon equation (2+m2)Φ(t, x) = 0 we should

get instead of (5) the harmonic oscillator equation
d2

dt2
q + (k2 +m2)q = 0.

It is convenient to introduce the notations ω2
1 + ω2

2 = 2k2 +m2, ω2
1ω

2
2 =

k4 + k2m2.

Following [13], Equation (5) is the Euler-Lagrange equation for the fol-
lowing Lagrangian

L(q̈, q̇, q) = q̈2 − (ω2
1 + ω2

2)q̇
2 + ω2

1ω
2
2q

2.

So, equation (5) is equivalent to the equation

∂L
∂q

=
d

dt

(

∂L
∂q̇

)

− d2

dt2

(

∂L
∂q̈

)

.
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Let us compute the classical Hamiltonian H defined as the Legendre transform of
L in q̈. We introduce new independent variable x = q̇ and a Lagrange multiplier
λ to get a more familiar Lagrangian with 3 degrees of freedom (q, x, λ)

L1 = ẋ2 − (ω2
1 + ω2

2)x
2 + ω2

1ω
2
2q

2 + λ(q̇ − x)

Let us remark here that considering classical mechanics with high order time
derivatives in the Lagrangian is rather old: Ostrogradski (1801–1861) already
did that in 1850.

The Legendre transform for L1 is not well defined : we have the con-

straints pq :=
∂L1

∂q̇
= λ, pλ = 0. Dirac [7] found a method to overcome this

difficulty. Following Dirac let us first compute the Hamiltonian

H1 = pxẋ+ pqq̇ + pλλ̇−L1, where ẋ =
px
2
.(6)

Here the Hamiltonian H1 is defined on the phase space R
6 with coordinates

(q, x, λ, pq, px, pλ) and we consider that q̇ and λ̇ are unknown functions defined
on the phase which will be determined using all the constraint equations.

If we denote φ1 = pq − λ and φ2 = pλ, that means that we want

{H1, φ1} = {H1, φ2} = 0, for φ1 = φ2 = 0.

So we get q̇ = x and λ̇ = 2ω2
1ω

2
2q, hence

H1 =
p2
x

4
+ pqx+ (ω2

1 + ω2
2)x

2 − ω2
1ω

2
2q

2 + 2ω2
1ω

2
2pλ

We can forget the λ degree of freedom and finally we find an effective Hamiltonian
with 2 degrees of freedom (q, x) ∈ R

2,

H =
p2
x

4
+ pqx+ (ω2

1 + ω2
2)x

2 − ω2
1ω

2
2q

2 .(7)

We can easily see that the equation of motion (5) can be deduced from the
Hamilton flow of H.

Remark 1.1. For constrainted Hamiltonian systems Dirac [7] intro-
duced a modified braket {., ; }DB with better properties on the constraint set.

Our Hamiltonian H can be canonically quantized in L2(R2) and gives a
second quantization procedure for the classical field equation (5).
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Assume that m > 0, or equivalently, ω1 6= ω2. Using Fock quantiza-
tion (see Appendix A for more details) , it is not difficult to get the quantized
Hamiltonian Ĥ. In suitable complex symplectic coordinates it can be writen as

Ĥ = ω1â
∗
1a1 − ω2â

∗
2a2

with the commutation relations [â1, â
∗
1] = [â2, â

∗
2] = 1, [â1, â2] = 0. But a∗1a1 +

a∗2a2 is a positive-definite oscillator, so we get all the spectrum of Ĥ: it is the

family of eigenvalues En,m =

(

n+
1

2

)

ω1 −
(

m+
1

2

)

ω2, with n,m ∈ N. So we

have many ghosts due to higher order time derivatives in the Lagrangian. But
these ghost are not dangerous (see more detail in Appendix A and in [1]).

For ω1 = ω2 > 0 (m = 0) physicists have some arguments to claim
that ghosts disappear because they go out of the physical space ([14, 8, 18]). It
seems to us that this claim has to be supplied with more mathematical details as
suggested by the paper [2].

1.2. Supersymmetry. Let us first recall that supersymmetry is a sym-
metry between fermions and bosons. During the thirty past years many efforts
has been devoted by physicists to understand its dynamical and phenemonological
consequences for elementary particles. Even if Supersymmetry is a beautiful and
elegant theory there is no experimental evidence to valid it. The main reason
is that at low energy supersymmetry is broken but it is expected that super-
symmetry may be detected soon in high-energy collider experiments in CERN.
Nevertheless the mathematical aspects of supersymmetry are very exciting and
bring a lot of new ideas in mathematics, in particular after Witten.

Let us now recall some elementary and basic facts concerning supersym-

metry. A standard supersymmetric model is an Hamiltonian Ĥ =
1

2
(Q̂∗Q̂+Q̂Q̂∗),

where Ĥ, Q̂ are operators on some Hilbert spaceH defined on a dense domain and
Q̂∗ is the Hermitian adjoint of Q̂. Ĥ is supposed to have a self-adjoint extension
in H.

If E is an eigenvalue of Ĥ then ker(Ĥ − E) is an invariant subspace for
Q̂ and Q̂∗. If E > 0 we can define

Â =
1√
2E

Q̂ |ker(Ĥ−E) Â∗ =
1√
2E

Q̂∗ |ker(Ĥ−E) .

We see that Â, Â∗ satisfy the relations of two generators for a Clifford alge-
bra, [â∗, â]+ = 1, â2 = 0. But this Clifford algebra has only one irrreducible
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representation, which is of dimension 2, realized with the Pauli matrices

Â = σ− :=

(

0 0
1 0

)

, Â∗ = σ+ :=

(

0 1
0 0

)

.

The fermionic charge is usually defined by

Fc = 2Â∗Â− 1 = σ3 :=

(

1 0
0 −1

)

.

It is well defined in (ker(Ĥ)⊥ and commutes with Ĥ. Hence we can define the
bosonic space and the fermionic space: Hb := ker(Fc− 1) and Hf := ker(Fc + 1).

Hb,f are invariant for Ĥ and Q̂ exchanges Hb and Hf . Then for E > 0 the states
with energy E appear by pairs: one fermion and one boson which are connected
by the super-charge Q̂.

Let us now consider the energy E = 0. Two cases can be considered.

(i) 0 is a groud state then Ĥψ = 0 if and only if Q̂ψ = Q̂∗ψ = 0 hence
supersymmetry is preserved.

(ii) there exits ψ such that Q̂ψ = 0 and Q̂∗ψ 6= 0 then supersymmetry is
broken.

The main problem when considering supersymmetric problems is to decide
to which case belongs the system.

The answer is easy to get for the famous Witten example. Let be V a
C2 real potential on R such that lim

|x|→+∞
|V ′(x)| = +∞. The supercharge Q̂ is

defined by

Q̂ := Q̂W = σ−(Dx − iV ′(x))(8)

where Dx =
d

idx
. The Hamiltonian introduced by E. Witten is the following :

ĤW =
1

2
(Q̂∗Q̂+ Q̂Q̂∗) =

1

2

(

D2
x + V ′(x)2 − σ3V

′′(x)
)

.(9)

Under suitable technical assumptions on V , Ĥ is essentially self-adjoint in L2(R)
its resolvent is compact and its spectrum is discrete.

Solving the first order equation (Dx ± iV ′(x))ψ = 0, it is not difficult
to prove that supersymmetry is broken if and only if the following condition is
satisfied :

lim
x→+∞

V (x) = − lim
x→−∞

V (x).
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In supersymmetric quantum systems bosons and fermions are put at the same
level. The classical analogue of bosons is classical mechanics and bosons systems
are obtained by canonical quantization of functions of positions and momenta,
defined on a phase space with real coordinates. A natural question to ask is:
what is the classical analogue of fermions?

Let us remember that fermions follows the exclusion Pauli principle. This
principle is implemented by antisymetric wave functions (Fock space) and families
of creation/annihilation operators on the antisymmetric Fock space satisfying the
anticommutation relations (see [3] for more details)

[âj , â
†
k]+ = δj,k.(10)

By analogy with bosons, it is natural to imagine some classical fermionic variables
θj, anticommuting (θjθk + θkθj = 0), such that after a suitable quantization pro-
cedure we can get (10). These fermionic variables are generators of a Grassmann
algebra. A mathematician can see a Grassmann algebra as an exterior algebra
and every algebraic formula with fermionic variables can be translated into the
language of differential forms (for example see [17]).

In several fondamental works, starting almost 40 years ago, physicists
and mathematicians have succeeded to construct a beautiful theory putting at
the same level bosons and fermions. This theory is valid as well on the quantum
side and classical side, not only for quantum mechanics but more important in
field theory ([5, 20]).

In the following subsection we shall give a brief approach of these ideas,
with enough details to understand the motivations for analysis of the models
found in [16].

1.3. Superfields and Hélein’s formula. As already said, it is natural
to represent fermionic states using Grassmann algebras. Recall that the Grass-
mann algebra Gn, with n generators θ1, · · · , θn is the algebra with unit (over R

or C spanned by the θj , where [θk, θk]+ = 0, for all j, k. It is a linear space of
dimension 2n (isomorphic the the exterior algebra of R

n (or C
n).

More explicitly we have the following interpretation. Recall that fermionic
states are usually represented in the antisymmetric Fock space H = ⊕n≥0Hn,
where H0 = C, Hn = ∧nK where K := L2(R3) is the one fermion state space, ∧
is the notation for the antisymmetric tensor product. So thatHn is the n-particles
space). Let us fix an orthonormal basis of K and consider a state ψ ∈ H. We
have

ψ =
∑

i1<i2<···<in
ψi1i2···inei1 ∧ ei2 ∧ · · · ein .
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The components ψi1i2···in can be determined from their generating function in the
Grasmann algebra Gn defined by

Ψ(θ1, · · · , θn) =
∑

i1<i2<···<in
ψi1i2···inθi1 · · · θin .

We remark that in the transformation ψ 7→ Ψ, ψ takes its values in C but Ψ takes
its values in the Grassmann algebra Gn.

Another important remark is the following. In canonical quantification of
bosons a fundamental property is that the commutator of two observables is the
quantification of the Poisson bracket (at least for the leading terms). For fermions
commutators are replaced by anticommutators: [A,B]+ := AB + BA (A,B are
in some associative algebra). A classical analogue of fermions with usual real or
complex numbers is not possible because that theory needs to have a lot of nilpo-
tent terms (for example the Witten charge satisfies Q2 = 0). The starting point
of this theory appeared in several papers of Golfand-Likhtman (1971), Volkov-
Akulov (1972), Wess-Zumino (1973), Salam-Stradee (1974). The mathematical
apparatus was later developped by several people, in particular Berezin, Leites,
Manin, Rogers, Dewitt, around 1980. Using Grassmann variables, they defined
superspaces, superfields, supermanifolds, super Lie groups.

Let us recall briefly the definition of superspaces and superfields. The
magic formula very often used in physicist’s papers is the following

≪ Φ = ϕ+ θ1ψ1 + θ2ψ2 + Fθ1θ2 ≫(11)

where Φ is a superfield depending on real coordinates x ∈ R
d , ψ1, ψ2, F are “

complex fermionic coordinates”, θ1, θ2 are the generators of a Grassmann algebra:
[θj, θk]+ = 0. For simplicity, we assume that we have only two fermions in our
system. By convention real variables are even, Grassmann variables θj are odd.

The meaning of formula (11) is not obvious because Φ is even, θj are odd,
so ψj have to be odd so they cannot be complex numbers.

A possibility to give a mathematical meaning to (11), is to define Φ as a
morphism from a “mysterious” space R

d|2 into R (d|2 means d bosons and 2 fermi-
ons). Intuitively R

d|2 is a space defined implicitely by the system of coordinates
(x1, · · · , xd; θ1, θ2). More precisely, Φ is defined as a superalgebra morphism Φ∗

(Φ∗(f) is a fermionic generalisation for the usual pullback: Φ∗(f) = f ◦ Φ for 0
fermion) from C∞(R) into C∞(Rd|2), where C∞(Rd|2) = C∞(R) ⊗ C[θ1, θ2] and
C[θ1, θ2] is the Grassmann algebra G2 with 2 generators.

Let us recall some basic facts about super-structure. In general, a super-
structure is defined as a Z/2Z-structure. For example a super-linear space is a
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direct sum of two linear spaces: V = V0 + V1, V0 is the even part, V1 is the odd
part. In other words, we define a parity map

π : V0\{0} ∪ V1\{0} → Z/2Z, π(a) = 0 if a ∈ V0\{0} and π(a) = 1 if a ∈ V1\{0}.

A super-algebra is a super-linear space and an algebra such that π(ab) = π(a) +
π(b). This super-algebra is commutative if ab = ba(−1)π(a)π(b).

A morphism from a super-algebra A into the super-algebra B is a linear
map Φ : A→ B, such that Φ(a) has the same parity as a when a has a parity. A
basic example is the space of forms where the graduation is given by the parity
of the degree.

Defining spaces by morphisms (ring spaces, sheafs) is a well known ap-
proach in algebraic geometry. This method was used to define “classical bosonic-
fermionic spaces (Berezin, Leites, see the books [20, 5]). So, in this approach
the superspace R

d|2 is a kind of virtual space. There exists another approach,
coming from differential geometry [6], [19], where superspaces are defined more
intuitively as set of points.
Let us come back to formula (11). A trick for ψj becomes odd is to add extra
fermionic coordinates θ3, θ4. Now, a morphism Φ∗ from C∞(R) into C∞(R1|4)
has the following expression

Φ∗(f)(x) =
∑

|J |≤4

aJ(f)(x)θJ , J = (j1, · · · , j4)

In this sum, |J | is even. In particular f 7→ a0000(f)(x) is multiplicative so there
exists a smooth function ϕ(x) such that a0000(f)(x) = f(ϕ(x)).

For |J | = 2, f 7→ aJ(f)(x) is a derivation at t = ϕ(x). Elaborating on
this approach, Hélein get the following nice formula

Φ∗(f)(x) = exp(Zx)f |t=ϕ(x)(12)

where Zx is a vector field on R, depending on x and on fermionic coordinates.
We have: Zx = T0 + θ1T1 + θ2T2 + θ1θ2T1,2, the T ′s depend only on the extra
fermionic variables, T1, T2 are odd, T0, T1,2 are even.

An explicit computation gives the following formula

Φ∗(f)(x) = f + (θ1ψ1 + θ2ψ2)f
′ + θ1θ2(f

′F − f ′′ψ1ψ2) |t=ϕ(x) .(13)

The interpretation of this formula is the following: the superfield Φ is obtained
as a deformation of the classical (bosonic) field ϕ by the vector field θ1ψ1 +
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θ2ψ2 +Fθ1θ2. This can be seen as a non commutative version of the usual Taylor
formula, which can be written as

eh∂xf(x) = f(x+ h) .(14)

We urge the reader to read the original Hélein’s paper [11].

1.4. Classical interpretation of the Witten model. Classical means
here that we want to understand the Witten supersymmetric model as the quanti-
zation of a classical system invariant under some supersymmetric transformation
with conserved charges.

Let us first recall some rules to compute with fermionic variables. Here
analysis is reduced to elementary algebra : any function of the θj is a polynomial
in θj. Derivatives are defined by :

∂

∂θ1
(θ1θ2) = θ2,

[

∂

∂θj
,
∂

∂θk

]

= 0,

[

∂

∂θj
, θk

]

= δj,k.

Integral is defined by:
∫

θjdθj = 1,

∫

1dθj = 0.

It is sometimes convenient to define an involution in C[θ1, θ2] as follows: θ = θ1,
θ̄ = θ2.

Now we want to represent the supersymmetric algebra (1) to (4) with
Ĥ = i∂t, as a Lie algebra with anticommuting paramaters θ, θ̄ (see [21]). Here
we forget the hat superscripts.

The multiplicative law group, as translation on parameters (t, θ, θ̄), is
given by

(t, θ, θ̄) 7→ ((t+ s+ i(θε̄− εθ̄), θ + ε, θ̄ + ε̄).

So we find that these translations on superfields are generate by the differential
operators Q, Q̄,

Q =
∂

∂θ
− iθ̄ ∂

∂t
, Q̄ =

∂

∂θ̄
− iθ ∂

∂t
.(15)

We also have two covariant derivatives, defined as above, with right multiplication
instead of left mulptiplication,

D =
∂

∂θ
+ iθ̄

∂

∂t
, D̄ = − ∂

∂θ̄
− iθ ∂

∂t
.(16)
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We can remark that D and D̄ anticommute with Q and Q̄ and satisfy the following
algebra rules of a supersymmetric system :

[D, D̄]+ = −2i
∂

∂t
= −2H, D2 = D̄2 = 0.

Let be a superpotential V (X) depending on the supervariable (defined in the
previous subsection, with the new notation y = F ),

X = x+ θψ̄ + ψθ̄ + yθθ̄.

Let us consider the super-Lagrangian L =
1

2
D̄XDX +V (X) and the pseudoclas-

sical Lagrangian Lpsc =

∫

Ldθ̄dθ. We get

Lpsc =
ẋ2 + y2

2
+
i

2
(ψ̇ψ̄ − ψ ˙̄ψ) +

1

2
V ′′(x)ψ̄ψ + V ′(x)y.

Let us compute the conjugate variables for this Lagrangian.

∂Lpsc
∂ẋ

= ẋ⇒ px = ẋ(17)

∂Lpsc
∂ẏ

= 0⇒ ∂L

∂y
= 0⇒ y = −V ′(x)(18)

∂Lpsc

∂ψ̇
=

i

2
ψ̄ ⇒ pψ =

i

2
ψ̄(19)

∂Lpsc

∂ ˙̄ψ
=

i

2
ψ̄ ⇒ pψ̄ =

i

2
ψ(20)

Here we can eliminate the variable y. But we have constraints. To solve this
constrained problem we can use Dirac method (see 1.1 and [12]). Hence we can
get the following Witten Hamiltonian:

Hw =
1

2
p2
x +

V ′(x)2

2
− i

2
V ′′(x)(pψψ − pψ̄ψ̄)(21)

and the Witten Lagrangian

Lw =
ẋ2

2
− V ′(x)2

2
+
i

2
(ψ̇ψ̄ − ψ ˙̄ψ) +

1

2
V ′′(x)ψ̄ψ.
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Now we can see that the Lagrangian Lw is invariant (up to a total time derivative)
under the supersymmetric transformation

δx = ε̄ψ + ψ̄ε,

δψ = −(iẋ+ V ′(x))ε,

δψ̄ = (iẋ− V ′(x))ε̄.(22)

By Nœther Theorem we get the conserved charges

Q = (ẋ− iV ′(x))ψ , Q̄ = (ẋ+ iV ′(x))ψ̄ .

But our system has the constraints pψ =
i

2
ψ̄, pψ̄ =

i

2
ψ, so in the time evolution

of the system the Poisson bracket is replaced by the Dirac bracket ({., .}D) [12].
Explicit computations give here

{x, px}D = 1, {ψ, pψ}D = −1

2
, {ψ̄, pψ̄}D = −1

2
,(23)

{ψ, ψ̄}D = −i, {pψ, pψ̄}D =
i

4
.(24)

As usual, the quantization of Dirac bracket is i−1[., .]± where we have the com-
mutator [., .]− for bosonic variables and the anticommutator [., .]+ for fermionic
variables. A simple way to realize the commutation relations (23) is, in the Hilbert
space L2(R,C2), to consider the usual Heisenberg representation on the variable

x where p̂x =
∂

i∂x
and the Pauli representation on the fermionic variables where

ψ̂ = σ−,
ˆ̄ψ = σ+, p̂ψ = − i

2
σ+, p̂ψ̄ = − i

2
σ−.(25)

So we get the Witten supercharges and the Witten supersymmetric Hamiltonian
given in (8), (9).

2. Our first model. We consider now the following higher-derivative
supersymmetric quantum mechanical system, built upon the super Lagrangian

L =
i

2
(D̄X)

d

dt
(DX) + V (X)(26)

V is a smooth real potential on R, X is here a real supervariable, with the meaning
explained by the Hélein’s formula (13),

X = x+ θψ̄ + ψθ̄ + yθθ̄ ,
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D =
∂

∂θ
+ iθ̄

∂

∂t
, D̄ = − ∂

∂θ̄
− iθ ∂

∂t
.

Our Lagrangian L is real (up to a total time derivative) for the involution L 7→ L̄.
After integration over dθ̄dθ , as we did for the Witten model, we obtain

the effective Lagrangian :

Leff = ẋẏ + V ′(x)y + V ′′(x)ψ̄ψ + ˙̄ψψ̇.(27)

Let us compute the Hamiltonian corresponding to Leff . We shall see that in this
example it is not difficult to compute the Legendre transform in the variables ẋ,

ẏ, ψ̇, ˙̄ψ (we have no constraints). In the following it is more convenient to denote
ψ = ψ1 and ψ̄ = ψ2. So we have for the conjugate momenta:

pψ2 = ψ̇1, pψ1 = −ψ̇2.

and
px = ẏ; py = ẋ.

We can derive by Legendre transform on the Lagrangian the canonical Hamil-
tonian

H = pxpy − yV ′(x)− pψ1pψ2 − V ′′(x)ψ2ψ1 .(28)

The Lagrangian (27) (with (ψ, ψ̄) = (ψ1, ψ2)) is invariant (up to a total derivative)
with respect to the supersymmetry transformations, where ε, ε̄ are independent
fermionic parameters,

δεx = εψ2 + ψ1ε̄ ,

δεψ1 = ε(y − iẋ) ,
δεψ2 = ε̄(y + iẋ) ,

δεy = i(εψ̇2 − ψ̇1ε̄) .(29)

The corresponding Nœther supercharges are computed as in subsection (1.4).

Q = ψ1[px + iV ′(x)]− ipψ2(py − iy) ,

Q̃ = ipψ1(py + iy)− ψ2[px − iV ′(x)] .(30)

We can compute easily:

Q2 = Q̃2 = 0, [Q, Q̃]+ = 2H ,(31)
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It is important here to remark that the bracket {•, •} is an extension of the usual
Poisson bracket to the super-Lie algebra C∞(R4|4)2 . Here R

4|4 is identified to
our classical phase space.

We define an involution on R
4|4 with the convention ψ̄1 = ipψ1 , ψ̄2 = ipψ2 .

Then, our Hamiltonian H is

H = pxpy − yV ′(x) + ψ̄1ψ̄2 − V ′′(x)ψ2ψ1.

Unfortunately H is not real (because the fermionic component is not invariant
under the involution H 7→ H̄).

Let us now proceed to a canonical quantization of H. The idea is to mimic
the holomorphic quantization for bosons. Let us double the fermionic generators
by introducing θ̄1 and θ̄2 such that {θ1, θ2, θ̄1, θ̄2} define a Grassmann algebra on
C, G4 := C[θ1, θ2, θ̄1, θ̄2] with involution f 7→ f̄ . f is holomorphic means here

that
∂f

∂θ
= 0. Let us denote by H4 the space of holomorphic elements of G4. It is

an Hermitian space (dim[H4]=4) for the inner product

< f, g >=

∫

f(θ)f(θ)eθθ̄dθ̄dθ.

So our total Hilbert space will be H = L2(R2)⊗H4.
In the Hilbert space H, the real (bosonic) variables (x, y) are quantized

as usual (Weyl-Wigner quantization or other) and the quantization rule for the
Grassmann (fermionic) variables is the holomorphic quantization, given for f ∈
H4 by

ψj ←→ ψ̂j : {f 7→ θjf}(32)

ψ̄j ←→ ˆ̄
jψ : {f 7→ ∂f

∂θj
}(33)

We have the expected canonical anticommutative relations for fermions

[p̂ψj
, ψ̂k]+ = [ψ̂j , ψ̂k]+ = 0, [ψ̂j , p̂ψj

]+ = 1.(34)

and we get the supersymmetry quantum system (Q̂, ˆ̃Q, Ĥ),

Ĥ =
1

2
[Q̂, ˆ̄Q]+, (Q̂)2 = ( ˆ̄Q)2 = 0, [Q̂, Ĥ ]− = [ ˆ̄Q, Ĥ ]− = 0 .(35)

2On a super-Lie algebra the bracket satisfies the following rule: {f, g} = −(−1)π(f)π(g){g, f}
where π(f) is the parity of f (see [20]).
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We remark that in our example, contrary to the standard supersymmetric me-

chanics (Witten), Q̂ and ˆ̃Q are not Hermitially conjugate to each other. More-
over, in general cases our quantum Hamiltonian Ĥ is no more a non negative nor
Hermitian operator in the natural Hilbert space.

Let us assume that the potential V is C2-smooth.

We see that the system has the two following even conserved charges

N =
y2

2
− V (x),(36)

Fc = ψ1ψ̄1 − ψ2ψ̄2.(37)

F̂c is the operator of fermion charge. Its eigenvalues are 0, 1,−1. F̂c is diagonal
in the following decomposition of the total Hilbert space

H = H(1) ⊕H(−1) ⊕H(0),(38)

where

(39) H(1) = L2(R2)⊗ Cθ1, H(−1) = L2(R2)⊗ Cθ2,

H(0) = L2(R2)⊗ (C⊕Cθ1θ2).

Each of these subspace is formally invariant by Ĥ and Ĥ is formally Hermitian
in H(1) and H(−1) but not in H(0) if V ′′ 6= −1.

Remark 2.1. The conserved charge N is the Nœther charge correspond-
ing to the infinitesimal symmetry of the Lagrangian: y → y+εẋ. It easy to check
that the Lagrangian (27) is shifted by a total derivative after this transformation.

Moreover we have here an other pair of odd conserved charges,

T = ψ1[px − iV ′(x)] + ψ̄2(py + iy) ,

T̄ = ψ̄1(py − iy) + ψ2[px + iV ′(x)] .(40)

Generically for supersymmetric systems with two super charges Q̂, T̂ each non
vacuum states is 4-fold degenerate, because if Ψ is an eigenstate then we also
have the eigenstates {Q̂Ψ, T̂Ψ, Q̂T̂Ψ}.

Let us consider now the simple case with a quadratic potential:

V (X) = −ω
2X2

2
.(41)
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Let us first consider the bosonic component of our Hamiltonian

ĤB = −∂x∂y + ω2xy.

We introduce the annihilation/creation operators

a =
y + ∂y√

2
, a∗ =

y − ∂y√
2

(42)

b =
−ω2 + ∂x√

2ω
, b∗ =

−ω2 − ∂x√
2ω

.(43)

They satisfy

[a, a∗] = [b, b∗] = 1, [a, b] = [a, b∗] = [a∗, b] = 0.(44)

So we get
ĤB = −ω(ab− a∗b∗)

Let us introduce another pair of annihilation/creation operators, satisfying the
commutation relations (44),

c =
a+ b∗√

2
, d =

a− b∗√
2
,

we get for ĤB a difference of two independant harmonic oscillators:

ĤB = ω(dd∗ − cc∗).

This proves that the spectrum of the Hamiltonian ĤB is ωZ.
In H(0) the Hamiltonian Ĥ has the matrix form

Ĥ(0) =

(

ĤB 1

ω2 ĤB

)

(45)

This matrix can be put into a diagonal form through a non unitary transforma-
tion. If

M =
1√
2







1

ω
− 1

ω

ω
1

ω






,

then we have

Ĥ(0) = M

(

ĤB + ω 0

0 ĤB − ω

)

M−1.(46)
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Finally we get that the spectrum of the full Hamiltonian Ĥ is real, discrete,
infinitely degenerate, involving both positive and negative energies. So, in spite
of supersymmetry, the spectrum of Ĥ has no bottom and hence involves ghosts.

Later on we shall consider the spectral problem when we modify the

superpotential (41) by adding quartic interaction term V (x) = −ω
2X2

2
− λ

4
x4

and also for interpolate super-Lagrangians between the Witten example and our
model where we shall see connections with the Fokker-Planck equation.

3. Classical dynamics. In a first step, let us disregard the fermion
variables and concentrate on the dynamics of the bosonic Hamiltonian

HB = pxpy − yV ′(x).(47)

This Hamiltonian has two degree of freedom. Its Hamiltonian vector field ΞHB

is by definition

ΞHB
= ∂pxHB∂x + ∂pyHB∂y − ∂xHB∂px − ∂yHB∂py .

So we see that ΞHB
and ΞN are linearly independent outside the closed set defined

by {V ′(x) = 0, y = 0, px = py = 0} and outside this set the system is integrable.
Indeed, we get the following more explicit equations of motion,

ẍ− V ′(x) = 0; ÿ − V ′′(x)y = 0.(48)

The first equation is a Newton equation with one degree of freedom for the po-
tential −V (x) and the second equation is a Hill equation (x depends periodically
on time with a period depending on initial data for the first equation).

For example, let us choose a quartic potential

V (x) = −ω
2x2

2
− λx4

4
.(49)

The potential is confining and here the equation of motion has an explicit solution
given by an elliptic cosine3 function with the parameters depending on the
integral of motion N ,

x(t) = x0 cn[Ωt, k].(50)

3For definitions and properties of elliptic functions see for example, [22].
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We get the full pseudo-classical dynamics for H by adding the equations for the
fermionic variables

ψ̇1 = −pψ2 , ψ̇2 = pψ1 , ṗψ1 = −V ′′(x)ψ2, ṗψ2 = V ′′(x)ψ1(51)

So the fermionic evolution is determined the by same Hill equation.

ψ̈j − V ′′(x(t)ψj = 0, j = 1, 2.(52)

We can remark that the differential equation (52) has the two following indepen-
dent solutions

y1(t) = ẋ(t), y2(t) = ẋ(t)

∫ t ds

ẋ2(s)
,(53)

the integral in y2 is well defined outside the turning points ẋ(t) = 0 nevertheless
y2 can be extended smoothly on all the real axis R. It is an unstable solution of
(52) increasing in time as O(t).

4. Quantum dynamics.

4.1. Bosonic system. Let us now consider the Weyl quantization ĤB

of the bosonic Hamiltonian (47). We shall see that the corresponding evolu-
tion for the Schrödinger equation i∂tψt = ĤBψt is unitary and we shall com-
pute this evolution. It is convenient to perform a unitary partial Fourier trans-
form Fy 7→py . Let KB be the Hamiltonien obtained from HB by the canonical

transformation (y, py) → (py,−y). So we get K̂B = Fy 7→pyĤBF−1
y 7→py

, where

KB(x, v; px, pv) = vpx + V ′(x)pv. We remark that iK̂B is the Hamilton vector
field for the potential −V (x). So the time dependent Schrödinger equation for

K̂B is solved by integration this vector field ΞN where N(x, v) =
v2

2
−V (x) (here

v is considered as the conjugate momentum of x).
We assume for simplicity that lim

|x|→+∞
V (x) = −∞ (−V is confining). We

denote ΓtN the Hamiltonian flow for ΞN at time t. Then ΓtN is well defined
everywhere in R

2 for all times and for every Ψ in the Schwartz space S(R2),
Ψt(x, v) = Ψ

(

Γ−t
N (x, v)

)

satisfies the Schrödinger equation for K̂B and Ψt ∈
S(R2).

From this property it results classically that K̂B hence ĤB are essentially
self-adjoint operators in L2(R2).

Now we compute a spectral decomposition for ĤB and a complete family
of generalized-eigenstates.
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The flow ΓtN is integrable, so we can use action-angle variables.
Assume for simplicity that V is concave, with one maximum Vmax at 0.

Thus, we perform a canonical transformation κ: (x, v) 7→ (I, ϕ), (I is the action
variable, ϕ is the angle, I ∈ ]0,+∞[, ϕ ∈ [0, 2π[) such that in this new coordinates
system the flow is

ΓtN (κ−1(I, ϕ)) = κ−1(I, ϕ+ tσ(I))(54)

where the frequency of the motion is σ(I) = ∂N/∂I.
Let us recall that the action I is given by the following integral, for

N0 > −Vmax,

I(N0) =
1

2π

∮

vdx =
1

2π

∫

N(x,v)≤N0

dxdv,

In the action-angle coordinates the state Ψ depends now on I and ϕ and the
solution to the Schrödinger equation takes the form

Ψt(I, ϕ) ≡ U(t)Ψ0(I, ϕ) = Ψ0(I, ϕ− tσ(I)).

In this representation, U(t) is a unitary evolution in the Hilbert space
L2(]0,∞[×R/2πZ). Its generator is the following quantum Hamiltonian:

ĤaaΨ(I, ϕ) = −iσ(I)
∂Ψ

∂ϕ
(I, ϕ) .(55)

The Hamiltonians ĤB and K̂B are unitary equivalent to the Hamiltonian Haa,
so it is enough to compute a spectral decomposition for Ĥaa. This is easy to do
with a Fourier decomposition in the variable ϕ and we have an explicit spectral

decomposition for Ĥaa. If Ψ(I, ϕ) =
∑

n∈Z

Ψn(I)e
inϕ, then

ĤaaΨ(I, ϕ) =
∑

n∈Z

nσ(I)Ψn(I)e
inϕ.(56)

Let us remark that we can interpret the expression E := En = nσ(I) as a
kind of quantization condition (for I fixed). If the frequency σ(I) is constant
this is really a quantification condition and we recover the spectrum of ĤB for

V (x) = −ω
2x2

2
. If the frequency σ(I) is non constant then the spectrum of ĤB

is absolutely continuous and consists in a union of bands. This is the case for

V (x) = −ω
2X2

2
− λ

4
x4, λ > 0. The structure of the spectrum of ĤB is the

following:
Spec[ĤB ] =]−∞,−ω] ∪ {0} ∪ [ω,+∞[
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with two continuous components and an isolated eigenvalue 0.

The spectrum of ĤB is describe as the set Spec[ĤB ] = {nλ n ∈ Z,
λ ∈]0,+∞[}.

We could get a similar description for more general confining potentials,
with a finite set of non degenerate extrema.

The generalized eigenfunctions of the Hamiltonian (55) are labelled by
the parameters I0 ∈ R and n ∈ Z,

ΨI0,n(I, ϕ) = δ(I − I0)einϕ .(57)

There are infinitely many states of zero energy. In the action-angle variables, any
function g(I) → g̃(N) not depending on ϕ is an eigenfunction of (55) with zero
eigenvalue.

Finally, we have obtained an explicit spectral decomposition of our bosonic
Hamiltonian ĤB. More precisely, for every complex measurable and bounded
function f on R and and every state Ψ ∈ L2, we have

〈Ψ|f(HB)|Ψ〉 =
∑

n∈Z

∫ +∞

0
|Ψn(I)|2f(nσ(I))dI.(58)

Ψn(I) are the Fourier components of the function Ψ(I, ϕ).

4.2. Systems with bosons and fermions. Now we want to consider
the full quantum Hamiltonien Ĥ = ĤB + ĤF where ĤF = ∂ψ1∂ψ2 − V ′′(x)ψ2ψ1.
Note first of all that the time–dependent Schrödinger equation can be easily
solved by the same method as in the bosonic case. We introduce η = χ̄, η̄ = χ
and use the “position variables” (x, v, ψ, η). The Schrödinger equation takes the
form

i
∂Ψ

∂t
+ iv

∂Ψ

∂x
+ iV ′(x)

∂Ψ

∂v
+ η

∂Ψ

∂ψ
− ψV ′′(x)

∂Ψ

∂η
= 0.(59)

Instead of Ĥ we consider the Hamiltonian K̂ = K̂B+K̂F where K̂F = V ′′(x)ψ∂η−
η∂ψ. Equation (59) is a linear first order differential equation and its solution
can be written by the characteristics method.

Ψt(x, v;ψ, η) = Ψ0(Γ
−t(x, v;ψ, η)),(60)

where Γt is the flow of the characteristic system solving equation (59):

Γt(x, v;ψ, η) = (ΓtN (x, v);ψt, ηt)(61)
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where

ψ̇t = −iηt ,
η̇t = iV ′′(xt)ψt.(62)

Unfortunately, except in the particular case where V ′′(x) is constant, the L2-
norm of Ψt is not preserved by the time evolution. Moreover it is not clear how
to define a closed extension for the full Hamiltonian Ĥ (or equivalently for K̂).

Recall that the states are classified by the value of the fermionic charge
Fc, which can take values −1, 0, 1. In coordinates (x, v, ψ, η), the generalized
eigenfunctions functions in the sectors Fc = 0 are

Ψ(−1)(x, v;ψ, η) = ΨB(x, v) ,

Ψ(1)(x, v;ψ, η) = ΨB(x, v)ψη(63)

with ΨB is a generalized eigenfunction for the bosonic part K̂B computed in
section 4 (translated in coordinates (x, v)).

Generalized states in the sector Fc = 0 can be obtained from the eigen-
states (63) by the action of the supercharges Q, Q̄, T, T̄ (which commute with the
Hamiltonian). But we do not know how to give a complete spectral description
of K̂ in this sector.

Let us remark that if V ′′(x) is uniformy bounded on R then K̂ is a closed
operator with domain Dom(K̂B) ⊗ calG2. Hence there are two open questions:
is the spectrum of K̂ real? What is the spectrum of K̂?

5. Another model. Let us consider the following model

L =

∫

dθ̄dθ

[

i

2
(D̄X)

d

dt
(DX) +

γ

2
D̄XDX + V (X)

]

,(64)

where γ is a coupling between the model considered in section 4 and the Witten
model of supersymmetry (section 1.4).

The pseudoclassical expression for the Lagrangian is here

Lpsc = ẋẏ + yV ′(x) + V ′′(x)χψ + χ̇ψ̇ + γ

[

ẋ2 + y2

2
+
i

2
(ψ̇χ− ψχ̇)

]

.(65)

The corresponding Hamiltonian is

H = HB +HF , where

HB = pxpy − yV ′(x)− γ

2
(y2 + p2

y)

HF = ψ̄1ψ̄2 +

(

γ2

4
− V ′′(x)

)

ψ2ψ1 −
γ

2
Fc(66)
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where Fc = ψ1ψ̄1 − ψ2ψ̄2.

As in our first model we have two pairs of Nœther supercharges but here
the superalgebra is not so simple, so we give here only one pair (see [16] for
details),

Q = ψ1(px + iV ′(x)) + (ψ̄2 + γ
2ψ1)(py − iy)

Q̃ = −ψ2(px − iV ′(x)) + (ψ̄1 + γ
2ψ1)(py + iy).(67)

For this pair we have, as before, the algebra (35).

Let us consider here the sectors Fc = ±1 where the problem is equivalent
to a purely bosonic problem with the Hamiltonian

ĤB = −∂x∂y − yV ′(x)− γ

2
(y2 − ∂2

y).(68)

ĤB is unitary equivalent, up to a partial Fourier transform, to

K̂B =
1

i

(

y∂x + V ′(x)∂y
)

− γ

2
(y2 − ∂2

y).(69)

We can see that K̂B has the same algebraic structure as the Fokker-Planck
operator4 but there is a big difference: the Fokker-Planck operator ĤFP is

ĤV ′

FP = y∂x + V ′(x)∂y −
γ

2
(y2 − ∂2

y)

so ĤFP is not Hermitean but the Hermitian part of ĤFP has a sign. Here K̂B is
Hermitean and is not bounded above nor below, and we have lost the hypoelliptic
character of the Fokker-Planck operator (see [9] for more details).

For harmonic potentials V (x) = −ω
2x2

2
we can compute the spectrum of

K̂B . More precisely let us introduce the annihilation/creations operators

a = 1√
2
(y + ∂y), a∗ =

1√
2
(y − ∂y)(70)

b = 1√
2
(x+ ∂x), b∗ =

1√
2
(x− ∂x).(71)

then we have

K̂B =
ω

i
(a∗b− ab∗)− γ(a∗a+ 1).

4We thank B. Helffer for this remark (oral communication).
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Now we are looking for a complex symplectic transformation

c1 = αb+ iδa, c2 = iδb+ αa(72)

such that
[c1, c2] = [c∗1, c2] = 0, [c1, c

∗
1] = [c2, c

∗
2] = 1

and

K̂B = ω1c
∗
1c1 − ω2c

∗
2c2 − γ.(73)

We get the following conditions

α2 + δ2 = 1(74)

ω(α2 − δ2) = γαδ.(75)

After computations we find, with τ =
2ω

γ
,

ω1 =
τ√

1 + τ2
ω − γ

2

(

1− 1√
1 + τ2

)

,(76)

ω2 =
τ√

1 + τ2
ω +

γ

2

(

1 +
1√

1 + τ2

)

.(77)

So we get that the spectrum of ĤB is pure point, with eigenvalues
(

ω1 +
1

2

)

j −
(

ω2 +
1

2

)

k − γ, j, k ∈ N.

Remark 5.1. For more general potential V it is not clear that ĤB is
essentially self-adjoint. This can be proved if V ′′(x) is uniformly bounded on R.
But we do not know how is the spectrum of ĤB for non quadratic potentials. If
the coupling γ is imaginary we are in the Fokker-Planck case and if some technical
conditions on the potential V are satisfied then it is known that the spectrum of
K̂B is pure point; moreover in this case the resolvent of K̂B is compact [9].

Moreover it may be interesting to emphasize that the two Hamiltonians
K̂B and Ĥ−V ′

FP are conjugated by the complex scaling y 7→ iy, Dy 7→ −iDy.

A. More on the Pais-Uhlenbeck oscillator. Assumming first
ω1 > ω2, let introduce complex valued linear forms a1, a2, defined as complex
coordinates for the classic flow as follows

q(t) = α1e
−iω1t + α2e

−iω2t + h.c, x(t) = −iω1x(t)α1e
−iω1t − iω2α2e

−iω2t + h.c
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pq(t) = iω1ω
2
2α1e

−iω1t + iω2
1ω2α2e

−iω2t + h.c,

px(t) = −ω2
1α1e

−iω1t − ω2
2ω2α2e

−iω2t + h.c(78)

We have the following equalities for the Poisson brackets

{α1, α2} = {ᾱ1, ᾱ2} = {ᾱ1, α2} = {α1, ᾱ2} = 0

{α1, ᾱ1} =
1

2iω1(ω2
1 − ω2

2)
{α2, ᾱ2} =

1

2iω1(ω2
2 − ω2

1)
.(79)

Considering on C
2 the symplectic form (z, z ′) 7→ =(z · z′), we get a linear sym-

plectic map
(x, q, px, pq) 7→ (a1, a2)

where

a1 = α1

√

2ω1(ω2
1 − ω2

2), a2 = ᾱ2

√

2ω1(ω2
1 − ω2

2).

So we get a metaplectic transformation such that Ĥ is unitary equivalent to the
oscillator

K̂ = ω1â
∗
1â1 − ω2â

∗
2â2.

In [1] the authors claim that for the Pais-Uhlenbeck oscillator ghosts can be easily
eliminated. One possibility is to perform a complex scaling like the following. Let
us come back to real coordinates:

âj =
xj − ∂xj√

2

The dilation operator in the x2 direction is :Uτf(x1, x2) = f(x1, e
τx2). Its gen-

erator is Â := i−1x2∂x2 + x2∂x2 , Uτ = e−iτÂ. Let us consider deformations of
K̂,

K̂τ = Uτ K̂U−τ

For τ ∈ R, Ĥ and K̂τ are unitary equivalent. But for τ = i π2 we have

K̂−π/2 = ω1â
∗
1â1 + ω2â

∗
2â2

hence K̂−π/2 is a positive operator, without ghosts.

Remark A.1. Another interpretation for K̂−π/2 is to see it as a real-

ization of K̂ in the configuration space R× iR.

The question of ghosts for the degenerate case is more delicate. It was
discussed in [15, 18, 14] and more recently in [2].
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