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COMPLEX ANALOGUES OF THE ROLLE’S THEOREM

Bl. Sendov

Communicated by G. Nikolov

Abstract. Classical Rolle’s theorem and its analogues for complex algebraic
polynomials are discussed. A complex Rolle’s theorem is conjectured.

1. Introduction. The classical theorem of Rolle states that if p(x) is
a real polynomial, a, b are two different real numbers, a < b, and p(a) = p(b),
then there exists ξ ∈ (a, b), such that p′(ξ) = 0. As linear transformations of the
complex plane do not change the geometric relations between the zeros and the
critical points of a polynomial, we may consider only the points a = −1, b = 1.
There are many statements that are considered refinements of the classical Rolle
theorem. Every such a refinement has the following structure:
Let Kn be the class of real polynomials p(x) of degree n, n ≥ 2, with p(−1) = p(1)
and αn > 0. Then every p ∈ Kn has at least one critical point in the interval
(−1 + αn, 1 − αn).
There are several refinements of Rolle’s theorem in [1, pp. 203-208]. One of them
is the classical Lagguerre-Cesàro Theorem 6.5.1.
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Theorem 1 (Lagguerre-Cesàro). If p(x) is a polynomial of degree
n ≥ 2 with only real zeros and a = −1, b = 1 are two consecutive zeros of p(x),
then at least one zero of p′(x) is in the segment [−1+2/n, 1−2/n]. The segment
[−1 + 2/n, 1 − 2/n] is the smallest segment with this property.

It is natural to consider the case when K∞ =
⋃

∞

n=1 Kn is the set of all real
polynomials with p(−1) = p(1). This case was solved by Lubomir Tschakaloff
[2], a leading Bulgarian mathematician from the first half of the last century.

Theorem 2 (L. Tschakaloff). Let αm be the biggest zero of the Legendre
polynomial of degree m, see (20). If p(x) is a real polynomial of degree n ≤ 2m
and p(−1) = p(1), then at least one zero of p′(x) is in the open interval (−αm, αm)
for n > 3 and in the closed interval [α2, α2] for n = 3. If n = 2, the single zero
of p is α1 = 0. Moreover, for every 0 ≤ βm < αm, there exists a polynomial of
degree n ≤ 2m without zeros in the closet interval [−βm, βm].

As this result of Tschakaloff is missing in the basic reference book [1], it
will be presented at the and of this paper.

1.1. Complex Rolle’s theorem. An analogue of Rolle’s theorem for
complex polynomials must have the following structure:
Let Ω be a subset of the complex plane C. If p(z) is a complex polynomial with
p(−1) = p(1), then there exists ζ ∈ Ω, such that p′(ζ) = 0.
Call such a domain Ω, a Rolle’s domain. The smallest Rolle’s domain is denoted
by R. As the distances between the zeros and the critical points of a polynomial,
and the relation p(−1) = p(1) do not change by the transformations z ⇒ −z and
z ⇒ z, we consider only domains Ω, which are symmetric with respect to both
the real and the imaginary axis. We do not know much about the smallest Rolle
domain R. It follows from Theorem 4 below that every Rolle domain obeys

Ω = C\ {x : x ∈ (−∞,−1) ∪ (1,∞)} ⊃ R.

In this paper we conjecture that

R =

{

z : |Im(z)| >
1

π

}

∪ {z : |z| < 1}

and prove the inclusion

R ⊃
{

z : |Im(z)| >
1

π

}

∪ {z : |z| < 1} .

1.2. Refinements of complex Rolle’s theorem. A refinement of the
complex Rolle’s theorem has the following structure: For every natural n ≥ 2,
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let Kn be the class of complex polynomials of degree n with p(−1) = p(1) and
Ωn be a subset of the complex plane. If p ∈ Kn, then there exists ζ ∈ Ωn, such
that p′(ζ) = 0. In the literature a theorem is usually called an “analogue of
Rolle’s theorem for complex polynomials”, when in fact it is a refinement of the
Rolle theorem. The reason may be that nontrivial complex Rolle’s theorem does
not exist. The book of Q. I. Rahman and G. Schmeisser [1] contains several
refinements of the complex Rolle theorem. The most famous one is the Grace-
Heawood theorem [1, p. 126].

Theorem 3 (Grace-Heawood). If p is a polynomial of degree n ≥ 2
and p(−1) = p(1), then there exists

ζ ∈ D
(

0; cot
π

n

)

=
{

z : |z| ≤ cot
π

n

}

,

such that p′(ζ) = 0.

Another refinement of the complex Rolle theorem is the following:

Theorem 4([1, Theorem 4.3.4, p. 128]). If p is a polynomial of
degree n ≥ 2 and p(−1) = p(1), then there exists

ζ ∈ D

(

−i cot
π

n − 1
; sin−1 π

n − 1

)

∪ D

(

i cot
π

n − 1
; sin−1 π

n − 1

)

.

such that p′(ζ) = 0.

Definition 1. For every natural number n > 2, let Rn be the smallest
domain, such that, for every polynomial p(z) of degree n with p(−1) = p(1), there
exists ζ ∈ Rn, for which p′(ζ) = 0.

It is easy to verify that

(1) Rn ⊂ Rn+1

and

(2) R = ∪∞

n=2Rn.

The problem to determine Rn for every natural n was formulated by L. Tschakaloff
[3].

2. The domains Rn. In this section we define disks, which belong to
Rn.
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Definiton 2. Call a polynomial p(z) of degree n with p(−1) = p(1)
extremal for Rn if p(z) has no critical points inside Rn.

Let

p′(z) = (z−z1)(z−z2) · · · (z−zn−1) =
n−1
∑

k=0

(−1)n−k−1Sn−1,n−k−1(z1, z2, . . . , zn−1)z
k,

where Sn−1,k(z1, z2, . . . , zn−1), k = 0, 1, . . . , n − 1, are the elementary symmetric
functions of degree k of the numbers z1, z2, . . . , zn−1 and Sn−1,0(z1, z2, . . . , zn−1) =
1. The condition p(−1) = p(1) is equivalent to the equation

(3)

[(n−1)/2]
∑

k=0

1

2k + 1
Sn−1,n−2k−1(z1, z2, . . . , zn−1) = 0.

The fact that the expression on the left-hand side of (3) is linear in respect to
each critical point of p(z) yields:

Statement 1. A necessary and sufficient condition for the polynomial
p(z) to be extremal for Rn, is that all critical points of p(z) are on the boundary
of Rn.

It follows from Theorem 3 that the point z = iνn, ν = cot(π/n) is on the
boundary of Rn and the polynomial

(4) gn(z) =

∫ z

1
(u − νni)n−1 du

is extremal for Rn. Extremal is also the polynomial

g∗n(z) =

∫ z

1
(u + νni)n−1 du,

and the segment with the end points νni and −νni is the diameter of Rn over the
imaginary axis. Setting

z1 = −z2 = a + bi, z3 = z4 = · · · = zn−1 = νni,

in (3), we obtain

(5)

[(n−1)/2]
∑

k=0

(−1)k

2k + 1

[(

n−3

2k−2

)

ν2
n + 2

(

n−3

2k−1

)

bνn +

(

n − 3

2k

)

(a2+b2)

]

ν−2k
n = 0.
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Here and in what follows we set
(

n
k

)

:= 0 whenever either k < 0 or k > n. Let

An−3(ϕ) =

[(n−1)/2]
∑

k=0

(−1)k

2k + 1

(

n − 3

2k

)

(tan ϕ)2k,

Bn−3(ϕ) =

[(n−1)/2]
∑

k=0

(−1)k

2k + 1

(

n − 3

2k − 1

)

(tan ϕ)2k,

Cn−3(ϕ) =

[(n−1)/2]
∑

k=0

(−1)k

2k + 1

(

n − 3

2k − 2

)

(tan ϕ)2k.

The equality (5) may be represented in the form

(6) a2 + (b − cn)2 = r2
n,

with

cn = −νn
Bn−3(π/n)

An−3(π/n)
.

Since the polynomial gn(z), defined by (4), is extremal for Rn, then the circumference
(6) passes through iνn. Thus, rn = νn − cn. It is easy to see that

An(ϕ) =
sin(n + 1)ϕ

(n + 1) sin ϕ cosn ϕ
.

Hence, setting ϕ = π/n in the latter, we obtain
(7)

An−3(π/n) =
2

n − 2
cos4−n π

n
, An−2(π/n) =

1

n − 1
cos2−n π

n
, An−1(π/n) = 0.

On the other hand, the binomial identity

(

n − 3

2k − 1

)

=

(

n − 2

2k

)

−
(

n − 3

2k

)

yields

(8) Bn−3(ϕ) = An−2(ϕ) − An−3(ϕ).

Setting ϕ = π/n in this identity and using (7), we obtain

Bn−3(π/n) = − 1 + (n − 1) cos 2π
n

(n − 1)(n − 2) cos2 π
n

.
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Finally, we obtain

(9) rn =
n − 2

n − 1

1

sin(2π/n)
, cn = cot

π

n
− rn.

Thus, we have proved the following:

Statement 2. Let cn and rn be defined by (9). Then

D(−icn; rn) ∪ D(icn; rn) ⊂ Rn.

Now we study the diameter of Rn over the real axis. According to
Theorem 4, this diameter is included in the segment [−1, 1]. Consider the polynomial
p(z) with p′(z) = (z + a)(z − a)n−2, where a is real. The condition p(−1) = p(1)
is equivalent to

(10)

(

a − 1

a + 1

)n−1

=
(n + 1)a − n + 1

(n + 1)a + n − 1
.

Equation (10) has only one real positive root an. Moreover,

(11) an = 1 − 2

n + 1
+ O(n−n+1) and lim

n→∞

an = 1.

The polynomial f(z) with f ′(z) = (z + an)(z − an)n−2 is probably extremal in
Rn. This is part of the Conjecture 1. Next we consider the polynomial q(z) with

(12) q′(z) = (z + an)(z − u)(z − u)(z − an)n−4,

where u = x + iy and |u|2 = x2 + y2 = a2
n. The condition q(−1) = q(1) can be

represented as

(x − dn)2 + y2 = ρ2
n,

where

(13) dn =
Vn

Un
, ρn = an − Vn

Un
,

and

Un =

∫ 1

−1
(z + an)(z − an)n−4 dz, Vn =

∫ 1

−1
z(z + an)(z − an)n−4 dz.
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Calculating these integrals explicitly and having in mind (11), we obtain

(14) lim
n→∞

Vn

Un
= 0.

We may formulate the following:

Statement 3. For dn and ρn defined by (13), we have

D(−dn; ρn) ∪ D(dn; ρn) ⊂ Rn.

Conjecture 1. For every natural n ≥ 2, the equality

Rn = D(−icn; rn) ∪ D(icn; rn) ∪ D(−dn; ρn) ∪ D(dn; ρn)

holds.

3. Proof of Conjecture 1 for small n. For n = 2, Conjecture 1 is
trivial. For n = 3, from (3), we get z1z2 + 1/3 = 0, or R3 = D(0; 1/

√
3). The

result coincide with this of Grace-Heawood theorem. Observe, that from Theorem
2 follows, that the smallest Rolle’s interval for real polynomials is (−1/

√
3, 1/

√
3),

the diameter of R3. For n = 4, from (3), we have

(15) z1z2z3 +
1

3
(z1 + z2 + z3) = 0.

In what follow, we denote by DD (iα; r) the union of he disks D (iα; r) and
D (−iα; r).

Theorem 5. With this notation, we have R4 = DD (i/3; 2/3).

P r o o f. It follows from Statement 2 that R4 ⊃ DD (i/3; 2/3). To prove
the inclusion R4 ⊂ DD (i/3; 2/3), suppose exist z1, z2, z3 6∈ DD (−1/3; 2/3), that
is,

∣

∣

∣
zk − i

εk

3

∣

∣

∣
>

2

3
; k = 1, 2, 3,

where εk = ±1; k = 1, 2, 3, that obey equality (15). Since every such zk

is nonzero, it is equivalent to the fact that there are complex numbers ζk =
1/zk, k = 1, 2, 3 such that

ζk ∈ Υ := D(i, 2) ∩ D(−i, 2), k = 1, 2, 3,
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and satisfy ζ1ζ2 + ζ2ζ3 + ζ3ζ1 = −3. The latter equality is equivalent to

(16)
ζ3 −

√
3

ζ3 +
√

3
=

ζ1 +
√

3

ζ1 −
√

3

ζ2 +
√

3

ζ2 −
√

3
.

Since the Möbius transformations w = (z−
√

3)/(z +
√

3) and w = (z−
√

3)/(z +√
3) both take the domain Υ onto the angular domain ∆ := {w : | arg w − π| <

π/3} and the products of any two complex number from ∆ lie outside ∆, we
conclude that (16) cannot hold. We have already proved that

(17) DD(icn; rn) = Rn

for n = 2, 3, 4. The relation (17) is not true for n ≥ 5. In Table 1, the values of
cn, rn and ln for several n are listed, where [−ln, ln] is the segment of the real
axis in DD(cn; rn).

n cn rn ln

2 0 0 0

3 0 1/
√

3 1/
√

3

4 1/3 2/3 1/
√

3 = 0.5773 . . .

5 0.58778 . . . 0.78859 . . . 0.5257 . . .

6 7
√

3/15 = 0.80829 . . . 8
√

3/15 = 0.92376 . . . 1
√

5 = 0.4472 . . .

7 1.01064 . . . 1.06587 . . . 0.33865 . . .

8 1 +
√

2/7 = 1.20203 . . . 6
√

2/7 = 1.212183 . . . 0.14655 . . .

9 1.4260 . . . 1.3612 . . . −
100 15.79 . . . 15.65 . . . −

1000 159.31 . . . 158.99 . . . −
10000 1591.7083 . . . 1591.3903 . . . −

Table 1

From Table 1 we have that l4 > l5, hence for n ≥ 5, the domain DD(icn;
rn) is strictly smaller than Rn. Observe that for n ≥ 9 the double disk DD(icn; rn)
consists of two disjoint disks. In Table 2, the values of an, dn and ρn for several
n are listed.
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n an dn ρn

5 0.66874030 . . . 0 0.66874030 . . .

6 0.71410133 . . . 0.23803378 . . . 0.47606755 . . .

7 0.75001275 . . . 0.16096471 . . . 0.58904804 . . .

8 0.77777704 . . . 0.14345435 . . . 0.63432269 . . .

9 0.80000004 . . . 0.12495000 . . . 0.67505004 . . .

10 0.81818182 . . . 0.11111357 . . . 0.70706725 . . .

100 0.98019802 . . . 0.01010101 . . . 0.97009701 . . .

1000 0.99800200 . . . 0.00119796 . . . 0.99700106 . . .

Table 2

4. The domain R. From (9), we have

(18) cn − rn =
2

n − 1
sin−1 2π

n
− tan

π

n
<

1

π
and lim

n→∞

(cn − rn) =
1

π
.

It follows from (18):

Statement 4. The inclusion

Iπ =
{

z : |Im(z)| > π−1
}

⊂ R

holds.

Let (γn, 1/π) be a point of intersection of the circle x2 + (y − cn)2 = r2
n

with the line y = 1/π. From (9) we calculate that

(19) γn < γn+1 and lim
n→∞

γn =
√

1 − π−2.

Observe that
(√

1 − π−2, 1/π
)

is also a point of intersection of the circle x2+y2 =

1 with the line y = 1/π. Consider the polynomial

p(z) = (z − eiϕ)(z + 1)(z − 1)n−2.

The critical points of this polynomial are the zeros z
(n)
1 , z

(n)
2 of the polynomial

z2 +

(

n − 3

n
− n − 1

n
eiϕ

)

z − 1

n
− n − 3

n
eiϕ
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and z3 = z4 = · · · = zn−1 = 1. As

lim
n→∞

z
(n)
1 = eiϕ, lim

n→∞

z
(n)
2 = −1,

we obtain:

Statement 5. The open disk D1 = {z : |z| < 1} belongs to R.

Statements 4 and 5 imply that R ⊃ Iπ ∪ D1.

Conjecture 2 (Rolle’s theorem for complex polynomials). If p(z)
is a complex polynomial and p(−1) = p(1), then at least one critical point of p(z)
is in the domain Iπ ∪ D1 and Iπ ∪ D1 is the smallest domain with this property,
i. e., R = Iπ ∪ D1.

We formulate a possible generalization of Theorem 1 (Lagguerre-Cesàro):

Theorem 6. If p(x) is a polynomial of degree n ≥ 2 with at most one
non real zero and p(−1) = p(1), then at least one zero of p′(x) is in the disk
D(0, 1 − 2/n). The disk D(0, 1 − 2/n) is the smallest segment with this property.

5. A theorem of L. Tschakaloff. L. Tschakaloff [2] studied a more
general problem, but we shall consider only the case of the Rolle theorem for real
polynomials. Let

(20) P0(z) = 1, Pm(x) =
1

2mm!

dm

dxm
(x2 − 1)m; m = 1, 2, . . .

be the Legendre polynomials that are orthogonal on the interval [−1, 1]. Then,
for every real polynomial p(x) of degree < m, we have

(21)

∫ 1

−1
p(x)Pm(x) dx = 0.

Let xm,1 < xm,2 < · · · < xm,m = αn be the zeros of Pm(x). It is known that they
are real, distinct, all belong to (−1, 1), and are symmetric with respect to the
origin,

(22) xm,k = −xm,m−k+1; k = 1, 2, . . . ,m.

Moreover, the zeros of two consecutive Legendre polynomials interlace. In particular,
we have

(23) α1 = 0 < α2 =
1√
3

< α3 =

√

3

5
< α4 < · · · < 1.
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P r o o f o f t h e t h e o r em o f T s c h a k a l o f f. First we prove the first
statement of the theorem. Recall that the Gaussian quadrature formula

(24)

∫ 1

−1
f(x) dx ≈

m
∑

k=1

Am,kf(xm,k)

has nodes at the zeros of Pm(x) and is precise for every real polynomial of degree
2m−1. Moreover the Cotes numbers Am,k are all positive and symmetric, Am,k =
Am,m−k+1. Thus, if p(x) is any real polynomial of degree 2m with p(−1) = p(1),
applying (24) to p′(x), we obtain

0 =

∫ 1

−1
p′(x) dx =

m
∑

k=1

Am,kp
′(xm,k).

Therefore, the convex combination of p′(xm,k), k = 1, . . . ,m, is equal to zero in
either of the cases:

• p′(xm,k) = 0 for every k = 1, . . . ,m;

• m ≥ 2, there exist indexes i < j such that p′(xm,i)p
′(xm,j) < 0 and thus

there is ξ ∈ (xm,i, xm,j) with p′(ξ) = 0.

In order to prove that (xm,1, xm,m) is the smallest interval that contain a zero of
p′(x), we investigate some specific polynomials. For even n = 2m, consider the
polynomial p(x) with

p′(x) = (x − ξ)

[

C +
P 2

m(x)

(x − αm)2

]

, C > 0.

This polynomial has only one real critical point, equal to ξ. From the condition
p(−1) = p(1) and (21), we get

−2ξC + (αm − ξ)

∫ 1

−1

P 2
m(x)

(x − αm)2
dt = 0.

The proof of the theorem for n = 2m follows from the last equality as it holds if
and only if ξ ∈ (−αm, αm). For even n = 2m − 1, consider the polynomial p(x)
with

p′(x) = (x − ξ)

[

C +
P 2

m(x)

(x − α1)(x − αm)2

]

, C > 0.



398 Bl. Sendov

This polynomial has only one real critical point ξ provided C is sufficiently large.
The conditions p(−1) = p(1) and (21) imply

−2ξC + (αm − ξ)

∫ 1

−1

P 2
m(x)

(x − α1)(x − αm)2
dt = 0.

The proof for n = 2m − 1 follows from the latter equality as it is possible if and
only if ξ ∈ (−αm, αm). �

If in Theorem 1 is drooped the condition that −1 and 1 are two consecutive
zeros of p(z), then 2/n may be replaced by a smaller number. We formulate,
without proof:

Theorem 7. If p(x) is a polynomial of degree n ≥ 2 with only real zeros
and p(−1) = p(1), then at least one zero of p′(x) is in the segment [−an, an],
where an is the zero of (10) . The segment [−an, an] is the smallest segment with
this property.
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