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A NOTE ON DIV-CURL LEMMA

Sadek Gala

Communicated by I. D. Iliev

Abstract. We prove two results concerning the div-curl lemma without
assuming any sort of exact cancellation, namely the divergence and curl need
not be zero, and div (−→u v) ∈ H1(Rd) which include as a particular case, the
result of [3].

1. Introduction. In Coifman, Lions, Meyer and Semmes [3], it was
shown that the Hardy spaces can be used to analyze the regularity of the various
nonlinear quantities by the compensated compactness theory due to L. Murat [12]
and F. Tartar [15]. Recently, Müller [11], Helein [9], [10], Evans [5], Evans and
Müller [6], and others have shown that certain nonlinear quantities arising in the
theory of compensated compactness and in the study of harmonic maps belong to
the Hardy space Hp(Rn) (see also [8]). Since then, these spaces play an important
role in studying the regularity of solutions to partial differential equations. Quite
recently, some new, deep endpoint regularity results for div-curl problems have
been proved by J. Bourgain and H. Brezis [2] (see also [1], [17]). In particular,
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it was shown that for exponents p, q with 1 < p < ∞,
1

p
+

1

q
= 1, and vector

fields −→u ∈ Lp(Rd)d, −→v ∈ Lq(Rd)d with div−→u = 0, curl −→v = 0 in the sense
of distributions, the scalar product −→u .−→v belongs to the Hardy space H1(Rn).
Moreover, there exists a positive constant C such that

‖−→u .−→v ‖H1(Rn) ≤ C ‖−→u ‖Lp ‖
−→v ‖Lq .

The main purpose of the note is to prove two facts about div-curl lemma
without assuming any sort of exact cancellation, namely the divergence and curl
need not be zero, and which lead to div (−→u v) being in the Hardy space H1(Rd).

The proof will be divided into two parts. In part 1, we consider the case
−→u and v are supported on the ball |x| ≤ R0 where R0 > 1 is a positive constant
to be determined later, while in Part 2, the general case follows by partition of
unity. In order to simplify the presentation, we take p = q = 2.

The Sobolev space H1
p

(
R

d
)
, 1 ≤ p < ∞, consists of functions f ∈ Lp

(
R

d
)

such that |∇f | ∈ Lp
(
R

d
)
. It is a Banach space with respect to the norm

‖f‖H1
p

= ‖f‖Lp + ‖∇f‖Lp .

Specifically, we will prove

Theorem 1. Let −→u ∈ H1
p

(
R

d
)d

and v ∈ H1
q

(
R

d
)
, p > 1,

1

p
+

1

q
= 1.

Then there exists a positive constant C(d) such that

(1.1) ‖div (−→u v)‖ H1(Rd) ≤ C (‖−→u ‖Lp ‖∇v‖Lq + ‖div−→u ‖Lp ‖v‖Lq ) .

This result is similar to that in [3] where it is assumed additionally that
div−→u = 0.

Remark 1. Such inequalities and their generalizations are useful in
hydrodynamics. Reader is refered, in particular to [3], [4].

Theorem 2. Let 1 < p < ∞,
1

p
+

1

q
= 1. Suppose −→u = (u1, . . . , ud) ,

uj ∈ Lp(Rd), 1 ≤ j ≤ d be a vector field satisfying

div−→u = ∂1u1 + · · · + ∂dud ∈ Lp(Rd).

Assume that the scalar function v(x) belongs to Lq(Rd). We also suppose that
∇v ∈ Lq(Rd). Then we have

div (v−→u ) = ∂1 (vu1) + · · · + ∂d (vud) ∈ H1(Rd).
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It is a generalized version of the “div-curl” lemma ([3], Theorem II.1). Ob-
serve that when div −→u = 0, Theorem 2 reduces to the classical div-curl lemma [3].

For the sake of completeness, we recall the definition and some of the
main properties of Hardy spaces Hp(Rd) introduced by E. Stein and G. Weiss
[14] (for more facts on these spaces see C. Fefferman and E. Stein [7]).

Definition 1 ([7]). Let 0 < p < ∞, and let ϕ ∈ S(Rd) satisfy

∫

Rn

ϕdx = 1.

A tempered distribution f belongs to the Hardy space Hp(Rd) if

(1.2) f ∗(x) = sup
t>0

|(ϕt ∗ f) (x)| ∈ Lp(Rd),

where ϕt(x) = t−dϕ
(
t−1x

)
.

It is known that if f ∈ Hp(Rd), then (1.2) holds for all ϕ ∈ S(Rd)

satisfying

∫

Rd

ϕdx = 1. The (quasi)-norm of Hp(Rd) is defined, up to equivalence,

by

‖f‖Hp(Rd) = ‖f∗(x)‖Lp(Rd) =




∫

Rd

|f∗(x)|p dx




1

p

.

We know by ([7], [13]) that if 1 ≤ p < ∞, then Hp is a Banach space:

Hp(Rd) = Lp(Rd) for 1 < p < ∞,

H1(Rd) ⊂ L1(Rd) with continuous injection,

and that Hp(Rd), 0 < p < 1, are quasi-Banach spaces in the quasi-norm ‖.‖Hp(Rd).

The crucial fact for our purpose is the boundedness of the Riesz transforms
Rj on all of the spaces Hp. Furthermore, an L1-function f on R

d belongs to
H1(Rd) if and only if its Riesz transforms Rjf all belong to L1(Rd) and

‖f‖H1(Rd)
∼= ‖f‖L1(Rd) +

d∑

j=1

‖Rjf‖L1(Rd) (equivalent norms).

Notice that all function f ∈ H1(Rd) satisfy

(1.3)

∫

Rd

f(x)dx = 0.

Indeed, the assumption f ∈ H1(Rd) implies that the Fourier transforms

f̂(ξ) =

∫
f(x)e−ixξdx and R̂jf(ξ) =

iξj

|ξ|
f̂(ξ), (j = 1, . . . , d) ,
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are all continuous on R
d, so f̂(0) = 0, and (1.3) is proved. We know also that if

f ∈ Hp(Rd) ∩ L1(Rd) for some 0 < p < 1, then

(1.4)

∫
|x||α| |f(x)| dx < +∞ and

∫
xαf(x)dx = 0

for every multi-index α such that |α| = α1 + · · · + αd ≤ d

(
1

p
− 1

)
.

We are going to show

Lemma 1. Let f ∈ L1(Rd)d and ∇.f = 0. Then∫
f(x)dx = 0.

P r o o f. Let f ∈ L1(Rd)d and ∇.f = 0. Applying the Fourier transform
gives

ξ.f̂(ξ) = 0 for all ξ ∈ R
d.

We write ξ = rω with r = |ξ| and |ω| = 1, to obtain

ω.û(rω) = 0.

Since f ∈ L1(Rd)d, the function f̂ is continuous on R
d. So letting r → 0 gives

ω.f̂(0) = 0 for all ω with |ω| = 1.

Hence

f̂(0) = 0

and this completes the proof. �

Let γ > 1. We define the maximal function of f depending on γ,

Mγf(x) = sup
t>0


 1

|Bt(x)|

∫

Bt(x)

|f(y)|γ dy




1

γ

.

We begin by establishing the following result which is a variant of the
Hardy-Littlewood maximal theorem. We need

Lemma 2. If γ < p ≤ ∞, then

Mγ : Lp
(

R
d
)
→ Lp

(
R

d
)

is bounded.

See [13] for the proof.
The following result due to [3], shows the importance of the Hardy space

theory in estimating the non-linear term u.∇v attached to the Navier-Stokes
equations and this produces a useful tool for PDE.
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Lemma 3. Let 1 < p < ∞, 1 < q < d and
1

r
=

1

p
+

1

q
<

1

d
+ 1. If

−→u ∈ Lp
(
R

d
)d

with ∇.−→u = 0 and ∇v ∈ Lq
(
R

d
)
, then

−→u .∇v ∈ Hr
(

R
d
)

,

and

‖−→u .∇v‖ Hr(Rd) ≤ C ‖−→u ‖Lp ‖∇v‖Lq .

P r o o f. The result is due to [3]; but we give here a detailed proof for the
reader’ s convenience. Since ∇.−→u = 0, we have

f = −→u .∇v = ∇. (−→u ⊗ (v − c))

for an arbitrary constant vector c. So we get

(ϕt ∗ f) (x) = t−(d+1)

∫

Bt(x)

(∇ϕ)
(
t−1(x − y)

)−→u (y) (v(y) − mB(v)) dy

where

mB(v) =
1

|Bt(x)|

∫

Bt(x)

v(y)dy.

Take

1 < γ < ∞, 1 < β < d, with
1

γ
+

1

β
= 1 +

1

d
,

and denote
1

β∗
=

1

β
−

1

d
.

We recall the Sobolev-Poincaré inequality



∫

Bt(x)

|v(y) − mB(v)|β
∗

dy




1

β∗

Sobolev
≤ C(d, β)




∫

Bt(x)

|∇v(y)|β dy + t−β

∫

Bt(x)

|v(y) − mB(v)|β dy




1

β

Poincaré
≤ C(d, β)




∫

Bt(x)

|∇v(y)|β dy




1

β
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where β∗ =
βd

d − β
> β is the Sobolev-exponent. Using Hölder and Sobolev-

Poincaré inequalities we get

|(ϕt ∗ f) (x)| ≤
C

td+1




∫

Bt(x)

|−→u (y)|
γ
dy




1

γ



∫

Bt(x)

|v(y) − mB(v)|β
∗

dy




1

β∗

≤
C

td+1




∫

Bt(x)

|−→u (y)|
γ
dy




1

γ



∫

Bt(x)

|∇v(y)|β dy




1

β

= C


 1

|Bt(x)|

∫

Bt(x)

|−→u (y)|
γ
dy




1

γ

 1

|Bt(x)|

∫

Bt(x)

|∇v(y)|β dy




1

β

≤ C (Mγ
−→u ) (x). (Mβ(∇v)) (x).

We thus obtain

sup
t>0

|(ϕt ∗ f) (x)| ≤ C (Mγ
−→u ) (x). (Mβ(∇v)) (x).

Since we can take γ and β so that

1 < γ < p, 1 < β < q < d,

it follows from Lemma 2 that

‖Mγ
−→u ‖

Lp ≤ C ‖−→u ‖Lp , ‖Mβ (∇v)‖
Lq ≤ C ‖∇v‖Lq .

Lemma 3 now follows from Hölder’ s inequality :

‖f.g‖Lr ≤ ‖f‖Lp ‖g‖Lq

(
0 < p < ∞, 0 < q < ∞,

1

r
=

1

p
+

1

q

)
.

This finishes the proof of the lemma. �

2. Proof of Theorem 1. Without loss of generality, we may assume
−→u ∈ C∞

0

(
R

d
)d

and v ∈ C∞
0

(
R

d
)
. Take a nonnegative function ϕ ∈ C∞

0

(
R

d
)

so
that

supp ϕ ⊂ {|x| ≤ 1} ,

∫
ϕdx = 1.

and set

ϕt(x) = t−dϕ
(
t−1x

)
for t > 0.
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Then

‖div (−→u v)‖ H1(Rd) ≈

∥∥∥∥sup
t>0

|div (−→u v) ∗ ϕt|

∥∥∥∥
L1(Rd)

.

A simple calculation gives

div (−→u v) ∗ ϕt(x) = −t−d−1

∫

Bt(x0)

∇ϕ
(
t−1(x − y)

)−→u (y) (v(y) − mB(v)) dy+

+ t−dmB(v)

∫

Bt(x0)

ϕt (x − y) div−→u (y)dy.

Following the proof of Lemma II.1 in [3], we take γ, β so that

1 ≤ γ < p, 1 < β < q, with
1

γ
+

1

β
= 1 +

1

d
.

Using Hölder and Sobolev-Poincaré inequalities we get

|ϕt ∗ div (−→u v) (x)| ≤ C





1

td

∫

Bt(x0)

|−→u (y)|
β
dy





1

β




1

td+β′

∫

Bt(x0)

|v(y) − mB(v)|β
′

dy





1

β′

+ C
1

td
|mB(v)|

∫

Bt(x0)

|div −→u (y)| dy

≤ C





1

td

∫

Bt(x0)

|−→u (y)|
β

dy





1

β




1

td

∫

Bt(x0)

|∇v(y)|γ dy





1

γ

+
C

td
|mB(v)|

∫

Bt(x0)

|div −→u (y)| dy

≤ C





1

td

∫

Bt(x0)

|−→u (y)|
β

dy





1

β

{M |∇v(x)|γ}
1

γ

+
C

td
|mB(v)|

∫

Bt(x0)

|div −→u (y)| dy.

where the various constants C > 0 are independent of t or x0. Here M is the
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Hardy-Littlewood maximal function. Also, we have

1

td
|mB(v)|

∫

Bt(x0)

|div −→u (y)| dy ≤ Mv(x) M (div −→u ) (x)

Combining these estimates, we obtain

sup
t>0

|ϕt∗ div (−→u v) (x)| ≤ C
(
M |−→u (x)|

β
)1

β
(M |∇v(x)|γ)

1

γ +C Mv(x)M (div−→u ) (x).

By Hölder’ s inequality together with the maximal inequality, Theorem 1 is
proved. �

3. Proof of Theorem 2. To prove the result, we distinguish three
cases.

Case A. Let us assume first that

div−→u = ∇.−→u = 0.

In this case we get

div (v−→u ) = (∇v) .−→u + v div−→u

= −→u .∇v.

Then we have −→u ∈ Lp(Rd)d, ∇v ∈ Lq(Rd) with div−→u = 0, curl (∇v) = 0 in the
sense of distributions. It follows from Lemma 3 that

−→u .∇v ∈ H1(Rd)

and there exists an absolute constant C such that

‖div (v−→u )‖H1(Rn) ≤ C ‖−→u ‖Lp ‖∇v‖Lq .

Case B. We may of course suppose under additional assumptions that −→u
and v are supported on the ball |x| ≤ R0. In order to simplify the presentation,
we take p = q = 2. We shall write Ω for the ball in R

d of radius R0 centered
at the origin. By H1

0 (Ω) we denote the closed subspace of H1 (Ω) which is the
closure of C∞

0 (Ω) in the H1 norm. Let

g = div−→u ∈ L2(Rd).

By the classical result (see e.g. [16]) we know that

g = ∂1g1 + · · · + ∂ngn,

where g1, . . . , gd belong to H1
0 (Ω). Setting

−→
G = (g1, . . . , gn) and −→r = −→u −

−→
G.
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Then it follows

div−→r = 0 and −→r ∈ L2 (Ω) .

Using Lemma 3 we infer

div (−→r v) ∈ H1(Rn).

Further we set

f = div
(−→

Gv
)

.

For this purpose, we use Lemma 4 below, thus it follows that f ∈ H1(Rd).

Case C. The general case. We call ϕ a smooth bump function with
compact support such that

1 =
∑

k∈Zd

ϕ2(x − k).

We have thus, if f and g are two functions,

f(x)g(x) =
∑

k∈Zd

f(x)ϕ2(x − k)g(x)

=
∑

k∈Zd

fk(x)gk(x)

where

fk(x) = ϕ(x − k)f(x) and gk(x) = ϕ(x − k)g(x).

Now set
−→u k(x) = ϕ(x − k)−→u (x) and vk(x) = ϕ(x − k)v(x)

for k ∈ Z
d. We then have

div (−→u v) =
∑

k∈Zd

(−→u kvk) =
∑

k∈Zd

wk, wk = div (−→u kvk) .

We are going to check that
∑

k∈Zd

‖wk‖H1(Rd) < ∞.

To do this, we apply the local version (Case A) and it follows

‖wk‖H1(Rn) ≤ C (‖uk‖L2 + ‖div uk‖L2) (‖vk‖L2 + ‖div vk‖L2)

= εk ∈ l1
(

Z
d
)

.

Up to now we have proved

(3.1) ‖div (−→u v)‖H1(Rd) ≤ C (‖−→u ‖L2 + ‖div−→u ‖L2) (‖v‖L2 + ‖div v‖L2) .
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This automatically yields the estimate

(3.2) ‖div (−→u v)‖H1(Rd) ≤ C (‖−→u ‖L2 ‖∇v‖L2 + ‖v‖L2 ‖div −→u ‖L2) .

To see this, we may replace −→u in the inequality above by

−→u δ = δ(
1

2
− d

2
)−→u

(x

δ

)
, whenever 0 < δ < ∞.

and similarly v by

vδ = δ(
1

2
− d

2
)v

(x

δ

)
, whenever 0 < δ < ∞.

Thus the left-hand side of (3.1) fortunately does not change, while at right-hande
we get rid the undesirable terms by letting δ either to 0, or to +∞. This completes
the proof. �

Now we turn to the proof of Lemma 4. One can show that every function

f ∈ Lp(Rn), p ∈ (1,+∞], with compact support and

∫
fdx = 0 belongs to

H1(Rn). In particular,

Lemma 4. If n∗ =
n

n − 1
, f ∈ Ln∗

, supp f ⊂ Ω and
∫

fdx = 0,

then f ∈ H1(Rn).

P r o o f.

f = div
(−→

G
)

v +
−→
G.∇v

and we have to prove that the two terms belong to Ln∗

. We consider the first
term on the right. Since ∇v ∈ L2, we have

div
(−→

G
)
∈ L2 and v ∈ Lq where

1

2
−

1

q
=

1

n

Thus,

v div
(−→

G
)
∈ Ln∗

.

A similar argument works in the second term and this completes the proof of the
lemma. �

Remark 2. It should be added that at the time the paper was finished,
the author learnt that J. Y. Chemin has also obtained similar results. These
are contained in his book “Perfect Incompressible Fluids, Asterisque 1995”. His
proofs which use a paradifferential approach, are quite different from the ones in
this note.
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Lemarié-Rieusset to whom the author expresses his sincere thanks. I would like
to express my gratitude to my teacher Y. Meyer for some valuable discussion
about this subject and his many helpful suggestions and criticisms. I also would
like to thank the referee for his careful reading of the work and his many helpful
comments.

REFERE NCES

[1] P. Auscher, E. Russ, P. Tchamitchian. Une note sur les lemmes div–
curl. C. R. Math. Acad. Sci. Paris 337 (2003), 511–516.

[2] J. Bourgain, H. Brezis. New estimates for the Laplacian, the div-curl and
related Hodge systems. C. R. Math. Acad. Sci. Paris 338 (2004), 539–543.

[3] R. Coifman, P. L. Lions, Y. Meyer, S. Semmes. Compensated
compactness and Hardy spaces. J. Math. Pures Appl. 72 (1993), 247–286.

[4] P. Constantin. Remarks on the Navier-Stokes equations. In: New
Perspectives in Turbulence. Springer-Verlag, New York, 1991, 229–261.

[5] L. C. Evans. Weak convergence methods for nonlinear partial differential
equations. CBMS Regional Conference Series in Mathematics, Vol. 74,
A.M.S. Providence, RI, 1990.

[6] L. C. Evans, S. Müller. Hardy spaces and the two-dimensional Euler
equations with nonnegative vorticity. J. Amer. Math. Soc. 7 (1994), 199–
219.

[7] C. Fefferman, E. M. Stein. Hp spaces of several variables. Acta Math.
129 (1972), 137–193.

[8] G. Dafini. Nonhomogeneous Div-Curl Lemmas and Local Hardy Spaces.
Adv. Differential Equations 10, 5 (2005), 505–526.
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