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DOES ATKINSON-WILCOX EXPANSION CONVERGES FOR

ANY CONVEX DOMAIN?

I. Arnaoudov, V. Georgiev, G. Venkov

Communicated by V. Petkov

Abstract. The Atkinson-Wilcox theorem claims that any scattered field
in the exterior of a sphere can be expanded into a uniformly and absolutely
convergent series in inverse powers of the radial variable and that once
the leading coefficient of the expansion is known the full series can be
recovered uniquely through a recurrence relation. The leading coefficient of
the series is known as the scattering amplitude or the far field pattern of the
radiating field. In this work we give a simple characterization of the strictly
convex domains, such that a reasonable generalization of the Atkinson-
Wilcox expansion converges uniformly in the corresponding exterior domain.
All these strictly convex domains are spheres.

1. Introduction. Given any compact set B ⊂ R3 with smooth boundary
∂B we consider the Helmholtz equation

(1.1) ∆u (r) + k2u (r) = 0, r ∈ V,
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where V = R3 \B. The solution can be represented as a sum of an incident field
ui and scattered field us as follows

(1.2) u (r) = ui (r) + us (r) , r ∈ V.

The incoming wave ui is supposed to be a plane wave or a point source
generated spherical wave or a superposition of plane waves and/or spherical
waves. The scattered field us is assumed to satisfy the Sommerfeld radiation
condition

(1.3) lim
|r|→∞

r

(
∂us (r)

∂r
− ikus (r)

)
= 0

at infinity [17].
The far field (radiation) pattern or the scattering amplitude u∞ plays a

central role in the direct and inverse scattering theory. It was Atkinson [3] in 1949
who showed that any solution of the Helmholz’s equation (1.1), which satisfies the
Sommerfeld radiation condition (1.3), has an absolutely and uniformly convergent
series representation in inverse powers of the radial distance in all space, exterior
to the above sphere.

In fact, Atkinson presented a wave analogue of Maxwell’s multipole ex-
pansion in potential theory [13], i.e. he proved that this expansion separates the
radial from the angular dependence of the solution, where the radial dependence
characterizes the radiative nature of the scattered field, while the angular de-
pendence incorporates the geometrical and the physical characteristics of each
particular target.

The one-to-one correspondence between the the scattered fields and their
radiation patterns for the exterior Helmholtz problem was established by Rellich
in [16]. This correspondence was to make explicit by Wilcox, who made a genera-
lization of the Atkinson’s expansion theorem, both for the acoustic [19], as well as
the electromagnetic case [20]. His works contain the important fact that all the
angular dependent coefficients {Fn : n = 1, 2, . . .} in the Atkinson’s expansion can
be recovered through a recurrence relation via the leading coefficient F0, known
as the far field pattern u∞ [8]. The above results were extended to the case of
electromagnetic scattering by Wilcox [20] and Athanasiadis and Giotopoulos [2],
to the scattering in R2 by Karp [11], to elasticity by Dassios [9], Cakoni and
Dassios [6], and for inhomogeneous waves by Caviglia and Morro [7].

The expansion theorem brought up the questions of recovering the radia-
ting solution of the Helmholtz equation from a knowledge of their far field patterns
in the direct scattering problem, as well as the determination of the shape and the
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nature of the scatterer from a given scattering amplitude in the inverse obstacle
problem.

During the 1990’s there were many attempts on the so-called “expansion
theorem” for arbitrary convex domain [1], for obstacles such as the prolate and
the oblate spheroid [4] and the ellipsoid [5, 10], since it provides a very efficient
way to construct methods (the infinite element method, the method of mirror
images, etc.) for solving scattering problems.

The present work studies bounded domains in three-dimensional space,
represented by orthogonal curvilinear coordinates that allow Atkinson-Wilcox
series representation in the so-called far-field zone r = |x| � 1 and k varying in
compact interval I in (0,+∞).

To be more precise, first we recall the classical Atkinson-Wilcox theorem.
Every solution u to the Helmholtz equation (1.1), satisfying the Sommer-

feld radiating condition (1.3) has the asymptotic behavior of an outgoing spherical
wave

(1.4) u(r) =
eikr

r

{
u∞(k, r̂) + O

(
1

r

)}
, r → ∞, k ∈ I ⊂ (0,+∞),

uniformly in all directions r̂ = r/r and in all k ∈ I, where I is any compact
interval in (0,+∞). The function u∞, defined on I ×S2 is known as the far field
pattern of u and enjoys the following integral representation

(1.5) u∞(k, r̂) =
1

4π

∫

∂B

{
u(r′)

∂e−ikr̂·r′

∂ν(r′)
− ∂u(r′)

∂ν(r′)
e−ikr̂·r′

}
ds(r′),

where ν denotes the outward unit normal to the scattering surface ∂B.
From the representation (1.5), it is obvious that the far field pattern is

an analytic function with respect to r̂ ∈ S2 and k ∈ I, since the kernels in its
representation are analytic on I × S2. We have the following theorem, due to
Atkinson [3] and Wilcox [19].

Theorem 1.1. Let u be a radiating solution to the Helmholtz equation

(1.1) in the exterior r > R > 0 of a sphere and let r, θ and ϕ are spherical polar

coordinates. Then u has an expansion of the form

(1.6) u (r) =
eikr

r

∞∑

n=0

Fn (k, θ, ϕ)

rn
,

that converges absolutely and uniformly for k in a compact interval I ⊂ (0,∞)
and r ∈ (R + ε,+∞), where ε is any positive number. The series may be



366 I. Arnaoudov, V. Georgiev, G. Venkov

differentiated any number of times and the resulting series all converges absolutely

and uniformly in the same regions of k and r.

Here, the function F0 (k, θ, ϕ) defined on I × S2, coincides with the far
field pattern u∞ of the radiating solution u (see relation (1.4)). Moreover, the
coefficients Fn are independent of r and are uniquely determined from u∞ by the
following reciprocity relation

(1.7) 2iknFn = n(n − 1)Fn−1 + BFn−1, n = 1, 2, . . . , F0 = u∞,

where B ≡ B(θ, ϕ, ∂θ , ∂ϕ) is the Laplace-Beltrami operator on the unit sphere.
We shall made the following comment. The proof of Theorem 1.1 relies

on the analytic properties of the integral kernel in the integral version of the
problem (1.1)–(1.3). The relation (1.6) can be rewritten in the form

(1.8) u (r) =
eikr

r

∞∑

n=0

F̃n (k, θ, ϕ)

(kr)n
,

where F̃n satisfy the following relation (that follows from (1.7))

(1.9) 2inF̃n = n(n − 1)F̃n−1 + BF̃n−1, n = 1, 2, . . . , F̃0 = u∞.

This relation shows that in the particular case, when F̃0 (k, θ, ϕ) is independent
of k, the same is true for all F̃n. Generally, F̃0 (k, θ, ϕ) depends on k and the
expansions (1.6), (1.8) shall be considered for k varying in a fixed bounded interval
I in (0,+∞).

Let us suppose that u is a radiating solution of the Helmholtz equation
(1.1) in the exterior V of a convex domain B = R3 \ V with smooth boundary
∂B. We assume that V can be represented as

(1.10) V =
N⋃

j=1

Vj ,

such that for any j = 1, · · · , N, the set Vj is an open connected domain in R3

and there exists an open domain D ⊆ R2 and a diffeomorphism

(1.11) r, ξ, η ∈ (r0,∞) × D −→ x ∈ Vj .

The sets Vj can be considered as local charts for V and thus the diffeo-
morphism (1.11) and D formally depend on j. This dependence shall be assumed
tacidly and we shall omit to write the index j.
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We shall assume further, that the diffeomorphism (1.11) satisfies Assump-
tions 2.1–2.3 given below.

We shall give a relatively surprising characterization of all convex domains
B, such that the solution of the Helmholtz equation (1.1) in the domain Vj satisfy
the following natural generalization of the Atkinson-Wilcox expansion

(1.12) u (x) =
eikr

r

∞∑

n=0

Fn (k, ξ, η)

rn

and the coefficients Fn, n = 1, 2, . . . are determined uniquely from the knowledge
of the far field pattern F0 by the second-order recurrence relation

(1.13) kFn(k, ξ, η) = C1(ξ, η, n)Fn−1(k, ξ, η) + C2(ξ, η, n)BSFn−1(k, ξ, η).

Here, the functions C1, C2 are independent of r and the operator BS is a
second order differential operator with respect to the angular variables (i.e. BS

has the form
BS = BS(ξ, η, ∂ξ , ∂η)

in the coordinates ξ, η).
Our main result is the following.

Theorem 1.2. Let ∂B be a smooth boundary surface of an arbitrary,

strictly convex compact domain B in R3, let V = R3 \ B can be represented as

V =

N⋃

j=1

Vj ,

where Vj can be parametrized by (1.11), so that the Assumptions 2.1–2.3 are

satisfied. If the Atkinson–Wilcox expansion (1.12) with respect to the radial

variable is fulfilled and the second–order recurrence relation (1.13) holds in Vj

for any j = 1, · · · , N , then ∂B is a sphere.

The present result is strongly connected with the assumption that all
the coefficients Fn in the expansion are independent of r and can be uniquely
determined from the radiation pattern u∞ = F0 through a second-order recurrence
formula of type (1.13), similar to the classical Atkinson-Wilcox situation. The
above assumption is stronger compared, for example, with the one imposed by
Dassios in [10], where the angular-dependent functions Fn depend on the wave
number k in a more sophisticated way. For the case of an ellipsoidal boundary,
Dassios derived an Atkinson-Wilcox-like series expansion, equipped with a sixth-
order recurrence relation (see (15) and (57) in [10]). Note that our recurrence



368 I. Arnaoudov, V. Georgiev, G. Venkov

relation is of second-order as the classical one in Atkinson-Wilcox theorem (see
(1.7) and (2.13) below).

The main objective that one can have is the following: why this particular
choice of a candidate for a generalization of Atkinson-Wilcox expansion as the one
in Theorem 1.2? For the ellipsoid, the result in [10] need a sixth-order recurrence
relation. In this sense our result explains why the order of the recurrence relation
can not be diminished essentially and the results of type [10] need higher order
recurrence relations.

The next Section begins with an analogue of the classical Atkinson-Wilcox
expansion, stated by Corollary 2.1. Then we introduce curvilinear coordinates
r, ξ and η, so that the surface r = constant, describes the boundary of an unknown
scatterer. Rewriting the Laplace operator in terms of the new coordinate variables,
substituting the series expansion of the radiation solution into the Helmholtz
equation and equating like powers of r, we arrive at the recurrence relation for the
orientation dependent coefficients. The condition for a second-order recurrence
formula, independent of the wave number k, leads to the sequence of relations for
the corresponding metric tensors gα,β and scale factors hα. In this way we prove
that the only surface for which the Atkinson-Wilcox expansion theorem is true is
the sphere.

2. Geometrical interpretation of the Expansion Theorem.

We have the following corollary of Theorem 1.1.

Corollary 2.1. Let u be the radiating solution defined in Theorem 1.1.
Then the expansion (1.6) is equivalent to the series

(2.1) u (r) =
eikr

r

∞∑

n=0

Fn (k, θ, ϕ)

(kr)n
.

Moreover, the coefficients Fn are uniquely determined from the leading coefficient

F0 by the reciprocity relation

(2.2) 2inFn = n(n − 1)Fn−1 + BFn−1, n = 1, 2, ....

The proof follows immediately from the relation (1.7).
Let V be an open domain in R3, so that B = R3\V is a strictly convex

compact set in R3, with smooth boundary S = ∂B. Our first assumption is the
following one.
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Assumption 2.1. There exists a smooth foliation of strictly convex
surfaces

(2.3) Sr, r ≥ r0 > 0,

such that

(2.4) V =
⋃

r>r0

Sr

and Sr0
= S.

The existence of this foliation is equivalent to the existence of a smooth
lapse function

(2.5) r = r(x), x = (x1, x2, x3) ∈ V ∪ ∂B

defined on the closure of V such that the level surfaces r(x) = const > r0 are
strictly convex and r(x) = r0 coincides with S (see [18]). One can represent V
as

(2.6) V =
N⋃

j=1

Vj ,

such that for any j = 1, · · · , N, the set Vj is an open connected domain in R3

and there exists an open domain D ⊆ R2 and a diffeomorphism

(2.7) r, ξ, η ∈ (r0,∞) × D −→ x ∈ Vj

so that

(2.8) x = x (r, ξ, η) ,

specifies the Cartesian coordinates in terms of r, ξ and η. Our next assumption
is

Assumption 2.2. The parametrization (2.8) satisfies the property

(2.9) xj (r, ξ, η) = rAj

(
r−1, ξ, η

)
, j = 1, 2, 3,

where Aj are analytic functions in r−1 for r > r0 and smooth in (ξ, η) ∈ D.

The metric tensor associated with the parametrization (2.8) is

(2.10) gα,β = xα · xβ α, β = r, ξ, η,
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where xα = ∂αx, α = r, ξ, η. The third assumption is

Assumption 2.3. The parametrization (2.8) is orthogonal, i.e.

(2.11) gα,β = 0, α 6= β.

As in (2.9) we shall assume that the scale factors hα =
√

gα,α and the functions

1/hα, α = r, ξ, η are analytic in r−1 for r > r0 and smooth in (ξ, η) ∈ D.

The parametrization defined by Assumptions 2.1–2.3 generalizes all the
orthogonal coordinate systems that describe convex surfaces in R3 (see for instance
Miller [14] and Morse and Feshbach [15]).

Following the statement of Atkinson-Wilcox theorem and Corollary 2.1,
we shall suppose that the radiating solution u = u(r, ξ, η) has an absolutely and
uniformly convergent series expansion with respect to the inverse powers of kr of
the form

(2.12) u (r, ξ, η) =
eikr

r

∞∑

n=0

Fn (k, ξ, η)

(kr)n

and the coefficients Fn, n = 1, 2, . . . are determined uniquely from the knowledge
of the far field pattern F0 by the second-order recurrence relation

(2.13) Fn(k, ξ, η) = C1(ξ, η, n)Fn−1(k, ξ, η) + C2(ξ, η, n)BSFn−1(k, ξ, η),

where the functions C1, C2 are independent of k, r and the operator BS is a
second order differential operator with respect to ξ and η.

P r o o f o f Th e o r em 1.2. We shall take as our starting point the
Helmholtz equation, rewriting it in the above curvilinear coordinates. Using the
scale factors hα and the general form of the Laplacian, we obtain

∆u + k2u =
[ 1

h2
r

∂2

∂r2
+

1

hrhξhη

∂

∂r

(
hξhη

hr

)
∂

∂r

+ PS(r, ξ, η, ∂ξ , ∂η)
]
u + k2u = 0,(2.14)

with a second-order differential operator PS , defined by

PS(r, ξ, η, ∂ξ , ∂η) =
1

h2
ξ

∂2

∂ξ2
+

1

hrhξhη

∂

∂ξ

(
hrhη

hξ

)
∂

∂ξ

+
1

h2
η

∂2

∂η2
+

1

hrhξhη

∂

∂η

(
hrhξ

hη

)
∂

∂η
(2.15)
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From the Assumptions 2.1–2.3 we conclude that the coefficients of the
Laplace operator (2.14) are analytic functions with respect to r−1. Let us expand
them in series in terms of the negative power of r with the form

1

h2
r

=

∞∑

n=0

Kn(ξ, η)

rn
,

1

hrhξhη

∂

∂r

(
hξhη

hr

)
=

∞∑

n=0

Mn(ξ, η)

rn
,

PS(r, ξ, η, ∂ξ , ∂η) =

∞∑

n=0

PS,n(ξ, η, ∂ξ , ∂η)

rn
,(2.16)

where we denote by PS,n(ξ, η, ∂ξ , ∂η), deg (PS,n) ≤ 2 the differential operators
with respect to the “angular variables” of our parametrization.

Substituting the above series representations and the solution (2.12) into
the general form of the Laplacian (2.14) and omitting the eikr/r term, we obtain
the relation

−
∞∑

n=0

n∑

l=0

KlFn−l

kn−l−1rn+1
− 2i

∞∑

n=0

n∑

l=0

(n − l + 1) KlFn−l

kn−lrn+2

+

∞∑

n=0

n∑

l=0

(n − l + 1) (n − l + 2) KlFn−l

kn−l+1rn+3

+i

∞∑

n=0

n∑

l=0

MlFn−l

kn−lrn+1
−

∞∑

n=0

n∑

l=0

(n − l + 1) MlFn−l

kn−l+1rn+2

+

∞∑

n=0

n∑

l=0

PS,l (Fn−l)

kn−l+1rn+1
+

∞∑

n=0

Fn

kn−1rn+1
= 0.(2.17)

By comparing the powers of r and after rearranging the summation index
l, we arrive at

{
k2 (K0 − 1) − ikM0 −PS,0

}Fn

kn

+
{
k2K1 + ik (2nK0 − M1) + nM0 −PS,1

}Fn−1

kn−1

+

n∑

l=2

{
k2Kl + ik[2 (n − l + 1)Kl−1 − Ml](2.18)

−(n − l + 1) [(n − l + 2) Kl−2 − Ml−1] −PS,l

}Fn−l

kn−l
= 0,
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for n = 0, 1, 2, . . . .
The analysis of this expression, required for obtaining a recurrence formula

of the form (2.13) leads to the following conclusions for the coefficients Kl, Ml

and for the operators PS,l. Substituting n = 0 in (2.18) we obtain the equation

(2.19)
{
k2 (K0 − 1) − ikM0

}
F0 = PS,0 (F0) ,

where F0 = u∞ is the far field pattern, corresponding to the radiation solution
of the Helmholtz equation.

Note that the operators PS,l as well as the coefficients Kl,Ml are indepen-
dent of k. Then, taking into consideration the analyticity of the far field pattern
F0 in k, we conclude that K0 = 1,M0 = 0 and the operator PS,0 ≡ 0. For n = 1
the relation (2.18) takes a similar form

(2.20)
{
k2K1 + ik (2K0 − M1) + M0

}
F0 = PS,1 (F0)

or

(2.21)
{
k2K1 + ik (2 − M1)

}
F0 = PS,1 (F0) .

From the arguments mentioned above we get K1 = 0,M1 = 2 and PS,1 ≡ 0.
Having the zeroth and the first terms of the expansions (2.16), we can

rewrite (2.18) in the form

2inFn = −
n∑

l=1

kl−1
{
k2Kl+1 + ik[2 (n − l + 1) Kl − Ml+1]

−(n − l + 1) [(n − l + 2) Kl−1 − Ml] −PS,l+1

}
Fn−l,(2.22)

for n = 1, 2, . . . .
The assumption for a second-order recurrence formula of the form (2.13),

which do not depend on the wave number yields to the relations

(2.23) Ml = Kl = 0, l = 2, 3, . . . ,

(2.24) deg (PS,2) = 2, PS,l ≡ 0, l = 3, 4, . . . .

Now, if we substitute the obtained terms into the series expansions (2.16),
we arrive at the following sequence of conditions

∞∑

n=0

Kn(ξ, η)

rn
= 1,

∞∑

n=0

Mn(ξ, η)

rn
=

2

r
,

∞∑

n=0

PS,n(ξ, η, ∂ξ , ∂η)

rn
=

PS,2(ξ, η, ∂ξ , ∂η)

r2
,(2.25)
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which, in terms of the scale factors hα : α = r, ξ, η, becomes

h2
r = 1,

1

hξhη

∂

∂r
(hξhη) =

2

r
,

1

h2
ξ

∂2

∂ξ2
+

1

hξhη

∂

∂ξ

(
hη

hξ

)
∂

∂ξ
+

1

h2
η

∂2

∂η2

+
1

hξhη

∂

∂η
(hξhη)

∂

∂η
=

PS,2(ξ, η, ∂ξ , ∂η)

r2
.(2.26)

The second relation in (2.26) is a first order ODE with respect to hξhη ,
which immediately implies hξhη = r2C(ξ, η). Since the last relation in (2.26) is
symmetric in hξ and hη, we get

h2
r = 1, h2

ξ = r2A (ξ, η) , h2
η = r2B (ξ, η) .(2.27)

If we introduce now the vectors

er =
∂

∂r
x (r, ξ, η) ,

eξ =
∂

∂ξ
x (r, ξ, η) ,

eη =
∂

∂η
x (r, ξ, η) ,(2.28)

we obtain new mutually orthogonal vector system (er, eξ , eη) for which, using
(2.27), we have

e2
r = 1, e2

ξ = r2A (ξ, η) , e2
η = r2B (ξ, η) .(2.29)

Therefore, the vector
∂

∂r
er may be expanded in terms of e′s as

(2.30)
∂

∂r
er = aer + beξ + ceη ,

where a, b and c are unknown coefficients.
It follows immediately from the orthogonality of our e-system that

a =

(
∂

∂r
er · er

)
= 0,

r2A (ξ, η) b =

(
∂

∂r
er · eξ

)
= 0,

r2B (ξ, η) c =

(
∂

∂r
er · eη

)
= 0,(2.31)
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which gives that ∂
∂r

er = 0. This means that the base vector er does not depend
on the radial variable r and may be written as er = E(ξ, η) , with |E| = 1.

Integrating the first identity in (2.28), we obtain that

(2.32) x (r, ξ, η) = rE (ξ, η) + Ê (ξ, η)

with Ê being a vector independent of the ‘radial’ variable r.
The last two relations of (2.28) give

e2
ξ = r2A (ξ, η)

= r2

(
∂

∂ξ
E (ξ,η)

)2

+ 2r
∂

∂ξ
E (ξ,η)

∂

∂ξ
Ê (ξ,η) +

(
∂

∂ξ
Ê (ξ,η)

)2

,

e2
η = r2B (ξ, η)

= r2

(
∂

∂η
E (ξ,η)

)2

+ 2r
∂

∂η
E (ξ,η)

∂

∂η
Ê (ξ,η) +

(
∂

∂η
Ê (ξ,η)

)2

or

(2.33)
∂

∂ξ
Ê (ξ, η) = 0,

∂

∂η
Ê (ξ, η) = 0,

which implies that Ê is a constant vector.
Thus, we find that in curvilinear coordinates r, ξ and η the position vector

x has the final form

(2.34) x (r, ξ, η) = rE (ξ,η) + Ê, |E| = 1,

which leads to the result, that the surface S = {x (r, ξ, η) ; r = r0} is a sphere S2
r0

and the proof is completed.
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