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Abstract. The paper presents a method of relating two K-functionals by
means of a continuous linear transform of the function. In particular, a
characterization of various weighted K-functionals by unweighted fixed-step
moduli of smoothness is derived. This is applied in estimating the rate of
convergence of several approximation processes.

1. K-functionals in measuring the approximation error. Fin-
ding a good estimate of the error of a given approximation process is a basic
problem in approximation theory. The so called K-functional turned out to be
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very useful in this respect. It has been introduced by Lions and by Peetre and
in its present form by Peetre [28], as a basis of the theory of interpolation of
operators (e.g. [2, Ch. 5]). Later Butzer and Berens [4] clarified its importance
in approximation theory.

Let X be a Banach space with norm ‖ · ‖X and Y be another space with
a semi-norm | · |Y . For f ∈ X and t > 0 we define the K-functional between the
spaces X and Y by

(1.1) K(f, t;X,Y ) = inf {‖f − g‖X + t|g|Y : g ∈ Y ∩X} .

Usually Y is a dense subspace of X and consists of elements that possess certain
additional properties as, for example, high smoothness. As it is seen from its
definition the K-functional measures how well a given function f ∈ X can be
approximated by elements g ∈ Y with control of their semi-norm |g|Y . For given
f ∈ X the K-functional is a non-negative and non-decreasing function of t. Thus,
limt→0+K(f, t;X,Y ) always exists. Moreover, this limit is 0 for every f ∈ X iff
Y is dense in X.

For many applications in approximation theory X is a weighted Lp-space
Lp(w)(I) = {f ∈ L1,loc(I) : wf ∈ Lp(I)}, 1 ≤ p ≤ ∞, with a norm ‖f‖X =
‖wf‖p(I) and Y is a weighted Sobolev space W r

p (φ)(I) = {g ∈ ACr−1
loc (I) : φg(r) ∈

Lp(I)} with a semi-norm |g|Y = ‖φg(r)‖p(I), where I is an interval on the real
line and w, φ are measurable on it with singularities only at its ends.

A standard application of the K-functional is the direct theorem for the
error of an approximation process. If {Lα}α∈A is a family of linear operators that
maps the Banach space X into itself such that

a) ‖Lαf‖X ≤ c ‖f‖X for every f ∈ X and α ∈ A,

b) ‖g −Lαg‖X ≤ c θ(α) |g|Y for every g ∈ Y and α ∈ A with θ : A→ R+,

then for every f ∈ X and α ∈ A there holds the estimate

(1.2) ‖f − Lαf‖X ≤ cK(f, θ(α);X,Y ).

Above and in what follows we denote by c positive constants not necessarily the
same on each occurrence that do not depend on the function f and the parameter
t in the K-functional.

Usually the estimates converse to (1.2) are of weak type but in a number
of cases connected with saturated approximation processes strong type inverse
inequalities can be established. Let D be a differential operator, Y = {g ∈ X :
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Dg ∈ X} and |g|Y = ‖Dg‖X . Ditzian and Ivanov proved in [9] that the inverse
inequality to (1.2)

(1.3) K(f, θ(α);X,Y ) ≤ c ‖f − Lαf‖X

follows from a) and the inequalities:

c) ‖g −Lαg − θ(α)Dg‖X ≤ ψ(α) |g|Z for every g ∈ Z,

d) ‖DL
k
αf‖X ≤

c

θ(α)
‖f‖X for every f ∈ X,

e) |L`
αg|Z ≤M

θ(α)

ψ(α)
‖DL

k
αg‖X for every g ∈ X,

where Z ⊂ X, θ : A→ R+ is bounded, ψ : A→ R+, k, ` ∈ N, k ≤ `, and M < 1
is a constant.

Thus, inequalities (1.2) and (1.3) imply that the approximation error and
the K-functional are equivalent, which we denote by

(1.4) ‖f − Lαf‖X ∼ K(f, θ(α);X,Y ).

So, using K-functionals we can derive an estimate of the approximation
error from several inequalities. However, let us note that in general it is difficult
to establish some of inequalities c)-e), especially e) with a small constant on
the right-hand side. The error estimates through K-functionals are of high
importance in approximation theory but they solely are of little effectiveness
because it is difficult to evaluate for a given f and every t ∈ (0, t0] the infimum on
the wide space Y . This shortcoming can be overcome by defining a new functional
characteristic Ω(f, t), called modulus of smoothness, which is equivalent to the
K-functional. The modulus of smoothness depends on f more directly and can
be more easily estimated being a supremum or an average on a neighbourhood
of the origin in a finite dimensional space.

2. Moduli of smoothness. Let X = Lp(I), I ⊆ R is an interval,
1 ≤ p ≤ ∞, with the usual Lp-norm on the interval I, and Y = W r

p (I) = {g ∈

ACr−1
loc (I) : g(r) ∈ Lp(I)} – the Sobolev space with the semi-norm |g|W r

p (I) =

‖g(r)‖p(I). It is well known (see [24, 25]) that for every f ∈ Lp(I) and 0 < t ≤ t0
we have

(2.1) K(f, tr;Lp(I),W
r
p (I)) ∼ ωr(f, t)p(I),



478 Borislav R. Draganov, Kamen G. Ivanov

where ωr(f, t)p(I) is the classical unweighted fixed-step modulus of smoothness of
order r of the function f , namely,

ωr(f, t)p(I) = sup
0<h≤t

‖∆r
hf‖p(I)

and ∆r
hf(x) is the finite difference of the function f of order r and step h. We

assume that ∆r
hf(x) = 0 if the argument of any of the summands of the finite

differences ∆r
hf(x) is outside I. Thus, if we consider, for example, symmetric

finite differences:

(2.2) ∆r
hf(x) =

r∑

k=0

(−1)k
(
r

k

)
f(x+ (r/2− k)h)

of functions f ∈ Lp[a, b], where [a, b] is a finite interval, we have

ωr(f, t)p[a,b] = sup
0<h≤t

‖∆r
hf‖p[a+rh/2,b−rh/2].

We also set ω0(f, t)p(I) = ‖f‖p(I). Let us note that for 2π-periodic functions the
r-th modulus ωr(f, t)p,2π is defined in a slightly different way – the norm is taken
on an arbitrary period but the convention for vanishing of the finite difference is
not applied.

Let w and ϕ be power-type weights with singularities only at the ends of
the interval I ⊆ R. Ditzian and Totik [10, pp. 56, 218] introduced the varying-
step moduli of smoothness, which for a finite interval I = [a, b] are defined by

(2.3) ωrϕ(f, t)w,p[a,b] = sup
0<h≤t

‖w∆r
hϕf‖p[a+t∗a,b−t∗b ]

+ sup
0<h≤t∗a

‖w
−→
∆r
hf‖p[a,a+12t∗a] + sup

0<h≤t∗
b

‖w
←−
∆r
hf‖p[b−12t∗

b
,b],

where
−→
∆r
h and

←−
∆r
h denote forward and backward r-th finite differences respec-

tively and t∗a, t
∗
b are functions of t and r depending on the behavior of ϕ at the

respective end-points.
Under certain conditions, the most important of which are the “finite

overlapping condition” on ϕ and the boundness of w at a finite end-point of I,
Ditzian and Totik proved in [10, Ch. 2 and Ch. 6] the equivalence

K(f, tr;Lp(w)(I),W r
p (wϕr)(I)) ∼ ωrϕ(f, t)w,p(I),

where the K-functional is defined for X = Lp(w)(I), 1 ≤ p ≤ ∞, and Y =
W r
p (wϕr)(I) with the semi-norm |g|W r

p (wϕr)(I) = ‖wϕrg(r)‖p(I).
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On the other hand, the second author introduced the following moduli of
smoothness

(2.4) τr(f ;ψ(t))q,p(I) = ‖ωr(f, ·;ψ(t, ·))q‖p(I),

where the local moduli are given by

ωr(f, x;ψ(t, x))q =

(
(2ψ(t, x))−1

∫ ψ(t,x)

−ψ(t,x)
|∆r

hf(x)|q dh

)1/q

, 1 ≤ q <∞,

ωr(f, x;ψ(t, x))∞ = sup{|∆r
hf(x)| : |h| ≤ ψ(t, x)}

and ψ is a continuous function connected with ϕ in a certain way (see [21, 22]).
Under certain conditions on ϕ (see [22]), Ivanov proved the relation

K(f, tr;Lp(I),W
r
p (ϕr)(I)) ∼ τr(f ;ψ(t))p,p(I).

The power and logarithmic-type weights ϕ are covered. The first characterization,
based on the standard translation operator, of the best approximations in Lp[a, b],
1 ≤ p ≤ ∞, by algebraic polynomials was established in the terms of τ -moduli
[21].

Let us also mention that Ky [27] defined moduli through which he charac-
terized K-functionals of the type (1.1) with X = Lp(w)(I), I ⊆ R is an interval,
1 ≤ p ≤ ∞, and Y = W r

p (w)(I), where the weight w is bounded and satisfies
certain monotonicity requirements near the end-points of the interval.

M. K. Potapov (see [29] and the references cited there) characterized the
K-functional (1.1) withX = Lp(w)[−1, 1] with Jacobean weight w, and Y = {g ∈
AC2r−1

loc [−1, 1] : Dr
ν,µg ∈ Lp[−1, 1]} with the semi-norm |g|Y = ‖Dr

ν,µg‖p[−1,1],
where

Dν,µ = (1− x)−ν(1 + x)−µ
d

dx
(1− x)ν+1(1 + x)µ+1 d

dx
is the Jacobean differential operator. The moduli introduced by Potapov are
based on generalized translation operators.

Also Butzer, Stens and Wehrens [3, 5, 6] defined moduli of smoothness
by means of multipliers and generalized translations to characterize the best
weighted algebraic approximation with Jacobean weights.

3. Equivalence between K-functionals. The main purpose of this
paper is to present a general approach to establishing equivalence between two
K-functionals of the type:

K(f, t;X1, Y1) ∼ K(Af, t;X2, Y2),
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where A : X1 → X2 is a bounded linear operator. Hence, in view of (2.1) for
X2 = Lp(I), Y2 = W r

p (I), |G|W r
p (I) = ‖G(r)‖p(I), I ⊆ R is an interval, we get

the following characterization of the K-functional K(f, t;X1, Y1) by means of the
unweighted fixed step-modulus of smoothness:

K(f, tr;X1, Y1) ∼ ωr(Af, t)p(I).

We have (cf. [16, Definition 2.1 and Proposition 2.1] and [13, Definition
1.1 and Proposition 2.1])

Theorem 3.1. If there exists a linear operator B : X2 → X1, related to
A : X1 → X2, and both operators satisfy the conditions:

a) ‖Af‖X2
≤ c ‖f‖X1

for every f ∈ X1;

b) Ag ∈ Y2 ∩X2 and |Ag|Y2
≤ c |g|Y1

for every g ∈ Y1 ∩X1;

c) ‖BF‖X1
≤ c ‖F‖X2

for every F ∈ X2;

d) BG ∈ Y1 ∩X1 and |BG|Y1
≤ c |G|Y2

for any G ∈ Y2 ∩X2;

e) |f −BAf |Y1
= 0 for every f ∈ X1;

f) |F −ABF |Y2
= 0 for every F ∈ X2.

Then

(3.1) K(f, t;X1, Y1) ∼ K(Af, t;X2, Y2)

and

K(F, t;X2, Y2) ∼ K(BF, t;X1, Y1).

Remark 3.1. Let us note that to get only (3.1) it is sufficient condition
f) to be fulfilled only for F ∈ A(X1).

In some cases in order to apply Theorem 3.1 more effectively in establi-
shing a characterization of K-functionals K(f, tr;Lp(w)(I),W r

p (wϕr)(I)) by the
unweighted fixed-step moduli we shall split the singularities of the weights. More
precisely, let −∞ ≤ ā < a1 < b1 < b̄ ≤ ∞, I = (ā, b̄), I1 = (ā, b1) and I2 = (a1, b̄).
Let w and ϕ be non-negative measurable on I weights such that w ∼ 1 and ϕ ∼ 1
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on [a1, b1]. Then for r ∈ N, 1 ≤ p ≤ ∞, 0 < t ≤ b1 − a1 and f ∈ Lp(w)(I) we
have (cf. [8, p. 176, Lemma 2.3] and [16, Lemma 7.1]):

K(f, t;Lp(w)(I),W r
p (wϕr)(I)) ∼ K(f, t;Lp(w)(I1),W

r
p (wϕr)(I1))

+K(f, t;Lp(w)(I2),W
r
p (wϕr)(I2)).(3.2)

Above we have used one and the same notation for the function f and for its
restrictions on subdomains.

Let us note that in the applications we require operator A from Theorem
3.1 to be constructed explicitly and the computations of ωr(Af, t)p and ωr(f, t)p
to be equally difficult. The latter means that the operations in constructing A

are addition and multiplication by elementary functions, change of the variable
by elementary functions and integration.

4. Application. Now, we give several applications of Theorem 3.1 in
establishing characterizations of K-functionals in terms of the unweighted fixed-
step moduli of smoothness.

Let us consider the K-functional

(4.1) K(f, t;Lp(w)(I),W r
p (wϕr)(I))

= inf
{
‖w(f − g)‖p(I) + t‖wϕrg(r)‖p(I) : g ∈ ACr−1

loc (I)
}
.

The domain I may be finite, semi-infinite or infinite, represented respectively by
I = [a, b], I = [a,∞) and I = (−∞,∞). To define the weights w and ϕ we set
χξ(x) = |x − ξ| for a real number ξ. For a finite domain I = [a, b] we consider

the weights w = χγa
a χ

γb

b and ϕ = χλa
a χ

λb

b with γa, γb, λa, λb ∈ R. For a semi-

infinite domain I = [a,∞) we consider the weights w = χγa
a χ

γ∞−γa

a−1 (note that

w(x)/xγ∞ → 1 for x→∞) and ϕ = χλa
a χ

λ∞−λa

a−1 with γa, γ∞, λa, λ∞ ∈ R. For the
infinite domain I = (−∞,∞) we apply (3.2) to reduce the case to semi-infinite
domain.

It is demonstrated in [16] that the case λa > 1 with a finite end-point
a of the domain I is equivalent to the case λ∞ < 1 (transfer to infinite end-
point), as well as the case λ∞ > 1 is equivalent to the case λa < 1. So the
two main cases in characterization of the K-functional (4.1) are i) λa < 1 and
λ∞ < 1 (see Subsection 4.1) and ii) λa = 1 and λ∞ = 1 (see Subsection 4.2). In
order to solve the first case we apply power change of the variable and for the
second case – exponential change of the variable. In the remaining subsections
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we consider applications in which the differential operator ϕrDr determining the
second term of the K-functional is replaced by a linear differential operator of
the form P (D), where P is a polynomial with constant coefficients in Subsection
4.3 or with varying coefficients in Subsection 4.4.

Also to describe the restrictions on the powers γa, γb or γ∞ of the weight
w we set for r ∈ N and 1 ≤ p ≤ ∞

Γ+(p) = (−1/p,∞), p <∞, and Γ+(∞) = [0,∞);

Γ0(p) = (−1/p,∞);

Γi(p) = (−i− 1/p, 1− i− 1/p), i = 1, . . . , r − 1;

Γr(p) = (−∞, 1− r − 1/p);

Γexc(p) = {1− r − 1/p, 2− r − 1/p, . . . ,−1/p}.

4.1. Power change of the variable. K-functionals with λa < 1 and/or
λ∞ < 1 are related to the best approximation by algebraic polynomials on a
finite interval, to the approximation error of the Bernstein, Szasz-Mirakian and
Baskakov operators, etc. [10, 21, 26, 31].

Let r ∈ N and ξ ∈ (a, b). Let s be one of the ends of the finite interval
[a, b] and e – the other.

For ρ ∈ R, i ∈ N0, i ≤ r, x ∈ (a, b) and f ∈ L1,loc[a, b], satisfying the

additional requirement χ−i+ρ
s f ∈ L1[s, (s+ e)/2] if i > 0, we set

(Ai(ρ; s, e; ξ)f)(x) =

(
x− s

e− s

)ρ
f(x)

+
1

e− s

i∑

k=1

αr,k(ρ)

(
x− s

e− s

)k−1 ∫ x

s

(
y − s

e− s

)−k+ρ
f(y) dy

+
1

e− s

r∑

k=i+1

αr,k(ρ)

(
x− s

e− s

)k−1 ∫ x

ξ

(
y − s

e− s

)−k+ρ
f(y) dy,

where

αr,k(ρ) =
(−1)k

(r − 1)!

(
r − 1

k − 1

) r−1∏

ν=0

(ρ+ r − k − ν), k = 1, 2, . . . , r.

As usual, above and in what follows we assume that the sum is 0 if the upper
bound is smaller than the lower.
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For σ > 0, i ∈ N, i ≤ r, x ∈ (a, b) and f ∈ L1,loc[a, b], satisfying the

additional requirement χ
(1−i)/σ−1
s f ∈ L1[s, (s+ e)/2] if i > 1, we set

(Bi(σ; s, e; ξ)f)(x) = f

(
s+ (e− s)

(
x− s

e− s

)σ)

+
1

e− s

i∑

k=2

βr,k(σ)

(
x− s

e− s

)k−1 ∫ x

s

(
y − s

e− s

)−k
f

(
s+ (e− s)

(
y − s

e− s

)σ)
dy,

+
1

e− s

r∑

k=i+1

βr,k(σ)

(
x− s

e− s

)k−1 ∫ x

ξ

(
y − s

e− s

)−k
f

(
s+ (e− s)

(
y − s

e− s

)σ)
dy,

where

βr,k(σ) =
(−1)r−k

(r − 2)!

(
r − 2

k − 2

) r−1∏

i=1

(k − 1− iσ), k = 2, 3, . . . , r.

By means of these operators and their modifications we can construct
operators that satisfy Theorem 3.1 above forK-functionalsK(f, t;Lp(χ

γa
a χ

γb

b )[a, b],

W r
p (χγa+rλa

a χγb+rλb

b )[a, b]) with λa, λb 6= 1. For example, by Propositions 3.9 and
6.2 in [16] (cf. Theorem 6.1 there) we establish

Theorem 4.1. Let r ∈ N and 1 ≤ p ≤ ∞, (1 − λa)(1 − νa) > 0,
(1 − λb)(1 − νb) > 0. Let also κa, µa, µb 6∈ Γexc(p) and κb ∈ Γ0(p). We set
w = χκa

a χ
κb

b , ϕ = χλa
a χ

λb

b , w̃ = χµa
a χ

µb

b , ϕ̃ = χνa
a χ

νb

b and

A = Ai1(−ρ; a, b; ξ)Ai2(−ρb; b, a; ξ)B1(σ
−1
b ; b, a; ξ)B1(σa; a, b; ξ)A0(ρa; a, b; ξ)

B = Ai′(−ρa; a, b; η)B1(σ
−1
a ; a, b; η)B1(σb; b, a; η)A0(ρb; b, a; η)A0(ρ; a, b; η),

where ξ, η ∈ (a, b), ρ < µa + 1/p, the integers i1, i2, i
′ are such that Γi1(p) 3 µa,

Γi2(p) 3 µb, Γi′(p) 3 κa, and

σa =
1− νa
1− λa

, σb =
1− λb
1− νb

,

ρa = κa +
1

p
−
µa − ρ+ 1/p

σa
, ρb = µb +

1

p
−
κb + 1/p

σb
.

Then for f ∈ Lp(w)[a, b] and t > 0 we have

K(f, t;Lp(w)[a, b],W r
p (wϕr)[a, b]) ∼ K(Af, t;Lp(w̃)[a, b],W r

p (w̃ϕ̃r)[a, b])
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and for F ∈ Lp(w̃)[a, b] and t > 0 we have

K(F, t;Lp(w̃)[a, b],W r
p (w̃ϕ̃r)[a, b]) ∼ K(BF, t;Lp(w)[a, b],W r

p (wϕr)[a, b]).

Remark 4.1. Interchanging a and b in the definition of A and B in
the theorem above we get a similar relation between the K-functionals under the
hypothesis that κa ∈ Γ0(p) and κb, µa, µb 6∈ Γexc(p).

Theorem 4.1 and (2.1) imply directly a characterization of the considered
K-functional by the ordinary modulus of smoothness but here we present another
one given in [16, Theorem 6.2], which is simpler to state.

Theorem 4.2. Let r ∈ N, 1 ≤ p ≤ ∞ and λa, λb ∈ (−∞, 1). For p <∞
we assume that κa, κb 6∈ Γexc(p) as at least one of them is in Γ0(p), and for p =∞
we assume that κa = κb = 0. We set w = χκa

a χ
κb

b , ϕ = χλa
a χ

λb

b and

A = B1(σb; b, a; ξ)B1(σa; a, b; ξ)A0(ρb; b, a; ξ)A0(ρa; a, b; ξ),

where ξ ∈ (a, b) and

σa =
1

1− λa
, σb =

1

1− λb
, ρa = κa +

λa
p
, ρb = κb +

λb
p
.

Then for f ∈ Lp(w)[a, b] and t > 0 we have

K(f, tr;Lp(w)[a, b],W r
p (wϕr)[a, b]) ∼ ωr(Af, t)p[a,b].

The operators A and B defined in the beginning of this subsection can
also be used when the weight exponent at the end s takes an exceptional value
from Γexc(p) but then they change the exponent into one that belongs to Γexc(p)
again. More precisely, the following assertion holds for the A-operators.

Proposition 4.1. Let i, i′ ∈ N0, r ∈ N, as i, i′ < r, 1 ≤ p ≤ ∞,
γ ∈ Γ+(p), ξ, η ∈ (a, b), and s be one of the points a or b and e be the other one.

We set w = χ
−i−1/p
s χγe and w̃ = χ

−i′−1/p
s χγe . Finally, let φ be measurable and

non-negative on (a, b). Then we have

K(f, t;Lp(w)[a, b],W r
p (wφ)[a, b])

∼ K(Ai′(i
′ − i; s, e; ξ)f, t;Lp(w̃)[a, b],W r

p (w̃φ)[a, b])



Equivalence Between K-functionals Based on Linear Transforms 485

and

K(F, t;Lp(w̃)[a, b],W r
p (w̃φ)[a, b])

∼ K(Ai(i− i
′; s, e; η)F, t;Lp(w)[a, b],W r

p (wφ)[a, b]).

P r o o f. Just similarly as in the proof of [16, Proposition 3.2] we verify
that the operators A = Ai′(i

′ − i; s, e; ξ) and B = Ai(i − i′; s, e; η) satisfy the
hypotheses of Theorem 3.1 with X1 = Lp(w)[a, b], X2 = Lp(w̃)[a, b], Y1 =
W r
p (wφ)[a, b] and Y2 = W r

p (w̃φ)[a, b]. In establishing properties a) and b) we
also take into consideration that αr,i′+1(i

′ − i) = 0, αr,i+1(i − i
′) = 0 and hence

Hardy’s inequalities are applicable. 2

If we separate the singularities of the weights w and ϕ beforehand, using
(3.2), we can get a similar characterization of the K-functional with simpler
transforms of the function but by a sum of two moduli ωr. Moreover, the
requirement that the exponent of the weight w on at least one of the ends of the
interval is greater than −1/p for p <∞ is trivially satisfied and hence relaxed. In
addition, Proposition 4.1 allows us to characterize the K-functional in the case
p = ∞ not only for κa, κb = 0 but for all κa, κb ∈ Γexc(∞) = {1 − r, . . . ,−1, 0}.
Thus, (3.2), Theorem 4.2 (in the case p <∞), and Proposition 4.1, [13, Theorem
5.4] (in the case p =∞) yield the following relation (cf. [16, Theorem 7.1]).

Theorem 4.3. Let r ∈ N, 1 ≤ p ≤ ∞ and λa, λb ∈ (−∞, 1). For p <∞
we assume that κa, κb 6∈ Γexc(p), and for p =∞ we assume that κa, κb ∈ Γexc(∞).
We set w = χκa

a χ
κb

b , ϕ = χλa
a χ

λb

b and

A1 = B1(σa; a, b1; ξ1)A0(ρa; a, b1; ξ1),

A2 = B1(σb; b, a1; ξ2)A0(ρb; b, a1; ξ2),

where a < a1 < b1 < b, ξ1 ∈ (a, b1), ξ2 ∈ (a1, b) and

σa =
1

1− λa
, σb =

1

1− λb
, ρa = κa +

λa
p
, ρb = κb +

λb
p
.

Then for f ∈ Lp(w)[a, b] and t > 0 we have

K(f, tr;Lp(w)[a, b],W r
p (wϕr)[a, b]) ∼ ωr(A1f, t)p[a,b1] + ωr(A2f, t)p[a1,b].
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Remark 4.2. The K-functional K(f, tr;Lp(w)[a, b],W r
p (wϕr)[a, b]) for

κa, κb ∈ Γexc(p), p <∞, and κa, κb 6∈ Γexc(∞), p =∞, can also be characterized
in a similar way but that involves new elements. Some initial comments on that
are given in [15, Sections 3 and 4].

Results similar to those given in Theorems 4.1–4.3 are valid in the cases
when one or both of the expressions (1− λa)(1− νa), (1− λb)(1− νb) is negative
and/or the interval is (semi-)infinite (see [16]).

4.2. Exponential change of the variable. K-functionals with λa =
1 and/or λ∞ = 1 are related to the approximation error of the Post-Widder,
Gamma and Baskakov operators (see [17] and the references cited there, and also
[31]). In [18] we show that

‖w(f − P1/tf)‖p[0,∞) ∼ ‖w(f −G1/tf)‖p[0,∞)

∼ K(f, t;Lp(w)[0,∞),W 2
p (wχ2

0)[0,∞)),

where P1/t and G1/t denote respectively the Post-Widder and the Gamma ope-
rators, f ∈ Lp(w)[0,∞), w(x) = xγ0(1 + x)γ∞−γ0 with arbitrary γ0, γ∞ ∈ R, and
1 ≤ p ≤ ∞ (the case γ0 = γ∞ was considered in [17]).

Following the ideas of the previous subsection for r ∈ N, γ ∈ R, F ∈
L1,loc(R), f ∈ L1,loc[a,∞) and x ∈ R we define the operators

(AγF )(x) = e(γ+1/p)xF (x)

+
r∑

k=1

(−1)k
(
r

k

)
(γ + 1/p)k

(k − 1)!

∫ x

0
(x− y)k−1e(γ+1/p)yF (y) dy,

(Bf)(x) = f(a+ ex) +
r−1∑

i=1

s(r, r − i)

(i− 1)!

∫ x

0
(x− y)i−1f(a+ ey) dy,

where s(r, k) are the Stirling numbers of the first kind defined by

x(x− 1) . . . (x− r + 1) =

r∑

k=0

s(r, k)xk

for k = 0, 1, . . . , r and s(r, k) = 0 for k > r. Then the following one-term
characterization is valid [14, 19].

Theorem 4.4. Let r ∈ N, 1 ≤ p ≤ ∞, 0 < t ≤ t0, γ ∈ R and
f ∈ Lp(χ

γ
a)[a,∞).
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a) If γ 6∈ Γexc(p), then

K(f, tr;Lp(χ
γ
a)[a,∞),W r

p (χγ+ra )[a,∞)) ∼ ωr(AγBf, t)p(R).

b) If γ ∈ Γexc(p), then

K(f, tr;Lp(χ
γ
a)[a,∞),W r

p (χγ+ra )[a,∞)) ∼ ωr(B(χγ+1/p
a f), t)p(R).

By means of the method of 3.1 the operators Aγ and B in the above
theorem can be further simplified if we use two fixed step moduli of different
order. To treat the more general weight w(x) = χγa

a χ
γ∞−γa

a−1 with γa, γ∞ ∈ R in
some cases we shall also apply (3.2), which increases the number of fixed step
moduli to four. For r ∈ N, i, j ∈ N0, j ≤ r, distinct points x0, . . . , xr ∈ (a,∞)
and a weight w̄ we define the linear operator Ai,j−1(w̄) : L1,loc[a,∞)→ L1,loc(R)
by

Ai,j−1(w̄)f = (w̄(f − Li,j−1f)) ◦ E,

where E(x) = ex and

(Li,j−1f)(x) =

j−1∑

n=i

1

n!

(
r∑

`=1

Φ
(n+1)
` (a)

Φ`(x`)

∫ x`

x0

f(y) dy

)
(x− a)n,

Φ`(x) =
r∏

m=0
m6=`

(x− xm), ` = 1, . . . , r.

We have the following characterization [18, Theorem 1.2].

Theorem 4.5. Let r ∈ N, i, j ∈ N0, i, j ≤ r, 1 ≤ p ≤ ∞ and t0 > 0.
Let also w = χγa

a χ
γ∞−γa

a−1 with γa ∈ Γi(p), γ∞ ∈ Γj(p). Then for every f ∈
Lp(w)[a,∞) and 0 < t ≤ t0 there holds

K(f, tr;Lp(w)[a,∞),W r
p (wχra)[a,∞))

∼ ωr(Ai,j−1(χ
1/p
a w)f, t)p(R) + tr ‖Ai,j−1(χ

1/p
a w)f‖p(R).

P r o o f. We shall show that the operator A = Ai,j−1(χ
1/p
a w) satisfies

the hypotheses of Theorem 3.1 with X1 = Lp(w)[a,∞), Y1 = W r
p (wχra)[a,∞)

as |g|Y1
= ‖wχrag

(r)‖p[a,∞), X2 = Lp(R), Y2 = W r
p (R) as |G|Y2

= ‖G‖p(R) +

‖G(r)‖p(R) and B : X2 → X1, defined by BF = χ
−1/p
a w−1(F ◦ log). Since Li,j−1 :
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X1 → X2 is bounded we verify that A and B satisfy respectively conditions a)
and c) of Theorem 3.1 just by a change of the variable. In [18, Proposition 4.3
and 4.4.e] we establish the inequalities

‖wχka(g − Li,j−1g)
(k)‖p[a,∞) ≤ c ‖wχ

r
ag

(r)‖p[a,∞), k = 0, . . . , r.

provided that g ∈ W r
p (wχra)[a,∞), γ0 ∈ Γi(p), γ∞ ∈ Γj(p). Hence condition b)

of Theorem 3.1 follows. Similarly, by the well-known inequalities

‖G(k)‖p(R) ≤ c
(
‖G‖p(R) + ‖G(r)‖p(R)

)
, k = 0, . . . , r,

we get d). Finally, we directly verify that f −BAf = Li,j−1f ∈ πr−1∩Y1 for any
f ∈ X1, which implies e), and since Li,j−1 preserves the polynomials of the form

ciχ
i
a+ · · ·+ cj−1χ

j−1
a we have ABF = F for any F ∈ A(X1), which implies f) for

F ∈ A(X1).

Now, Theorem 3.1 in view of Remark 3.1 yields

K(f, tr;Lp(w)[a,∞),W r
p (wχra)[a,∞))

∼ inf
{
‖Af −G‖p(R) + tr

(
‖G‖p(R) + ‖G(r)‖p(R)

)
: G ∈W r

p (R)
}
.

To complete the proof we just need to observe that for F ∈ Lp(R), 1 ≤
p ≤ ∞, and 0 < t ≤ t0 there holds (cf. [17, Lemma 5.2])

inf
{
‖F −G‖p(R) + tr

(
‖G(`)‖p(R) + ‖G(r)‖p(R)

)
: G ∈W r

p (R)
}

∼ ωr(F, t)p(R) + tr−`ω`(F, t)p(R), ` = 0, . . . , r − 1.

2

Let us explicitly note that for j ≤ i we have Ai,j−1(χ
1/p
a w)f =

(χ
1/p
a wf) ◦ E.

Similarly, the following assertion can be established

Theorem 4.6 [18, Theorem 1.3]. Let r ∈ N, 1 ≤ p ≤ ∞ and b, t0 > 0.
Let also w = χγa

a χ
γ∞−γa

a−1 with γa, γ∞ ∈ R and the integers i, j be determined by
Γi(p)∪{1−i−1/p} 3 γa, Γj(p)∪{−j−1/p} 3 γ∞. We set `a = 1 if γa ∈ Γexc(p),
and `a = 0 otherwise. We set `∞ = 1 if γ∞ ∈ Γexc(p), and `∞ = 0 otherwise.
Let the integers i′, j′ be such that 0 ≤ i′ ≤ i − `0 and j + `∞ ≤ j′ ≤ r. Then for
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every f ∈ Lp(w)[a,∞) and 0 < t ≤ t0 there holds

K(f, tr;Lp(w)[a,∞),W r
p (wχra)[a,∞))

∼ ωr(Ai,j′−1(χ
γa+1/p
a )f, t)p(−∞,b] + tr−`aω`a(Ai,j′−1(χ

γa+1/p
a )f, t)p(−∞,b]

+ ωr(Ai′,j−1(χ
γ∞+1/p
a )f, t)p[−b,∞) + tr−`∞ω`∞(Ai′,j−1(χ

γ∞+1/p
a )f, t)p[−b,∞).

Similar characterizations hold for the K-functionals K(f, t;Lp(χ
γa
a )[a, b],

W r
p (χγa+r

a )[a, b]) and K(f, t;Lp(χ
γ∞
a )[a+ 1,∞),W r

p (χγ∞+r
a )[a+ 1,∞)).

4.3. A K-functional associated with the best approximation by

trigonometric polynomials. Let Lp,2π denote the set of the 2π-periodic func-
tions in Lp. The best trigonometric approximation of a function f ∈ Lp,2π is
given by

ETn (f)p = inf
g∈Tn

‖f − g‖p[−π,π],

where Tn is the set of trigonometric polynomials of degree at most n ∈ N0. As
it is known the rate of best approximation by trigonometric polynomials can be
estimated by the periodic modulus of smoothness as follows (see e.g. [8, Ch. 7]):

ETn (f)p ≤ c ωr(f, n
−1)p,2π, n ∈ N,(4.2)

ωr(f, t)p,2π ≤ c t
r
∑

0≤k≤1/t

(k + 1)r−1ETk (f)p, 0 < t ≤ t0.

However, ωr(f, t)p,2π ≡ 0 iff f ∈ T0, whereas ET
n (f)p = 0 for any f ∈ Tn and thus

the direct estimate (4.2) contains a gap. This discrepancy can be overcome by
defining another periodic modulus which is zero iff f is trigonometric polynomial
of a given degree.

Let Πn denote the set of the algebraic polynomials of degree n ∈ N0. For
r ∈ N let us define the linear operator Ar−1 : Lp,2π → Lp,2π + Π2r−2 by

Ar−1(f, x) = f(x) +
r−1∑

j=1

ar−1,j

(2j − 1)!

∫ x

0
(x− t)2j−1f(t) dt,

where ar−1,j are given by the Stirling numbers of the first kind with

ar−1,j =

2r−2j−1∑

k=1

(−1)r−j−ks(r, k) s(r, 2r − 2j − k).
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The first author introduced in [12] the following periodic modulus of smoothness:

(4.3) ωTr (f, t)p,2π = sup
0<h≤t

‖∆2r−1
h Ar−1f‖p[−π,π].

Let us note that although Ar−1f is not generally a 2π-periodic function for f ∈
Lp,2π, its finite difference ∆2r−1

h Ar−1f is. It was established in [12] that

ETn (f)p ≤ c ω
T
r (f, 1/n)p,2π, n ≥ r − 1,(4.4)

ωTr (f, t)p,2π ≤ c t
2r−1

∑

r−1≤k≤1/t

(k + 1)2r−2ETk (f)p, 0 < t ≤ 1/r,

as ωTr (f, t)p,2π ≡ 0 iff f ∈ Tr−1. Let us note that (4.4) for n = r − 1 is a
trigonometric analogue of Whitney’s theorem.

A substantial element of the proof of (4.4) is the following relation between
K-functionals, which is established by the method given in Theorem 3.1:

KT
r,`(f, t)p = inf{‖f − g‖p[−π,π] + t‖D̃rD

`g‖p[−π,π] : g ∈W 2r+`−1
p,2π }

∼ K(Ar−1f, t;Lp,2π + Π2r−2,W
2r+`−1
p,2π ), ` = 0, 1, . . . ,

with Dg = g′, D̃rg = (D2 +(r− 1)2) · · · (D2 +1)Dg and Wm
p,2π = {g ∈ ACm

loc(R) :

Dmg ∈ Lp,2π}. Let us recall that D̃rg = 0 iff g ∈ Tr−1 and hence KT
r,0(f, t)p ≡ 0

iff g ∈ Tr−1.

Another modulus which is equivalent to zero for the trigonometric poly-
nomials up to a given degree was considered by A.G. Babenko, N.I. Chernykh
and V.T. Shevaldin. Through it they proved an upper estimate just like (4.2) for
p = 2 and r ∈ N in [1], and Shevaldin [30] proved it for p =∞ and r = 2.

4.4. The K-functional associated with the approximation error

of the Kantorovich and the Durrmeyer operators.

Theorem 3.1 can be also applied for characterizing K-functionals with
the second term generated by a linear differential operator of the form P (D),
where P is a polynomial with varying coefficients. In such cases the application
is more complicated but the arising problems can be overcome, for example, by
a varying sets technique. In order to demonstrate the approach let us consider
the K-functional associated with the approximation error of the Kantorovich and
the Durrmeyer operators.

Consider the space Lp[0, 1], 1 ≤ p ≤ ∞, as for p =∞ we identify L∞[0, 1]
in this subsection with C[0, 1]. Let Ỹp be C2[0, 1] equipped with the semi-norm
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|g|Ỹp
= ‖(φg′)′‖p[0,1], where φ(x) = x(1−x). In this case the differential operator

is φD2+φ′D. As it was shown by Chen, Ditzian and Ivanov [7] for the Durrmeyer
operator Mn and by Gonska and Zhou [20] for the Kantorovich operator Kn, we
have for 1 ≤ p ≤ ∞ the equivalence

(4.5) ‖f −Knf‖p[0,1] ∼ ‖f −Mnf‖p[0,1] ∼ K(f, 1/n;Lp[0, 1], Ỹp).

Further, Gonska and Zhou [20] proved for f ∈ Lp[0, 1], 1 < p ≤ ∞ that

K(f, t2;Lp[0, 1], Ỹp) ∼ ω
2√
φ(f, t)p[0,1] + ω1(f, t

2)p[0,1],

where ω2√
φ

is given by (2.3) with w ≡ 1. The above equivalence is not valid in

the case p = 1. For the characterization of the K-functional in (4.5) for p = 1
the second author [23] used the scheme

(4.6) K(f, t;L1[0, 1], Ỹ1) = K(f, t;L1[0, 1], Z1) ∼ K(Af, t;L1[0, 1], Z2)

∼ K(Af, t;L1[0, 1],W
2
1 (φ)[0, 1]) + t ω1(f, 1)1[0,1],

where the operator A is given by

(Af)(x) = f(x) +

∫ x

1/2

(
x

y2
−

1− x

(1− y)2

)
f(y) dy.

Theorem 3.1 is applied in (4.6) with X1 = X2 = L1[0, 1], Y1 = Z1 and Y2 = Z2,
where

Z1 =
{
f ∈ C2[0, 1] : f ′(0) = 0, f ′(1) = 0

}
,

Z2 =

{
f ∈ C2[0, 1] : f(0) = 2

∫ 1/2

0
f(y) dy, f(1) = 2

∫ 1

1/2
f(y) dy

}

and the semi-norms in Z1 and Z2 are given by ‖(φg′)′‖1[0,1] and ‖φg′′‖1[0,1]
respectively. Note that Theorem 3.1 cannot be applied directly with A and the
subspaces Y1 = Ỹ1, Y2 = W 2

1 (φ)[0, 1] because items b) and d) (with B = A−1)
are not fulfilled. Moreover, A(Z1) = Z2 but A(Ỹ1) 6= W 2

1 (φ)[0, 1]. Using (4.5),
(4.6) and Theorem 4.2 we get for every n ∈ N and every f ∈ L1[0, 1]

‖f − Pnf‖1[0,1] ∼ ‖f −Mnf‖1[0,1] ∼ ω2(ÃAf, n−1/2)1[0,1] + n−1ω1(f, 1)1[0,1],

where Ã stays for the operator A from Theorem 4.2 with r = 2, p = 1, a = 0,
b = 1, λ0 = λ1 = 1/2, κ0 = κ1 = 0, ξ = 1/2.
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Following the approach sketched in this subsection Zapryanova [32] cha-
racterized the K-functional related to the Lp[0, 1], 1 ≤ p ≤ 2, error of the
algebraic version of the integral Jackson operator.
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