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SPECTRAL SHIFT FUNCTION FOR THE PERTURBATIONS

OF SCHRÖDINGER OPERATORS AT HIGH ENERGY

Rachid Assel, Mouez Dimassi

Communicated by G. Popov

Abstract. We give a complete pointwise asymptotic expansion for the
Spectral Shift Function for Schrödinger operators that are perturbations of
the Laplacian on Rn with slowly decaying potentials.

1. Introduction. The aim of this paper is to give complete asymptotic
expansion of the Spectral Shift Function (SSF) for a large class of perturbations
of the Laplace operator on Rn. For a pair of lower-bounded selfadjoint operators
(H1,H2) in a Hilbert space H the SSF can be defined as follows: assume that
‖(H2−E)−N − (H1−E)−N‖tr <∞ for some N ≥ 1 and E in the resolvent set of
Hj, j = 1, 2, the SSF ξ(λ) is defined in the sense of distribution by the equation
(see [1, 10]),

〈ξ′, f〉 = −tr(f(H2) − f(H1)),
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for all f ∈ C∞
0 (R). Since the operators Hj, j = 1, 2 are lower-bounded, the SSF

is normalized by the condition

ξ(λ) = 0, λ < inf
(
σ(H1) ∪ σ(H2)

)
.

Here ‖ · ‖tr denotes the trace-class norm in H.

The SSF is an important object in the spectral theory of perturbations,
which covers both discrete and continuous spectrum. The SSF was brought into
mathematical use in M. G. Krein’s famous paper [9], where the precise statement
of the problem was given and the explicit representation of the SSF in terms
of the perturbation determinant was obtained. The work of M. G. Krein on
the SSF has been described in detail in [2]. The connection between the SSF
and the scattering matrix is given in the paper [1]. For more details about the
interpretation of the spectral shift function we refer to the survey by D. Robert
[13] and chapter 8 of the monograph by D. R. Yafaev [16].

The asymptotic behavior of the SSF at high energy of the Schrödinger
operator has been intensively studied in the last twenty years (see [3, 4, 8, 11, 12,
14, 17] and the reference given there).

In [15] D. Robert studied the SSF for a pair of Schrödinger operators
(H1,H2) = (−∆ + V,−∆ + V +W ) where V , W are smooth potentials defined
on R

n for which there exist δ > 0 and ρ > n such that

(1) ∀α ∈ N
n,∃Cα > 0 s.t |∂αV (x)| ≤ Cα(1 + |x|)−δ−|α|,

(2) ∀α ∈ N
n,∃C ′

α > 0 s.t |∂αW (x)| ≤ C ′
α(1 + |x|)−ρ−|α|.

Under the above assumptions, D. Robert gives a complete pointwise asymptotic
expansion of ξ(λ) as λ↗ +∞.

In this paper we give a similar result but for a pair of Schrödinger opera-
tors (−∆ + V,−∆ + V +W ) where V do not satisfy assumption (1). Our result
on the pointwise asymptotics for the SSF applies, for example, to perturbations
of the Laplacian with logarithmic decreasing potentials. On the other hand, our
method is different from the one developed in [15]. In particular, we don’t require
any parametrix construction as in [12, 13, 15].

2. Weak asymptotics. We consider two Schrödinger operators Hj,
j = 1, 2 defined as the selfadjoint realizations of H1 = −∆ + V , H2 = −∆ +
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V + W on L2(Rn) where V , W are smooth potentials satisfying the following
assumptions: for all α ∈ N

n there exists Cα, cα > 0 such that

(3) |∂α
xV (x)| ≤ cα,

(4) |∂α
xW (x)| ≤ Cα(1 + |x|)−δ−|α|,

for some constant δ > n.
The assumptions (3) and (4) enable us to define the SSF, ξ(λ,H1,H2) ∈

D′(R) related to the operatorsH1 andH2 following the general theory (see [1, 10])
by the equality

〈ξ′, f〉 = −tr(f(H2) − f(H1)),∀f ∈ C∞
0 (R).

We normalize ξ(λ) := ξ(λ,H1,H2) by setting ξ(λ) = 0 for λ < inf
(
σ(H1) ∪

σ(H2)
)
.

Theorem 1 (Weak asymptotics). Assume that V,W satisfy assumptions
(3) and (4). For every f ∈ C∞

0 (R), the following full asymptotic expansion holds
as (h↘ 0):

(5) tr(f(h2H2) − f(h2H1)) ∼
∞∑

j=1

cj(f) h2j−n.

In particular,

(6) c1(f) =
nκ0

(2π)n

∫ ∞

0
f ′(r2)rn−1dr

∫

Rn

W (x)dx,

(7) c2(f) =
nκ0

2(2π)n

∫ ∞

0
f ′′(r2)rn−1dr

∫

Rn

(W (x)2 + 2V (x)W (x))dx,

where κ0 = vol({x ∈ R
n; |x| < 1}) is the measure of the unit ball in R

n

P r o o f. For h ∈]0, 1], set

H2(h) = h2H2, H1(h) = h2H1, and H0(h) = −h2∆.

Let f̃ ∈ C∞
0 (C) be an almost analytic extension of f . We recall that

f̃ ∈ C∞
0 (C) satisfies

(8) |∂f̃ | ≤ CN |=(z)|N ,∀N ∈ N and f̃|R = f.
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Since the spectrum of Hj is bounded from below, we may choose z0 ∈ R, so that
z0 is away from σ(Hj), j = 1, 2. Set

g(z) = f(z)(z − z0)
m.

By Helffer-Sjöstrand formula (see [5, 7]) we have

g(H·(h)) = −
1

π

∫
∂̄z f̃(z)(z − z0)

m (z −H·(h))
−1L(dz),

where L(dz) denotes the Lebesgue measure on C and H. denotes either H1 or
H2. Clearly,

f(H.(h)) = (H·(h) − z0)
−mg(H·(h))

= −
1

π

∫
∂̄z f̃(z)(z − z0)

m(H·(h) − z0)
−m(z −H·(h))

−1L(dz).

From the assumption (4) the operator
[
(Hj(h) − z0)

−m(z −Hj(h))
−1

]2

1
is trace

class for m >
n

2
. Here we use the notation [aj ]

2
1 = a2 − a1. Combining this with

the above equation we obtain

(9) tr
(
f(H2(h)) − f(H1(h))

)

= −
1

π

∫
∂̄z f̃(z)(z − z0)

m × tr
[
(Hj(h) − z0)

−m(z −Hj(h))
−1

]2

1
L(dz).

Without any loss of the generality, we may assume that m = 0 in the
equality (9), (see Remark 1 for the general case).

From the resolvent equation, we obtain

(z −H2(h))
−1 =

N∑

k=0

h2k
[
(z −H0(h))

−1(V +W )
]k

(z −H0(h))
−1

+h2(N+1)(z −H2(h))
−1(V +W )

[
(z −H0(h))

−1(V +W )
]N

(z −H0(h))
−1,

(z −H1(h))
−1 =

N∑

k=0

h2k
[
(z −H0(h))

−1V
]N

(z −H0(h))
−1+

h2(N+1)(z −H1(h))
−1V

[
(z −H0(h))

−1V
]N

(z −H0(h))
−1,
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so using the two last equations, we find

(10) (z −H2(h))
−1 − (z −H1(h))

−1

=

N∑

k=1

h2k
([

(z −H0(h))
−1(V +W )

]k

−
[
(z −H0(h))

−1V
]k)

(z −H0(h))
−1

+ h2(N+1)
(
(z −H2(h))

−1(V +W )
[
(z −H0(h))

−1(V +W )
]N

− (z −H1(h))
−1V

[
(z −H0(h))

−1V
]N)

(z −H0(h))
−1

=
N∑

k=1

Ak(z) + B(z).

Clearly, ‖B(z)‖tr = O(h2(N+1)|=z|−(N+2)), which together with (8) implies
∥∥∥∥
∫
∂̄z f̃(z)B(z) L(dz)

∥∥∥∥
tr

= O(h2(N+1)), ∀N ∈ N.

Thus, to prove (5), it suffices to show that for all k

(11) Ik := −
1

π

∫
∂̄z f̃(z) tr(Ak(z)) L(dz),

has an asymptotic expansion in powers of h2.
To do this, we notice that Ak(z) can be written as a finite sum of terms

of the form

Ak(z) = h2k(z −H0(h))
−1G1(z −H0(h))

−1G2 . . . (z −H0(h))
−1,

with Gi = V + W , V , W , and there exists at least one i0 such that Gi0 = W .
Hence, Ak(z) is of trace class.

Next, fix δ in

]
0,

1

2

[
and apply (8), we obtain

∥∥∥∥∥

∫

|=z|≤hδ

∂̄z f̃(z)Ak(z) L(dz)

∥∥∥∥∥
tr

= O(h∞).

On the other hand, by the h-pseudodifferential calculus (see for instance
Dimassi-Sjöstrand [5, chapters 7,8]) there exists a C∞ function (x, ξ) → Gk(x, ξ, z, h)
such that

|∂α
x ∂

β
ξ Gk(x, ξ, z, h)| ≤ Cα,βh

−(k+1)δ−δ(|α|+|β|),
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uniformly on z ∈ Ωδ := {z ∈ suppf̃ ; |=z| > hδ}, and Ak(z) = Gw
k (x, hDx, z, h)

for all z in Ωδ. Moreover

Gk(x, ξ, z, h) ∼ Gk,0(x, ξ, z) + hGk,1(x, ξ, z) + h2Gk,3(x, ξ, z) + · · ·

with Gk,i(x, ξ, z) a finite sum of terms of the form

fi(ξ)(z − |ξ|2)−k−i−1gi(x),

where fi(ξ) is a homogeneous polynomial of degree i and gi are functions de-
pending on V,W and their derivatives. Now, by a classical result on trace class
operators, we have

(12) Ik ∼

∞∑

j=0

−
hj

π

∫
∂̄z f̃(z)

∫ ∫
Gk,j(x, ξ, z)

dxdξ

(2πh)n
L(dz).

Since fi(−ξ) = −fi(ξ) for i odd, it follows from the above discussion that
Ik has an asymptotic expansion in powers of h2. It remains to compute the terms
c1 and c2.

Using the cyclicity of the trace as well as the fact that

(13) −
1

π

∫
∂̄z f̃(z)(z − a)−p−1 L(dz) =

1

p!
f (p)(a), for all a ∈ R,

we obtain

I1 = −
h2

π
tr

(∫
∂̄z f̃(z) (z −H0)

−2W L(dz)

)
= h−n+2

∫

R2n

f ′(|ξ|2)W (x)
dxdξ

(2π)n
,

which together with (9) and (10) give (6).

The principal symbol of A2(z) has the form

G2,0(x, ξ, z) = (z − |ξ|2)−3((W (x) + V (x))2 − V (x)2).

Thus

I2=h−n+4

∫∫

R2n

−
1

π

(∫
∂̄z f̃(z) (z − |ξ|2)−3((W (x) + V (x))2 − V (x)2)L(dz)

)
dxdξ

(2π)n

+O(h−n+6)

=h−n+4

∫

R2n

f ′′(|ξ|2)(W (x)2 + 2V (x)W (x))
dxdξ

(2π)n
+ O(h−n+6).
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In the last equality we have used (13). Using (10), (11) and (12) we obtain (7).
This completes the proof of Theorem 1. �

Remark 1. For m 6= 0, we decompose
[
(Hj(h)− z0)

−m(z−Hj(h))
−1

]2

1
as

[
(Hj(h) − z0)

−m(z −Hj(h))
−1

]2

1
=

[
(Hj(h) − z0)

−m
]2

1
(z −H2(h))

−1

+ (H1(h) − z0)
−m

(
(z −H2(h))

−1 − (z −H1(h))
−1

)
= I + II.

Since (Hi(h) − z0)
−1 is an h-pseudodifferential operator, we can use the same

arguments as above and show that the trace of the operators I and II has an
asymptotic expansion in powers of h2 for z ∈ {z ∈ C, |=z| > hδ} with δ ∈]0, 1

2 [.
The remainder of the proof is the same.

Corollary 1. Assume (3) and (4). For λ large enough, the following
asymptotics holds in the sense of distribution:

ξ′(λ) = a1 λ
n−4

2 + a2 λ
n−6

2 + o(λ
n−6

2 ),

where

a1 =
n(n− 2)κ0

4(2π)n

∫

Rn

W (x)dx,

a2 = −
n(n− 4)κ0

16(2π)n

∫

Rn

(W (x)2 + 2V (x)W (x))dx.

P r o o f. Let f be in C∞
0 (]0,+∞[). A simple calculation shows that

(14) c1(f) = −a1〈t
n−4

2 , f(·)〉, c2(f) = a2〈t
n−6

2 , f(·)〉.

On the other hand, the Lifshits-Krein formula implies that

tr(f(h2H2) − f(h2H1)) =

∫ +∞

−∞

1

h2
ξ′(

λ

h2
,H2,H1) f(λ) dλ := 〈

1

h2
ξ′(

·

h2
), f(·)〉,

which together with (5), (6) and (7) give the corollary.

3. Pointwise asymptotics. Let Hj, j = 1, 2 be as above. In this
section we replace the assumptions (3) and (4) by the following one: There exist
ñ > n and C > 0 such that

(15) |V (x)| ≤ C, and |W (x)| ≤ C(1 + |x|)−ñ, for all x ∈ R
n
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and there exist θ0 > 0 such that V and W extend to holomorphic functions on a
complex domain of the form

Γθ0
= {z ∈ C

n; |<(z)| ≤ c(1 + |=(z)|)} ,

for some c > 0 and satisfy the assumption (15) on Γθ0
.

Remark 2. We note that using the Cauchy inequalities, assumption
(15) remains valid for all the derivatives of V and W. Precisely we have

∀α ∈ N
n,∃Cα > 0 s.t |∂αW (x)| ≤ Cα(1 + |x|)−ñ−|α|,

and
∀α ∈ N

n,∃C ′
α > 0 s.t |∂αV (x)| ≤ C ′

α(1 + |x|)−|α|.

Remark 2 implies that the spectral shift function ξ(λ,H2,H1) correspond-
ing to H2 and H1 is well defined. Our main result is the following:

Theorem 2. Let V and W be two potentials satisfying (15). Then the
following properties hold:

(i) There exist λ0 > 0 such that ξ(λ) is C∞ in ]λ0,+∞[.

(ii) ξ′(λ) has a complete asymptotic expansion for λ↗ +∞ of the form

ξ′(λ) ∼ λ
n

2




∑

j≥1

ajλ
−1−j


 .

The coefficients a1, a2 are given in Corollary 1.

Remark 3. We can compute explicitly all the coefficients aj and cj(f).
In fact, the computation of cj(f) is a simple consequence of the functional calculus
of h-pseudodifferential operators (see [5], chapter 8). To compute aj, we proceed
as in the proof of Corollary 1.

The proof of Theorem 2 is based on some lemmas. The next section is
concerned with these lemmas and their proofs. In the last section we give the
end of the proof of Theorem 2.

4. Some technical lemmas. Let Hj, j = 1, 2 be two operators satis-
fying (15). Consider the functions

(16) σ±(z) = (z − z0)
mtr

[
(z −Hj)

−1(Hj − z0)
−m

]2

1
, ±=z > 0,
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where m is an integer and z0 ∈ ρ(Hj), for j = 1, 2. We recall that [aj]
2
1 = a2 −a1.

From the assumption (15) and Remark 2 the right hand side of (16) is well defined

for m >
n

2
. From now on, m is a fixed integer such that m >

n

2
.

Next we will obtain a representation of the derivative ξ ′(λ) := ξ′(λ,H2,H1).

Lemma 1. Under the assumption (15) we have

ξ′(λ) =
1

π
=σ+(λ+ i0).

More precisely, for all f ∈ C∞
0 (R), we have

〈ξ′, f〉 = lim
ε↘0

1

π

∫
f(λ)=σ+(λ+ iε)dλ,

where the limit is taken in the sense of distributions.

P r o o f. Let f ∈ C∞
0 (R) and let f̃ ∈ C∞

0 (C) be an almost analytic
extension of f . According to formulae (9), we have
(17)

tr
(
f(H2)−f(H1)

)
= −

1

π

∫
∂̄z f̃(z)(z−z0)

m× tr
[
(Hj −z0)

−m(z−Hj)
−1

]2

1
L(dz).

Since we have σ±(z) = O(|=z|−1) and ∂̄z f̃ = O(|=z|), we may write the right
hand side of the above equation as

〈ξ′, f〉 = −tr
(
f(H2) − f(H1)

)

= lim
ε↘0

1

π

(∫

=z>0
∂̄z f̃(z)σ+(z + iε)L(dz) +

∫

=z<0
∂̄z f̃(z)σ−(z − iε)L(dz)

)
.

The function σ+(z+ iε) (resp. σ−(z− iε)) is holomorphic on the complex domain
{z ∈ C : =z > 0} (resp. {z ∈ C : =z < 0} ). Thus applying the Green formula
we obtain

〈ξ′, f〉 = lim
ε↘0

1

2πi

∫
f(λ)

(
σ+(λ+ iε) − σ−(λ− iε)

)
dλ.

Using the above equation and the fact that σ−(λ − iε) = σ+(λ+ iε) we get the
lemma.

Lemma 2. Assume (15). There exist λ0 � 1 such that ξ(λ) is C∞ in
]λ0,+∞[ and for every N ∈ N there exists CN such that

(18) |ξ(N+1)(λ)| ≤ CNλ
m−N−1,
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uniformly for λ ∈ [λ0,+∞[.

P r o o f. In the following, we denote V1 = V and V2 = V +W . For θ ∈ R

set
H.,θ = −e−2θ∆ + V.(e

θx).

Here V. denotes either V1 or V2. For θ real the operator (z−H.)
−1(H. − z0)

−m is
unitarily equivalent to (z −H.,θ)

−1(H.,θ − z0)
−m. Consequently, the cyclicity of

the trace yields

(19) σ+(z) = (z − z0)
mtr

[
(z −H.,θ)

−1(H.,θ − z0)
−m

]2

1
,

for all z ∈ C+ = {z ∈ C;=z > 0} and θ ∈ D(0, θ0) ∩ R.
Now, fix δ > 0 and let z ∈ Cδ = {z ∈ C;=z ≥ δ}. Since H.,θ extends to

an analytic type A family of operators on D(0, θ0) for sufficiently small θ0 and
z ∈ Cδ, the right hand side of (19) extends by analytic continuation in θ to the
disc D(0, θ0). For θ ∈ D(0, θ0) with =θ < 0, both terms of (19) are analytic on
C+ and consequently (19) remains true for all z in C+.

From now on, the number θ will be fixed in D(0, θ0) with θ = −iη, η > 0.
The following estimates holds uniformly on z ∈ {z ∈ C;<z > 1,=z > −a} for
some positive constant a:

‖(−e2θ∆ − z)−1‖ ≤ sup
ξ∈Rn

|e−2θ|ξ|2 − z|−1 ≤ Cη−1<z−1.

Using (15) and the above estimate, we see that

H.,θ − z = (−e−2θ∆ − z)
(
I + (−e−2θ∆ − z)−1V·(e

θx)
)
,

is invertible for z ∈ Aa,A := {z ∈ C;<z > A,=z > −a} where A is a large
positive constant. Moreover,

(20) Aa,A 3 z → (H.,θ − z)−1is holomorphic , and ‖(H.,θ − z)−1‖ = O(<z−1),

uniformly on z ∈ Aa,A. On the other hand, a classical result on trace class
operators (see for instance [5]) shows that

(21) ‖(H.,θ − z0)
−mWθ‖tr = O(1).

Taking (k − 1) derivatives in z in the resolvent identity

(z −H1,θ)
−1 − (z −H2,θ)

−1 = (z −H1,θ)
−1Wθ(z −H2,θ)

−1,



Spectral shift function for the perturbations of Schrödinger operators 263

and setting z = z0, we see that (z0−H1,θ)
−k−(z0−H2,θ)

−k is a linear combination
of terms of the form

(z0 −H1,θ)
−jWθ(z0 −H2,θ)

−(k+1−j)

with 1 ≤ j ≤ k. Combining this with (21) we deduce that for every k > n
2 ,

(22) ‖(z0 −H1,θ)
−k − (z0 −H2,θ)

−k‖tr = O(1).

Next, we write σ+(z) = σ1
+(z) + σ2

+(z), where

(23) σ1
+(z) = tr

(
(z − z0)

m(z −H1,θ)
−1

[
(H1,θ − z0)

−m − (H2,θ − z0)
−m

])
,

and

σ2
+(z) = tr

(
(z − z0)

m
[
(z −H1,θ)

−1 − (z −H2,θ)
−1

]
(H2,θ − z0)

−m
)

(24) = tr
[
(z − z0)

m(z −H1,θ)
−1Wθ(H2,θ − z0)

−m(H2,θ − z)−1
]
.

From (20), (21) and (22) we deduce that the right hand side of (23) and (24) are

holomorphic in Aa,A which implies that ξ′(λ) =
1

π
=(σ1

+(λ+ i0) + σ1
+(λ+ i0)) is

C∞ in ]λ0,+∞[ for some large constant λ0.
On the other hand, the estimates (20), (21), (22) and the fact that |λ −

z0| = O(λm) imply that |σ1
+(λ + iε)|, |σ2

+(λ + iε)| = O(λm−1), uniformly for
λ > λ0 >> 1 and ε ∈ [0, ε0[ for some ε0 sufficiently small. Consequently,

ξ′(λ) =
1

π
=σ+(λ+ i0) =

1

π
=(σ1

+(λ+ i0) + σ2
+(λ+ i0)) = O(λm−1).

This ends the proof of the lemma for N = 0. For N ≥ 1 we take de
derivatives of σ·+(z) with respect to z and repeat the same arguments as above. �

Lemma 3. Let ψ ∈ C∞
0 (R) and let fµ be a C∞ function in R, depending

on a parameter µ ∈ [µ0,+∞[. We suppose that, there exist m ∈ R and δ ∈ [0, 1[
such that for all k ∈ N,

(25)

(
∂

∂x

)k

fµ(x) = O(µm−kδ), as µ→ +∞ uniformly for x ∈ R.

Then for all N ∈ N, there exist µN > 0 such that :

(26) F−1
µ ψ ∗ fµ(x) =

N∑

k=0

(−i)k

µkk!
ψ(k)(0)

(
∂

∂x

)k

fµ(x) + O(µ−N(1−δ)+m),
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uniformly for x ∈ R and µ ∈ [µN ,+∞[.
In particular, if ψ = 1 near zero, then

(27) F−1
µ ψ ∗ fµ(x) = fµ(x) + O(µ−∞).

Here

F−1
µ ψ(t) =

µ

2π

∫

R

eitxµψ(x)dx.

P r o o f. By a change of variable, we have

(28) F−1
µ ψ ∗ fµ(x) =

∫

R

F−1ψ(t)fµ

(
x−

t

µ

)
dt.

Applying Taylor’s formula to the function t 7−→ fµ(x − t
µ
) at t = 0, and using

(25), we get

(29) fµ(x−
t

µ
) =

N∑

k=0

f (k)
µ (x)

(−t)k

µkk!
+ O(µ−N(1−δ)+mtN ).

Inserting the above equality in (28) and using the fact that∫

R

(−it)kF−1ψ(t)dt = ψ(k)(0) we obtain (26). �

5. Proof of Theorem 2. The statement (i) is proved in Lemma 2.

To prove (ii), let g ∈ C∞
0

(]
1

2
,
3

2

[)
be equal to 1 near one. For µ > 1, we set

fµ(x) := g(x)ξ′(µ2x). Using Lemma 2, we see that the function fµ satisfies all
the assumptions in Lemma 3 with δ = 0. Let ψ ∈ C∞

0 (R) be as in Lemma 3 with
ψ = 1 near zero. According to Lemma 3, we have

(30) F−1
µ ψ ∗ fµ(x) = fµ(x) + O(µ−∞).

On the other hand, a simple calculation shows that

µ2F−1
µ ψ ∗ fµ(x) = µ2

∫

R

F−1
µ ψ(x− t)g(t)ξ′(µ2t)dt

=

∫

R

F−1
µ ψ

(
x−

t

µ2

)
g(µ−2t)ξ′(t)dt = 〈ξ′,F−1

µ ψ

(
x−

.

µ2

)
g(µ−2.)〉
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= tr
[
F−1

µ ψ
(
x− µ−2H2

)
g(µ−2H2) −F−1

µ ψ
(
x− µ−2H1

)
g(µ−2H1)

]
.

For µ � 1, µ−2H. is an µ−1-pseudodifferential operator. According to [6] (see
also [5, chapter 11-12]), the right hand side of the last equality has a complete
asymptotic expansion in powers of µ−2. Combining this with (27), we get

µ2F−1
µ ψ ∗ fµ(x) = µ2fµ(x) + O(µ−∞) = µn

∞∑

j=1

aj(x)µ
−2j + O(µ−∞).

Taking x = 1 and λ = µ2 we obtain

ξ′(λ) = λ
n

2

∞∑

j=1

aj(1)λ
−j−1 + O(λ−∞).

We recall that fµ(x) = g(x)ξ′(µ2x) and g(1) = 1. This ends the proof of Theorem
2. The explicit formula of aj is given by the weak asymptotics of tr(f(H2)−f(H1))
(see Theorem 1).
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[8] L. Guillopé. Asymptotique de la phase de diffusion pour l’opérateur de
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