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Abstract. Certain types of weighted Peetre K-functionals are characteri-
zed by means of the classical moduli of smoothness taken on a proper linear
transforms of the function. The weights with power-type asymptotic at the
ends of the interval with arbitrary real exponents are considered. This paper
extends the method and results presented in [3].

1. Introduction. Let I be an open interval on the real line and let
the weights w and ϕ on I be defined in Table 1, where the γ’s, λ’s, a and b are
arbitrary real numbers.

We denote the weighted Lp-space by Lp(w)(I) =
{
f : wf ∈ Lp(I)

}
,

1 ≤ p ≤ ∞. The set of the absolutely continuous functions on [a1, b1] is denoted by
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Table 1. Weights

I w(x) ϕ(x)

(a, b) (x− a)γa(b− x)γb (x− a)λa(b− x)λb

(a,∞) (x− a)γa(x− a+ 1)γ∞−γa (x− a)λa(x− a+ 1)λ∞−λa

R = (−∞,∞)






|x|γ−∞ , x < −1,

1, −1 ≤ x ≤ 1,

xγ+∞ , x > 1.






|x|λ−∞ , x < −1,

1, −1 ≤ x ≤ 1,

xλ+∞ , x > 1.

AC[a1, b1] and ACk
loc(I) = {g : g, g′, . . . , g(k) ∈ AC[a1, b1] ∀a1, b1 ∈ I, a1 < b1}.

By D we denote the first derivative, D = d
dx , and Drg means the r-th derivative

of the function g.
The weighted Peetre K-functional is given by

(1.1) K(f, tr;Lp(w)(I), ACr−1
loc , ϕrDr) = inf

{
‖w(f − g)‖p(I) + tr‖wϕrDrg‖p(I)

: g ∈ ACr−1
loc (I), wg, wϕrDrg ∈ Lp(I)

}
.

It is defined for every f ∈ Lp(w)(I) and t > 0. Note that g ∈ ACr−1
loc (I) means

that the infimum in (1.1) is taken on the largest possible subspace of Lp(w)(I).
If p = ∞, then in (1.1) the space L∞(w)(I) can be replaced by C(w)(I) = {g :
wg ∈ C(I)}, where C(I) is the space of all continuous bounded on I functions.
The case of C(w)(I) is considered in the last section, while in the previous sections
the space L∞(w)(I) is understood when p = ∞.

The class of functions f for which we can calculate exactly the infimum
in (1.1) for any t ∈ (0, t0] is quite narrow. That is why it is useful to have other
function characteristics – moduli of smoothness – which can be calculated for a
wider class of functions and are equivalent to the K-functional. Up to now several
definitions of moduli of smoothness have been introduced to treat K-functionals
acting on weighted Lp-spaces: Ivanov [9, 10], Ditzian and Totik [2], Ky [11], etc.
The ideas in these papers are not suitable to treat the case λa < 0, γa 6= 0 or the
case 0 ≤ λa < 1, γa < 0. In all of these approaches the definitions of the moduli
of smoothness are modified in order to fit the weights in (1.1).

In this article we present a characterization of K-functionals (1.1) by the
classical (unweighted, fixed step) moduli of smoothness as the latter are taken not
on the function f itself but on certain modifications of it. This approach can cover
the K-functionals (1.1) for all real values of γ’s and λ’s. These characterizations
will be valid not only for the weights w and ϕ listed in Table 1 but for any other
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weights w̄ and ϕ̄ equivalent to them on I. For treatment of weights with more
general asymptotic at the end-points of the domain I see [3, Section 6]. Examples
of applications of weighted K-functionals to some areas of the approximation
theory, as characterization of the rate of convergence, are given in [2, 3, 6].

In [3] we have applied the following approach in order to get characteri-
zations of K-functionals (1.1) for certain values of the parameters. First, we find
a linear operator A which provides the equivalence

(1.2) K(f, tr;Lp(w)(I), ACr−1
loc , ϕrDr) ∼ K(Af, tr;Lp(w̃)(Ĩ), ACr−1

loc , ϕ̃
rDr)

with w̃ = 1, ϕ̃ = 1 for a proper interval Ĩ of the types listed above. Next, since
the second K-functional in (1.2) is equivalent to the classical r-th modulus of
smoothness ωr we get

(1.3) K(f, tr;Lp(w)(I), ACr−1
loc , ϕrDr) ∼ ωr(Af, t)p(Ĩ).

As usual ψ1(F, t) ∼ ψ2(F, t) means that the ratio of the functions ψ1 and ψ2 is
bounded between two positive numbers independent of F and t. Relation (1.2)
for general w, ϕ, w̃, ϕ̃ is of independent interest. For more details see Subsection
6.5.

The values of the parameters for which (1.3) was proved in [3] can be
summarized as: I = (a, b); λa, λb < 1; γa, γb > −1/p; 1 ≤ p < ∞. (For p = ∞
only the case γa, γb = 0 was solved.) In this article we extend the assumptions
for the validity of (1.3) in the following directions:

(a) The restriction on the powers of the weight ϕ is λ 6= 1. Here λ stands for
λa, λb, λ±∞. (The cases when some of the λ’s are 1 need special treatment
– see [4, 6].)

(b) I is an interval of the types listed above. On the one hand K-functionals
between functional spaces on unbounded intervals are naturally connected
with several sequences of operators, e.g. Sasz-Mirakyan’s, Baskakov’s, Post-
Widder’s, etc. On the other hand, let us emphasize that when treating the
case when there is a λ > 1 we arrive at the necessity to consider unbounded
intervals. Indeed, in (1.3) if we have I = (a, b) and λa < 1, λb > 1 then
Ĩ = (a,∞) and if we have I = (a,∞) and λa < 1, λ∞ > 1 then Ĩ = (a, b).

(c) The restriction on the powers of the weight w for 1 ≤ p < ∞ is relaxed
from γ > −1/p to γ 6= 1 − r − 1/p, 2 − r − 1/p, . . . ,−1/p at both ends
of the interval. (Here and below γ stands for γa, γb, γ±∞.) This might be
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considered as the main achievement of the article because the treatment
of such weights is impeded by difficulties, some of which are not only of
technical nature (cf. the “finite overlapping condition”, which is essential for
Ditzian-Totik moduli [2, p. 8]). In order to get such results we generalize [3,
Proposition 2.1] to Proposition 2.1 below by replacing the inverse operator
by another one which we call “quasi-inverse”. Let us note that the inverse
of the operators A (constructed, for example, in Theorems 6.2, 6.5) are
bounded only if the γ’s are bigger than −1/p. For the other values of γ
discussed in the article we construct different quasi-invertible continuous
operators depending on the range to which γ belongs. The values γ =
1 − r − 1/p, 2 − r − 1/p, . . . ,−1/p are exceptional in the sense that the
constructed here A has no quasi-inverse bounded operators built by the
operators from Sections 3 and 4. These values are not treated in this paper
except γ = 0 for p = ∞. The construction of a proper operator A such that
(1.3) is fulfilled for the exceptional values of γ demands new elements and
will be given in [7].

The construction of operators A is explicit. It involves linear and power
changes of the variable, multiplication by power functions, including algebraic
polynomials, and antiderivative. In particular, fractional integrals are extensively
used. Let us note that the computation of the classical unweighted moduli of the
function Af is of the same degree of difficulty as of the function f itself.

The cases when (1.2) holds are summarized in Theorems 6.12, 6.13 and
6.14, while (1.3) is true under the conditions described in Theorem 6.15. Similarly
to [3] the results concerning the validity of (1.3) are mainly in the case 1 ≤ p <∞
(with restrictions γa = 0, γb = 0, γ∞ = 0 for p = ∞), while the validity of (1.2)
is established under the condition 1 ≤ p ≤ ∞. The reasons for such discrepancy
are discussed in [7], where the case p = ∞ is studied in detail.

Finally, let us mention one tool of technical nature, which simplifies
the problem for characterizing the K-functionals (1.1) in terms of moduli of
smoothness. This is Lemma 7.1, which allows us to separate the singularities of
the weights w and ϕ by “splitting” the interval I beforehand. After the usage
of Lemma 7.1 we get two K-functionals whose weights w and ϕ have the initial
power-type behaviour at one of the ends (finite or infinite) of the interval while
at the other finite end of the interval the weights w and ϕ are equivalent to 1, i.e.
γ = λ = 0 there. After applying Lemma 7.1 characterization (1.3) is modified to

(1.4) K(f, tr;Lp(w)(I), ACr−1
loc , ϕrDr) ∼ ωr(A1f, t)p(Ĩ1)

+ ωr(A2f, t)p(Ĩ2)
.

Note that Lemma 7.1 allows the unification of two moduli (or K-functio-



Characterization of weighted Peetre K-functionals 63

nals) into a single one only if the underlying functions coincide on the intersection
of the domains. As far as this is a rare case, one disadvantage of the application
of Lemma 7.1 is the increase of the number of moduli used on the right-hand
side of (1.4). So, we apply Lemma 7.1 only at the end of our study, having
also in mind that the validity of (1.2) is of independent importance. The cases
when we cannot avoid the separation of the singularities are listed at the end of
Subsection 6.5.

The paper is organized as follows. The next section contains a variety
of auxiliary results. In Sections 3 and 4 we construct and study two kinds of
operators – type A and type B respectively – used as ingredients in the solutions
of (1.2), (1.3) and (1.4). The type A operators change only the weight w, while the
type B operators change simultaneously both weights w and ϕ. Some algebraic
properties of these operators are listed in Section 5. Operators that are solutions
of (1.2) and (1.3) under a variety of conditions on I, w and ϕ are constructed
in Section 6, while the solutions of (1.4) are given in Section 7. Results about
continuous functions are sketched in Section 8.

2. Preliminaries
2.1. Notations. Throughout the paper we shall use the following nota-

tions.
The order of the derivative in theK-functional is always denoted by r ∈ N.

For n ∈ N0 = N ∪ {0} let Πn be the set of all algebraic polynomials of degree at
most n. For ξ ∈ R set χξ(x) = |x− ξ|.

The restrictions on the parameters γ are described by:

Γ+(p) = (−1/p,∞) for 1 ≤ p <∞ and Γ+(∞) = [0,∞);

Γ0(p) = (−1/p,∞);

Γi(p) = (−i− 1/p, 1 − i− 1/p), i = 1, . . . , r − 1;

Γr(p) = (−∞, 1 − r − 1/p);

Γexc(p) = {1 − r − 1/p, 2 − r − 1/p, . . . ,−1/p};

Γ∗
1(p) = (−1 − 1/p,∞);

Γ∗
i (p) = (−i− 1/p, 1 − i− 1/p), i = 2, . . . , r − 1;

Γ∗
r(p) = (−∞, 1 − r − 1/p);

Γ∗
exc(p) = {1 − r − 1/p, 2 − r − 1/p, . . . ,−1 − 1/p}.

Intervals Γi(p) and Γ∗
i (p) coincide for i = 2, . . . , r, but we prefer using the

two sets of notations to be able to state the results more shortly.
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In few cases the standard convention ζ < η in the notation of the interval
(ζ, η) may be violated. Then (ζ, η) has to be understood as the interval (min{ζ, η},
max{ζ, η}).

We denote by c positive numbers independent of the functions f and the
parameter t of the K-functionals. The numbers c may differ at each occurrence.
All constants denoted by c can be explicitly evaluated using algebraic expressions
and the constants in the Hardy-type inequalities (which are known).

2.2. Quasi-invertible continuous maps. In order to give a general
approach in establishing an equivalence like (1.2) we define the Peetre K-functio-
nal between abstract spaces by

K(f, t) = K(f, t;X,Y,D) = inf
{
‖f − g‖X + t‖Dg‖X : g ∈ Y ∩ D

−1(X)
}
,

where X is a Banach space, D is a differential operator and D−1(X) = {g ∈ X :
Dg ∈ X}. Usually Y ∩ D−1(X) is a dense subspace of X. In the notations of
(1.1) X = Lp(w)(I), Y = ACr−1

loc and D = ϕrDr. We call (X,Y,D) a triplet.
For a differential operator D, acting on a subspace of the Banach space

X, we set kerD = {g ∈ D−1(X) : Dg = 0}. Note that kerD ⊂ D−1(X) ⊂ X.
We shall need a certain generalization of Proposition 2.1 in [3] in order to

extend the results there to some of the functional classes discussed in this paper.
First, we introduce the following

Definition 2.1. We say that the linear operator A is a quasi-invertible

continuous map of the triplet (X1, Y1,D1) onto the triplet (X2, Y2,D2) if
and only if there exists a linear operator B : X2 → X1, related to A : X1 → X2,
which we call a quasi-inverse operator to A, and both operators satisfy the
conditions:

(a) ‖Af‖X2
≤ c‖f‖X1

for any f ∈ X1;

(b) ‖D2Af‖X2
≤ c‖D1f‖X1

for any f ∈ Y1 ∩ D
−1
1 (X1);

(c) ‖BF‖X1
≤ c‖F‖X2

for any F ∈ X2;

(d) ‖D1BF‖X1
≤ c‖D2F‖X2

for any F ∈ Y2 ∩ D
−1
2 (X2);

(e) A(Y1 ∩ D
−1
1 (X1)) ⊆ Y2 ∩ D

−1
2 (X2);

(f) B(Y2 ∩ D
−1
2 (X2)) ⊆ Y1 ∩ D

−1
1 (X1);

(g) f − BAf ∈ Y1 ∩ kerD1 for any f ∈ X1;

(h) F − ABF ∈ Y2 ∩ ker D2 for any F ∈ X2.
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If A is a quasi-invertible continuous map of (X1, Y1,D1) onto (X2, Y2,D2) and
B is a quasi-inverse operator to A, we write

A : (X1, Y1,D1) 
 (X2, Y2,D2) : B.

Remark 2.1. When the operator A : X1 → X2 is invertible and its
inverse A−1 is bounded and satisfies conditions (d) and (f) (in the place of B),
then A−1 is a quasi-inverse operator to A. This case was considered in [3].

Remark 2.2. Note that if A : (X1, Y1,D1) 
 (X2, Y2,D2) : B, then
A is a quasi-inverse operator to B and B : (X2, Y2,D2) 
 (X1, Y1,D1) : A.
We use a notation, which points out a quasi-inverse operator because we need
relations between the triplets (X1, Y1,D1) and (X2, Y2,D2) in both directions.
Let us also note that the quasi-inverse operator may not be unique, which is the
case considered in this article.

Sometimes we call “initial” the triplet (X1, Y1,D1) or the weights in its
functional spaces, while we call “target” the triplet (X2, Y2,D2). Such termino-
logy, which has no strict mathematical meaning, reflects the process of construc-
tion of the operator A, which goes through several intermediate triplets between
(X1, Y1,D1) and (X2, Y2,D2). Also the roles of (X1, Y1,D1) and (X2, Y2,D2) in
the current investigation are slightly different – from the point of view of (1.3)
the target triplet in (1.2) is described with the specific weights w̃ = 1 and ϕ̃ = 1.

A connection between quasi-invertible continuous maps and equivalence
of K-functionals is given in:

Proposition 2.1. Let the linear operator A be a quasi-invertible conti-
nuous map of (X1, Y1,D1) onto (X2, Y2,D2) and B be quasi-inverse to A. Then
for any f ∈ X1 and t > 0 we have

(2.1) K(f, t;X1, Y1,D1) ∼ K(Af, t;X2, Y2,D2)

and for any F ∈ X2 and t > 0 we have

(2.2) K(F, t;X2, Y2,D2) ∼ K(BF, t;X1, Y1,D1).

P r o o f. Let g ∈ Y1 ∩D
−1
1 (X1) be arbitrary. Then (e) from Definition 2.1

gives Ag ∈ Y2 ∩ D
−1
2 (X2). Applying (a) and (b) we get

inf
G∈Y2∩D

−1
2 (X2)

{‖Af −G‖X2
+ t‖D2G‖X2

} ≤ ‖Af − Ag‖X2
+ t‖D2Ag‖X2

≤ c(‖f − g‖X1
+ t‖D1g‖X1

).
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Now, taking an infimum over g ∈ Y1 ∩ D
−1
1 (X1), we get

(2.3) K(Af, t;X2, Y2,D2) ≤ cK(f, t;X1, Y1,D1).

Just similarly, using (c), (d) and (f) from Definition 2.1, we show that

(2.4) K(BF, t;X1, Y1,D1) ≤ cK(F, t;X2, Y2,D2).

Next, (g) implies K(f, t;X1, Y1,D1) = K(BAf, t;X1, Y1,D1). Then inequality
(2.4) with F = Af implies

K(f, t;X1, Y1,D1) ≤ cK(Af, t;X2, Y2,D2),

which together with (2.3) gives (2.1). Similarly, (h), (2.3) and (2.4) yield (2.2)
and complete the proof. �

We shall use extensively Proposition 2.1 for obtaining equivalences like
(1.2). In the next proposition we give a sufficient condition for an operator to be
a quasi-invertible continuous map in the context of the functional spaces treated
in this article.

Proposition 2.2. Let (X1, Y1,D1) = (Lp(w)(I), ACr−1
loc (I), ϕrDr) and

(X2, Y2,D2) = (Lp(w̃)(Ĩ), ACr−1
loc (Ĩ), ϕ̃rDr), where I, Ĩ are real intervals and w,ϕ

and w̃, ϕ̃ are non-negative measurable functions defined respectively on I and Ĩ.
Let the operators A : X1 → X2 and B : X2 → X1 satisfy conditions (a), (b),
(c) and (d) of Definition 2.1. Let X̄1, X̄2 be two functional spaces such that
X̄1 ⊃ Lp(w)(I), X̄2 ⊃ Lp(w̃)(Ĩ). If there exists an invertible linear operator
Ā : X̄1 → X̄2 such that Ā(Πr−1) ⊂ Πr−1, Ā−1(Πr−1) ⊂ Πr−1 and

(e′) Ā(X1 ∩ Y1) ⊆ Y2;

(f′) Ā−1(X2 ∩ Y2) ⊆ Y1;

(g′) Af − Āf ∈ Πr−1 for any f ∈ X1;

(h′) BF − Ā−1F ∈ Πr−1 for any F ∈ X2,

then A is a quasi-invertible continuous map of (X1, Y1,D1) onto (X2, Y2,D2) and
B is a quasi-inverse operator to A.

P r o o f. We shall establish conditions (e), (f), (g) and (h) from Definition
2.1. We have

D
−1
1 (X1) = {f ∈ X1 ∩ Y1 : Drf ∈ Lp(wϕ

r)(I)},

D
−1
2 (X2) = {F ∈ X2 ∩ Y2 : DrF ∈ Lp(w̃ϕ̃

r)(Ĩ)}.



Characterization of weighted Peetre K-functionals 67

Hence, Y1 ∩ D
−1
1 (X1) = D

−1
1 (X1) and Y2 ∩ D

−1
2 (X2) = D

−1
2 (X2). Now, from

conditions (a), (e′) and (g′) we get A(ACr−1
loc (I) ∩ Lp(w)(I)) ⊆ ACr−1

loc (Ĩ) ∩

Lp(w̃)(Ĩ), which together with condition (b) implies condition (e). Moreover,
from conditions (b), (f′) and (h′) we get B(ACr−1

loc (Ĩ) ∩ Lp(w̃)(Ĩ)) ⊆ ACr−1
loc (I) ∩

Lp(w)(I), which together with condition (d) implies condition (f).

From the definitions we have kerD1 = Πr−1 ∩ Lp(w)(I) and ker D2 =
Πr−1 ∩ Lp(w̃)(Ĩ).

Now we shall establish (g). Let f ∈ Lp(w)(I). Set Q1 = Āf − Af ,
F = Af ∈ Lp(w̃)(Ĩ) and Q2 = Ā−1F − BF . Then

f −BAf = f −BF = f − Ā
−1F +Q2 = f − Ā

−1(Āf −Q1) +Q2 = Ā
−1Q1 +Q2.

Now (g′) implies Q1 ∈ Πr−1, (h′) implies Q2 ∈ Πr−1 and hence f −BAf ∈ Πr−1.
Moreover f ∈ X1 implies Af ∈ X2 and f − BAf ∈ X1. Hence f − BAf ∈
Πr−1 ∩ Lp(w)(I) = Y1 ∩ ker D1. This proves (g).

In a similar way we get for any F ∈ Lp(w̃)(Ĩ) that F − ABF ∈ Πr−1 ∩
Lp(w̃)(Ĩ) = Y2 ∩ ker D2, which is (h). This completes the proof. �

In this article we use X̄1 = L1,loc(I), X̄2 = L1,loc(Ĩ). The operator Ā will
be explicitly given with (3.1), (3.2) or with (4.1), (4.2). It is invertible, preserves
Πr−1 and satisfies (e′), (f′), (g′) and (h′). Note that no boundedness conditions
are required from Ā for the validity of the above proposition.

2.3. Hardy’s inequalities. Muckenhoupt generalized in [12] Hardy’s
inequalities (see [8, p. 245]). A partial case of [12] are the following Hardy’s
inequalities, which will be used extensively.

Proposition 2.3. Let ζ < η and let F be a measurable function on [ζ, η].

a) If 1 ≤ p ≤ ∞, β > 0, γ ≤ β or p = 1, β = 0, γ < 0, then

(∫ η

ζ

∣∣∣(x− ζ)−γ− 1
p

∫ x

ζ
F (y) dy

∣∣∣
p
dx

) 1
p

≤ c

(∫ η

ζ
|(x− ζ)−β+1− 1

pF (x)|p dx

) 1
p

.

b) If 1 ≤ p ≤ ∞, β ≤ γ, γ > 0 or p = ∞, β < 0, γ = 0, then

(∫ η

ζ

∣∣∣(x− ζ)
γ− 1

p

∫ η

x
F (y) dy

∣∣∣
p
dx

) 1
p

≤ c

(∫ η

ζ
|(x− ζ)

β+1− 1
pF (x)|p dx

) 1
p

.

Proposition 2.4. Let η > 0 and let F be a measurable function on
[η,∞).
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a) If 1 ≤ p ≤ ∞, β ≤ γ, γ > 0 or p = ∞, β < 0, γ = 0, then
(∫ ∞

η

∣∣∣x−γ− 1
p

∫ x

η
F (y) dy

∣∣∣
p
dx

) 1
p

≤ c

(∫ ∞

η
|x

−β+1− 1
pF (x)|p dx

) 1
p

.

b) If 1 ≤ p ≤ ∞, β ≥ γ, β > 0 or p = 1, β = 0, γ < 0, then
(∫ ∞

η

∣∣∣xγ− 1
p

∫ ∞

x
F (y) dy

∣∣∣
p
dx

) 1
p

≤ c

(∫ ∞

η
|x

β+1− 1
pF (x)|p dx

) 1
p

.

2.4. Translations and dilations. Let us denote by T(u) the translation
operator, i.e. T(u)f(x) = f(x + u), and by S(u) the dilation operator, i.e.
S(u)f(x) = f(ux). Their inverse operators are T−1(u) = T(−u) and S−1(u) =
S(u−1) (u 6= 0). It is obvious that if (X1, Y1,D1) = (Lp(w)(I), ACr−1

loc , ϕrDr) and
(X2, Y2,D2) is properly defined, then T(u) and S(u) (u 6= 0) are quasi-invertible
continuous maps and, hence, they satisfy the assumptions of Proposition 2.1.
Thus, we can apply any linear change of the variables to the spaces involved in
the definition of the K-functionals (1.1). Hence it is sufficient to consider only
K-functionals of functions defined on the intervals (0, 1), (0,∞) or R. Having
constructed an operator A, satisfying (1.2) for I = (0, 1) or I = (0,∞), then the
operators T(−a) S((b − a)−1)AS(b − a)T(a) and T(−a)AT(a) satisfy (1.2) for
I = (a, b) or I = (a,∞). The same is true if (1.3) is in the place of (1.2). This
follows from the propositions

Proposition 2.5. We have

S(b− a)T(a) : (Lp(χ
γa
a χ

γb

b )(a, b), ACr−1
loc , χrλa

a χrλb

b Dr) 


(Lp(χ
γa

0 χ
γb

1 )(0, 1), ACr−1
loc , χrλa

0 χrλb

1 Dr) : T(−a) S((b − a)−1).

Proposition 2.6. We have

T(a) : (Lp(χ
γa
a χ

γ∞−γa

a−1 )(a,∞), ACr−1
loc , χrλa

a χ
r(λ∞−λa)
a−1 Dr) 


(Lp(χ
γa

0 χ
γ∞−γa

−1 )(0,∞), ACr−1
loc , χrλa

0 χ
r(λ∞−λa)
−1 Dr) : T(−a).

The case of semi-infinite interval (−∞,−a) is reduced to (a,∞) by

Proposition 2.7.

S(−1) : (Lp(χ
γ−a

−a χ
γ−∞−γ−a

−a+1 )(−∞,−a), ACr−1
loc , χ

rλ−a

−a χ
r(λ−∞−λ−a)
−a+1 Dr) 


(Lp(χ
γ−a
a χ

γ−∞−γ−a

a−1 )(a,∞), ACr−1
loc , χrλ−a

a χ
r(λ−∞−λ−a)
a−1 Dr) : S(−1).
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Using “mirror” change of the variable we can interchange simultaneously
the exponents of the weights w and ϕ at the two finite ends of the domain.
Namely,

Proposition 2.8. We have

S(−1)T(a + b) : (Lp(χ
γa
a χ

γb

b )(a, b), ACr−1
loc , χrλa

a χrλb

b Dr) 


(Lp(χ
γb
a χ

γa

b )(a, b), ACr−1
loc , χrλb

a χrλa

b Dr) : T(−a− b) S(−1).

Note that S(−1)T(a + b) = T(−a− b) S(−1).

3. Operators that change only the weight w
3.1. Basic operators of type A. Let r ∈ N, J ⊆ (0,∞) be an open

interval and ξ ∈ J be fixed. For ρ ∈ R in [3] we defined the linear operator
A(ρ; ξ) : L1,loc(J) → L1,loc(J) by

(3.1) (A(ρ)f)(x) = (A(ρ; ξ)f)(x) = xρf(x) +

r∑

k=1

αr,k(ρ)x
k−1

∫ x

ξ
y−k+ρf(y) dy,

where

(3.2) αr,k(ρ) =
(−1)k

(r − 1)!

(
r − 1

k − 1

) r−1∏

ν=0

(ρ+ r − k − ν), k = 1, 2, . . . , r.

In the cited paper we proved for ρ, σ ∈ R

(3.3) A(ρ; ξ)A(σ; ξ) = A(ρ+ σ; ξ),

hence, in view of αr,k(0) = 0 for k = 1, 2, . . . , r, A(ρ) is invertible and

(3.4) A−1(ρ; ξ) = A(−ρ; ξ).

We also showed that A(ρ) preserves the local smoothness of the function as

(3.5) (A(ρ; ξ)f)(r)(x) = xρf (r)(x) a.e. in J ∀f ∈ ACr−1
loc (J).

Hence A(ρ) maps the set of all algebraic polynomials of degree r − 1 into itself.
In [3] we used these operators to treat the singularity of the weight w at

0 if the exponent γ0 is greater than −1/p. Now we shall modify A(ρ) to relax
this restriction to γ0 6= 1 − r − 1/p, 2 − r − 1/p, . . . ,−1/p.
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Definition 3.1. Let ρ ∈ R, ξ ∈ (0,∞) and i, j ∈ N0 as i ≤ j ≤ r. For
x ∈ (0,∞) and functions f ∈ L1,loc(0,∞), satisfying the additional requirements

χ−i+ρ
0 f ∈ L1(0, 1) if i > 0 and χ−j−1+ρ

0 f ∈ L1(1,∞) if j < r, we set

(Ai,j(ρ; ξ)f)(x) = xρf(x) +

i∑

k=1

αr,k(ρ)x
k−1

∫ x

0
y−k+ρf(y) dy

+

j∑

k=i+1

αr,k(ρ)x
k−1

∫ x

ξ
y−k+ρf(y) dy

−

r∑

k=j+1

αr,k(ρ)x
k−1

∫ ∞

x
y−k+ρf(y) dy.

(3.6)

As usually we assume that a sum is 0 if the upper bound is smaller than the lower
one. The integral terms for k = 1, . . . , i and k = j+1, . . . , r are well defined under
the assumptions made on f .

The following assertion holds true.

Proposition 3.1. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ > 0, i, j = 0, 1, . . . , r,
i ≤ j and w = χγ0

0 χ
γ∞−γ0

−1 , where γ0 ∈ Γi(p) and γ∞ ∈ Γj(p). Then for every
f ∈ Lp(χ

ρ
0w)(0,∞) we have

‖wAi,j(ρ; ξ)f‖p(0,∞) ≤ c‖wχρ
0f‖p(0,∞).

Also for every non-negative measurable on (0,∞) function φ and every g ∈
ACr−1

loc (0,∞) we have

‖wφ(Ai,j(ρ; ξ)g)
(r)‖p(0,∞) = ‖wχρ

0φg
(r)‖p(0,∞).

P r o o f. The second assertion follows directly from (3.5) taking into
consideration that

(3.7) (Ai,j(ρ; ξ)f)(x) − (A(ρ; 1)f)(x) =

i∑

k=1

αr,k(ρ)x
k−1

∫ 1

0
y−k+ρf(y) dy

+

j∑

k=i+1

αr,k(ρ)x
k−1

∫ 1

ξ
y−k+ρf(y) dy −

r∑

k=j+1

αr,k(ρ)x
k−1

∫ ∞

1
y−k+ρf(y) dy,

i.e. Ai,j(ρ, ξ)f and A(ρ, 1)f differ with a polynomial of degree at most r − 1.
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Let us set

ψk,ζ(x) = xk−1

∫ x

ζ
y−k+ρf(y) dy, k = 1, . . . , r, ζ ∈ [0,∞].

Assume we have established the inequalities

(3.8) ‖wψk,0‖p(0,∞) ≤ c ‖wχρ
0f‖p(0,∞), k = 1, . . . , i,

if γ0 < 1 − i− 1/p, γ∞ < 1 − i− 1/p;

(3.9) ‖wψk,ξ‖p(0,∞) ≤ c ‖wχρ
0f‖p(0,∞), k = i+ 1, . . . , j,

if γ0 > −i− 1/p, γ∞ < 1 − j − 1/p;

(3.10) ‖wψk,∞‖p(0,∞) ≤ c ‖wχρ
0f‖p(0,∞), k = j + 1, . . . , r,

if γ0 > −j − 1/p, γ∞ > −j − 1/p; .

Then the first assertion of the proposition will follow if we multiply (3.6) by w,
take Lp norm and apply Minkowski’s inequality according to the terms on the
right-hand side of (3.6). The first norm is ‖wχρ

0f‖p(0,∞) and the other norms are
estimated with the same quantity in view of (3.8), (3.9) and (3.10).

In order to establish (3.8) we estimate the norm separately on the intervals
(0, ξ) and (ξ,∞). For k = 1, . . . , i (if any), we get by Proposition 2.3, a)

(3.11) ‖wψk,0‖p(0,ξ) ≤ c ‖wχρ
0f‖p(0,∞), k = 1, . . . , i,

since w ∼ χγ0

0 on (0, ξ) and γ0 + k − 1 < 1 − i− 1/p+ i− 1 = −1/p. On (ξ,∞)
we have w ∼ χγ∞

0 and γ∞ + k − 1 < −1/p, hence by Proposition 2.4, a) we get

(3.12) ‖wψk,ξ‖p(ξ,∞) ≤ c ‖wχρ
0f‖p(0,∞).

Besides that by Hölder’s inequality we have

(3.13)

{∫ ∞

ξ

∣∣∣∣x
γ∞+k−1

∫ ξ

0
y−k+ρf(y) dy

∣∣∣∣
p

dx

} 1
p

≤ c ‖χ−k+ρ
0 f‖1(0,ξ)

≤ c ‖χγ0+ρ
0 f‖p(0,ξ) ≤ c ‖wχρ

0f‖p(0,∞).

Now, (3.12) – (3.13) imply

‖wψk,0‖p(ξ,∞) ≤ c ‖wχρ
0f‖p(0,∞), k = 1, . . . , i,
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which together with (3.11) proves (3.8).

In a similar way Proposition 2.3, b) and Proposition 2.4, a) imply (3.9),
while Proposition 2.3, b), Proposition 2.4, b) and Hölder’s inequality imply (3.10).
This completes the proof. �

Remark 3.1. The intersections of the assumptions on γ0 and γ∞, under
which inequalities (3.8)–(3.10) follow, are respectively Γi(p) and Γj(p) provided
i ≤ j. In the case i > j these intersections are empty. Thus, the assumption
i ≤ j is necessary in the construction (3.6) of Ai,j(ρ, ξ).

Proposition 2.2 and Proposition 3.1 imply

Proposition 3.2. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ, η > 0 and w =
χγ0

0 χ
γ∞−γ0

−1 with γ0, γ∞, γ0 + ρ, γ∞ + ρ /∈ Γexc(p). Assume that i ≤ j and i′ ≤ j′,
where i, j, i′, j′ are determined by Γi(p) 3 γ0, Γj(p) 3 γ∞, Γi′(p) 3 γ0 + ρ and
Γj′(p) 3 γ∞ + ρ. Finally, let φ be measurable and non-negative on (0,∞). Then
we have

Ai,j(ρ; ξ) : (Lp(wχ
ρ
0)(0,∞), ACr−1

loc , φDr)


 (Lp(w)(0,∞), ACr−1
loc , φDr) : Ai′,j′(−ρ; η).

P r o o f. We apply Proposition 2.2 with I = Ĩ = (0,∞), ϕ = ϕ̃ = φ, χρ
0w

and w in place of w and w̃ respectively, A = Ai,j(ρ; ξ) and B = Ai′,j′(−ρ; η),
X̄1 = L1,loc(0,∞), X̄2 = L1,loc(0,∞) and Ā = A(ρ, 1). Proposition 3.1 implies
that A and B satisfy conditions (a)–(d) of Definition 2.1. The invertibility of
Ā is given in (3.4), its action on Πr−1 and (e′) are implied by (3.5), (f′) follows
from (3.4) and (3.5), while the validity of conditions (g′) and (h′) follows from
(3.7). In view of Proposition 2.2 Ai,j(ρ; ξ) is a quasi-invertible continuous map of
(Lp(wχ

ρ
0)(0,∞), ACr−1

loc , φDr) onto (Lp(w)(0,∞), ACr−1
loc , φDr) and Ai′,j′(−ρ; η)

is a quasi-inverse to it. �

Let us observe that the operators Ai,j(ρ; ξ) change the behaviour of the
w-weight at both ends of the interval (0,∞). But we can consider their action
on functions defined on subintervals as (1,∞) and (0, 1). In the domain (1,∞)
it is natural to set i = 0 and, similarly, j = r if (0, 1) is treated. When we
consider (A0,j(ρ; ξ)f)(x) with ξ > 1 for f ∈ L1,loc(1,∞), satisfying the additional

requirement χ−j−1+ρ
0 f ∈ L1(2,∞) if j < r, and x ∈ (1,∞) we get an operator

that treats only the singularity at infinity. This follows by the equivalence χρ
0 ∼ 1

in a neighborhood of 1.
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Proposition 3.3. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ > 1, j = 0, 1, . . . , r
and w = χγ1

1 χ
γ∞−γ1

0 , where γ1 ∈ Γ+(p) and γ∞ ∈ Γj(p). Then we have

‖wA0,j(ρ; ξ)f‖p(1,∞) ≤ c‖wχρ
0f‖p(1,∞).

Also for every non-negative measurable on (1,∞) function φ and every g ∈
ACr−1

loc (1,∞) we have

‖wφ(A0,j(ρ; ξ)g)
(r)‖p(1,∞) = ‖wχρ

0φg
(r)‖p(1,∞).

P r o o f. Proposition 3.1, but when estimating ‖wψk,ξ‖p(1,ξ) by ‖wχρ
0f‖p(1,ξ)

we use Proposition 2.3, b) with γ = γ1 + 1/p and β = γ1 − 1 + 1/p. �

Hence as above from Propositions 2.2 and 3.3 we get

Proposition 3.4. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ, η > 1 and w =
χγ1

1 χ
γ∞−γ1

0 with γ1 ∈ Γ+(p) and γ∞, γ∞ + ρ /∈ Γexc(p). Let j, j ′ be determined by
Γj(p) 3 γ∞ and Γj′(p) 3 γ∞ + ρ. Finally, let φ be measurable and non-negative
on (1,∞). Then we have

A0,j(ρ; ξ) : (Lp(wχ
ρ
0)(1,∞), ACr−1

loc , φDr)


 (Lp(w)(1,∞), ACr−1
loc , φDr) : A0,j′(−ρ; η).

Remark 3.2. Formally Proposition 3.2 and Proposition 3.4 look
very similar – only (0,∞) is replaced by (1,∞). If we would like to have an
operator in (1,∞), whose action is similar to that of Ai,j(ρ; ξ), we could take
T(−1)Ai,j(ρ; ξ)T(1) (cf. Proposition 2.6) which differs from A0,j(ρ; ξ). This
indicates why A0,j(ρ; ξ) preserves the asymptotic (x−1)γ1 of the weight w at the
end-point 1, while Ai,j(ρ; ξ) (0 ≤ i ≤ j ≤ r) will change the asymptotic of the
weight at the end-point 0 from xγ0+ρ to xγ0 . Therefore, the assumption imposed
on γ0 + ρ in Proposition 3.2 is omitted in Proposition 3.4. The replacement of
Γ0(p) with Γ+(p) is of importance when the case p = ∞ is treated. In this article
we use it in respect to the operators defined in the next section.

When we consider (Ai,r(ρ; ξ)f)(x) with ξ ∈ (0, 1) for x ∈ (0, 1) and f ∈

L1,loc(0, 1), satisfying the additional requirement χ−i+ρ
0 f ∈ L1(0, 1/2) if i > 0,

we get an operator that treats only the singularity at 0. Like in the case of a
semi-infinite domain we establish the assertions:

Proposition 3.5. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ ∈ (0, 1), i =
0, 1, . . . , r and w = χγ0

0 χ
γ1

1 , where γ0 ∈ Γi(p) and γ1 ∈ Γ+(p). Then for every
f ∈ Lp(χ

ρ
0w)(0, 1) we have

‖wAi,r(ρ; ξ)f‖p(0,1) ≤ c‖wχρ
0f‖p(0,1).
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Also for every non-negative measurable on (0, 1) function φ and every g ∈
ACr−1

loc (0, 1) we have

‖wφ(Ai,r(ρ; ξ)g)
(r)‖p(0,1) = ‖wχρ

0φg
(r)‖p(0,1).

Proposition 3.6. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ, η ∈ (0, 1) and
w = χγ0

0 χ
γ1

1 with γ0, γ0 + ρ /∈ Γexc(p) and γ1 ∈ Γ+(p). Let i, i′ be determined by
Γi(p) 3 γ0 and Γi′(p) 3 γ0 + ρ. Finally, let φ be measurable and non-negative on
(0, 1). Then we have

Ai,r(ρ; ξ) : (Lp(wχ
ρ
0)(0, 1), AC

r−1
loc , φDr)


 (Lp(w)(0, 1), ACr−1
loc , φDr) : Ai′,r(−ρ; η).

3.2. Transformed operators of type A. So far we have constructed
operators through which we can treat K-functionals of functions defined on the
intervals (0,∞), (1,∞) and (0, 1). On their basis, in view of Propositions 2.5 and
2.6, we can get their analogues, which act on functions defined on (a,∞) and
(a, b).

Definition 3.2. Let r ∈ N, ρ ∈ R, i, j ∈ N0 as i ≤ j ≤ r, and
ξ ∈ (a,∞). For x ∈ (a,∞) and f ∈ L1,loc(a,∞), satisfying the additional

requirements χ−i+ρ
a f ∈ L1(a, a + 1) if i > 0 and χ−j−1+ρ

a f ∈ L1(a + 1,∞) if
j < r, we set

(Ai,j(ρ; a,∞; ξ)f)(x) = (T(−a)Ai,j(ρ; ξ − a)T(a)f)(x),

that is,

(Ai,j(ρ; a,∞; ξ)f)(x) = (x− a)ρf(x)

+
i∑

k=1

αr,k(ρ)(x− a)k−1

∫ x

a
(y − a)−k+ρf(y) dy

+

j∑

k=i+1

αr,k(ρ)(x− a)k−1

∫ x

ξ
(y − a)−k+ρf(y) dy

−
r∑

k=j+1

αr,k(ρ)(x − a)k−1

∫ ∞

x
(y − a)−k+ρf(y) dy,

(3.14)

where αr,k(ρ) are defined in (3.2).

From Propositions 3.2 and 2.6 we get
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Proposition 3.7. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ, η > a and w =
χγa

a χ
γ∞−γa

a−1 with γa, γ∞, γa + ρ, γ∞ + ρ /∈ Γexc(p). Assume that i ≤ j and i′ ≤ j′,
where i, j, i′, j′ are determined by Γi(p) 3 γa, Γj(p) 3 γ∞, Γi′(p) 3 γa + ρ and
Γj′(p) 3 γ∞ + ρ. Finally, let φ be measurable and non-negative on (a,∞). Then
we have

Ai,j(ρ; a,∞; ξ) : (Lp(wχ
ρ
a)(a,∞), ACr−1

loc , φDr)


 (Lp(w)(a,∞), ACr−1
loc , φDr) : Ai′,j′(−ρ; a,∞; η).

Definition 3.3. Let r ∈ N, ρ ∈ R, j ∈ N0 as j ≤ r, and ξ ∈ (a,∞). For
x ∈ (a,∞) and f ∈ L1,loc(a,∞), satisfying the additional requirement χ−j−1+ρ

a f ∈
L1(a+ 1,∞) if j < r, we set

(Aj(ρ;∞, a; ξ)f)(x) = (T(1 − a)A0,j(ρ; ξ − a+ 1)T(a − 1)f)(x),

that is,

(Aj(ρ;∞, a; ξ)f)(x) = (x− a+ 1)ρf(x)

+

j∑

k=1

αr,k(ρ)(x− a+ 1)k−1

∫ x

ξ
(y − a+ 1)−k+ρf(y) dy

−

r∑

k=j+1

αr,k(ρ)(x− a+ 1)k−1

∫ ∞

x
(y − a+ 1)−k+ρf(y) dy,

(3.15)

where αr,k(ρ) are defined in (3.2).

From Propositions 3.4 and 2.6 we get

Proposition 3.8. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ, η > a and w =
χγa

a χ
γ∞−γa

a−1 with γa ∈ Γ+(p) and γ∞, γ∞ + ρ /∈ Γexc(p). Let j, j ′ be determined by
Γj(p) 3 γ∞ and Γj′(p) 3 γ∞ + ρ. Finally, let φ be measurable and non-negative
on (a,∞). Then we have

Aj(ρ;∞, a; ξ) : (Lp(wχ
ρ
a−1)(a,∞), ACr−1

loc , φDr)


 (Lp(w)(a,∞), ACr−1
loc , φDr) : Aj′(−ρ;∞, a; η).

Definition 3.4. Let r ∈ N, ρ ∈ R, i ∈ N0 as i ≤ r, and ξ ∈ (a, b). Let s
be one of the ends of the finite interval (a, b) and e – the other. For x ∈ (a, b) and
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f ∈ L1,loc(a, b), satisfying the additional requirement χ−i+ρ
s f ∈ L1(s, (s+ e)/2) if

i > 0, we set

(Ai(ρ; s, e; ξ)f)(x)=(T(−s)S((e − s)−1)Ai,r(ρ; (ξ − s)/(e− s)) S(e− s)T(s)f)(x),

that is,

(Ai(ρ; s, e; ξ)f)(x) =

(
x− s

e− s

)ρ

f(x)

+
1

e− s

i∑

k=1

αr,k(ρ)

(
x− s

e− s

)k−1 ∫ x

s

(
y − s

e− s

)−k+ρ

f(y) dy

+
1

e− s

r∑

k=i+1

αr,k(ρ)

(
x− s

e− s

)k−1 ∫ x

ξ

(
y − s

e− s

)−k+ρ

f(y) dy,

where αr,k(ρ) are defined in (3.2).

This operator treats the singularity of the w-weight at the end s and does
not affect its behaviour at the other end e. More precisely, from Propositions 3.6
and 2.5 we get

Proposition 3.9. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, ξ, η ∈ (a, b), s be one of
the points a, b and e be the other one, w = χγs

s χ
γe
e with γs, γs + ρ /∈ Γexc(p) and

γe ∈ Γ+(p). Let i, i′ be determined by Γi(p) 3 γs and Γi′(p) 3 γs + ρ. Finally, let
φ be measurable and non-negative on (a, b). Then we have

Ai(ρ; s, e; ξ) : (Lp(wχ
ρ
s)(a, b), AC

r−1
loc , φDr)


 (Lp(w)(a, b), ACr−1
loc , φDr) : Ai′(−ρ; s, e; η).

Let us note that the last proposition generalizes [3, Proposition 5.4].

4. Operators that change both weights w and ϕ
4.1. Basic operators of type B. Let r ∈ N and ξ > 0 be fixed. For σ ∈

R\{0} we defined in [3] the linear operator B(σ; ξ) : L1,loc(0,∞) → L1,loc(0,∞)
by

(4.1) (B(σ)f)(x) = (B(σ; ξ)f)(x) = f(xσ) +

r∑

k=2

βr,k(σ)xk−1

∫ x

ξ
y−kf(yσ) dy,
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where

(4.2) βr,k(σ) =
(−1)r−k

(r − 2)!

(
r − 2

k − 2

) r−1∏

i=1

(k − 1 − iσ), k = 2, 3, . . . , r.

Obviously, operators of type (4.1) preserve the local smoothness of the
functions. Moreover, it is proved in the paper cited above that

(4.3) (B(σ; ξ)f)(r)(x) = σrxr(σ−1)f (r)(xσ) a.e. in (0,∞) ∀f ∈ ACr−1
loc (0,∞).

Hence B(σ) maps the set of all algebraic polynomials of degree r − 1 into itself.
The following basic algebraic property of the operators B(σ) holds true.

Theorem 4.1. Let ρ, σ ∈ R\{0} and ξ > 0. Then

(4.4) B(σ; ξ)B(ρ; ξσ) = B(σρ; ξ)

and hence B(σ) is invertible as

(4.5) B(σ; ξ)−1 = B(σ−1; ξσ).

P r o o f. We follow the proof of the partial case ξ = 1 given in [3, Theorem
4.2]. Applying twice (4.1) we get for every f ∈ L1,loc(0,∞)

(B(σ; ξ)B(ρ; ξσ)f)(x)

= (B(ρ; ξσ)f)(xσ) +

r∑

k=2

βr,k(σ)xk−1

∫ x

ξ
y−k(B(ρ; ξσ)f)(yσ) dy

= f(xσρ) +

r∑

`=2

βr,`(ρ)x
σ(`−1)

∫ xσ

ξσ

y−`f(yρ) dy

+

r∑

k=2

βr,k(σ)xk−1

∫ x

ξ
y−k

(
f(yσρ) +

r∑

`=2

βr,`(ρ) y
σ(`−1)

∫ yσ

ξσ

u−`f(uρ) du

)
dy

= f(xσρ) +

r∑

`=2

σβr,`(ρ)x
σ(`−1)

∫ x

ξ
u−σ(`−1)−1f(uσρ) du

+
r∑

k=2

βr,k(σ)xk−1

∫ x

ξ
y−kf(yσρ) dy

+
r∑

k=2

r∑

`=2

σβr,k(σ)βr,`(ρ)x
k−1

∫ x

ξ
yσ(`−1)−k

(∫ y

ξ
u−σ(`−1)−1f(uσρ) du

)
dy.
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If σ(`− 1) = k − 1, then βr,k(σ) = 0, and if σ(`− 1) 6= k − 1, then

xk−1

∫ x

ξ
yσ(`−1)−k

(∫ y

ξ
u−σ(`−1)−1f(uσρ) du

)
dy =

1

σ(`− 1) − (k − 1)

×

(
xσ(`−1)

∫ x

ξ
u−σ(`−1)−1f(uσρ) du− xk−1

∫ x

ξ
u−kf(uσρ) du

)
.

Hence

(B(σ; ξ)B(ρ; ξσ)f)(x) = f(xσρ)

+ σ
r∑

`=2

βr,`(ρ)

(
1 +

r∑

k=2

βr,k(σ)

σ(`− 1) − (k − 1)

)
xσ(`−1)

∫ x

ξ
u−σ(`−1)−1f(uσρ) du

+
r∑

k=2

(
βr,k(σ) − σ

r∑

`=2

βr,k(σ)βr,`(ρ)

σ(`− 1) − (k − 1)

)
xk−1

∫ x

ξ
u−kf(uσρ) du

(4.6)

as the ratio βr,k(σ)/(σ(` − 1) − (k − 1)) is defined by continuity for σ = (k −
1)/(` − 1). In [3] (see (4.8) and (4.11)) we proved the combinatorial identities

r∑

k=2

βr,k(σ)

k − 1 − σ(`− 1)
= 1, ` = 2, 3, . . . , r,

and

βr,k(σ) − σ

r∑

`=2

βr,k(σ)βr,`(ρ)

σ(`− 1) − (k − 1)
= βr,k(σρ), k = 2, 3, . . . , r.

Using these identities in (4.6) we get (4.4). �

It is worth noting that A(ρ) and B(σ) change places in the following way:

(4.7) B(σ; ξ)A(ρ; ξσ) = A(ρσ; ξ)B(σ; ξ), σ 6= 0.

In [3, Proposition 4.1] the partial case ξ = 1 of the relation above was established.
The proof in the general case is based on the approach used in the proof of
Theorem 4.1 as this time we need to use the combinatorial identities [3, (3.10),
(4.8), (4.14) and (4.15)]. Identity (4.7) is extended in Section 5 to properties
xiii)–xvii).

In [3] we used operator B(σ) to variate the behaviour of the ϕ-weight
(with λ < 1, which implies σ > 0) in the second term of the K-functional of
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functions with a finite domain. Now we shall modify B(σ) like we did with A(ρ)
in Section 3 in order to apply it under weaker restrictions on the w-weight. The
following arguments imply that there is higher number of possible modifications
of B(σ) compared to A(ρ).

Consider 0 ≤ ζ < η ≤ ∞ and ξ ∈ (ζ, η). If σ > 0, then operator B(σ; ξ)
relates functions, defined on (ζσ, ησ), to functions, defined on (ζ, η); and if σ < 0,
then operator B(σ; ξ) relates functions, defined on (ησ , ζσ), to functions, defined
on (ζ, η). Above we assume that ζσ = ∞ if ζ = 0 and σ < 0; ησ = ∞ if η = ∞
and σ > 0; and ησ = 0 if η = ∞ and σ < 0. Thus, in particular, we have:

i) B(σ; ξ) : L1,loc(0,∞) → L1,loc(0,∞) for σ 6= 0 and ξ ∈ (0,∞);

ii) B(σ; ξ) : L1,loc(0, 1) → L1,loc(0, 1) for σ > 0 and ξ ∈ (0, 1);

iii) B(σ; ξ) : L1,loc(1,∞) → L1,loc(1,∞) for σ > 0 and ξ ∈ (1,∞);

iv) B(σ; ξ) : L1,loc(0, 1) → L1,loc(1,∞) for σ < 0 and ξ ∈ (1,∞);

v) B(σ; ξ) : L1,loc(1,∞) → L1,loc(0, 1) for σ < 0 and ξ ∈ (0, 1).

Definition 4.1. Let σ > 0, ξ ∈ (0,∞), i, j ∈ N as i ≤ j ≤ r. For
x ∈ (0,∞) and functions f ∈ L1,loc(0,∞), satisfying the additional requirements

χ
(1−i)/σ−1
0 f ∈ L1(0, 1) if i > 1 and χ

−j/σ−1
0 f ∈ L1(1,∞) if j < r, we set

(Bi,j(σ; ξ)f)(x) = f(xσ) +

i∑

k=2

βr,k(σ)xk−1

∫ x

0
y−kf(yσ) dy

+

j∑

k=i+1

βr,k(σ)xk−1

∫ x

ξ
y−kf(yσ) dy(4.8)

−

r∑

k=j+1

βr,k(σ)xk−1

∫ ∞

x
y−kf(yσ) dy,

where the coefficients βr,k(σ) are given in (4.2).

Analogously to the results in Section 3 we have the following boundedness
property.

Proposition 4.1. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ > 0, i, j = 1, 2, . . . , r,
i ≤ j, w = χγ0

0 χ
γ∞−γ0

−1 , where γ0 ∈ Γ∗
i (p) and γ∞ ∈ Γ∗

j(p), and λ = 1−1/σ. Then

for every f ∈ Lp(wχ
−(γ0+1/p)λ
0 χ

−(γ∞−γ0)λ
−1 )(0,∞) we have

‖wBi,j(σ; ξ)f‖p(0,∞) ≤ c‖wχ
−(γ0+1/p)λ
0 χ

−(γ∞−γ0)λ
−1 f‖p(0,∞).
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Also for every τ0, τ∞ ∈ R, φ = χτ0
0 χ

τ∞−τ0
−1 and g ∈ ACr−1

loc (0,∞) we have

‖wφ(Bi,j(σ; ξ)g)(r)‖p(0,∞)

∼ ‖wχ
−(γ0+1/p)λ
0 χ

−(γ∞−γ0)λ
−1 φχ

(r−τ0)λ
0 χ

−(τ∞−τ0)λ
−1 g(r)‖p(0,∞).

P r o o f. From (4.1) and (4.8) we have

(4.9) Bi,j(σ; ξ)f −B(σ; 1)f ∈ Πr−1.

Repeating the arguments in the proof of (3.8), (3.9) and (3.10) (with
ρ = 0) in Proposition 3.1 we get

‖wBi,j(σ; ξ)f‖p(0,∞) ≤ c

{∫ ∞

0

∣∣xγ0(x+ 1)γ∞−γ0f(xσ)
∣∣p dx

}1/p

.

Making the change of the variable xσ = y in the integral on the right side and
taking into account that y1/σ + 1 ∼ (y + 1)1/σ for 0 < y < ∞ we get the first
statement of the proposition.

The second statement follows from (4.3) and (4.9) by applying the same
change of the variable. �

Remark 4.1. Note that the conditions on the γ’s are a little bit different
than in Section 3. This is due to the fact that the integral summand for k = 1 is
missing in the definition of Bi,j(σ; ξ) unlike in the one of Ai,j(ρ; ξ). This allows
us to replace the sets Γ1(p) = (−1− 1/p,−1/p) and Γ0(p) = (−1/p,∞), used for
Ai,j(ρ), by Γ∗

1(p) = (−1 − 1/p,∞) = Γ1(p) ∪ Γ0(p) ∪ {−1/p}.

Following the lines of the proof of Proposition 3.2 now Propositions 2.2
and 4.1, identities (4.3) and (4.5) and the fact that B(σ)(Πr−1) ⊆ Πr−1 imply

Proposition 4.2. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ, η > 0, and
w = χγ0

0 χ
γ∞−γ0

−1 with γ0, γ∞, (γ0 + 1/p)/σ − 1/p, (γ∞ + 1/p)/σ − 1/p 6∈ Γ∗
exc(p).

Assume that i ≤ j and i′ ≤ j′, where i, j, i′, j′ are determined by Γ∗
i (p) 3 γ0,

Γ∗
j(p) 3 γ∞, Γ∗

i′(p) 3 (γ0 + 1/p)/σ − 1/p and Γ∗
j′(p) 3 (γ∞ + 1/p)/σ − 1/p.

Finally, let φ = χτ0
0 χ

τ∞−τ0
−1 , τ0, τ∞ ∈ R. Then

Bi,j(σ; ξ) :

(Lp(wχ
−(γ0+1/p)λ
0 χ

−(γ∞−γ0)λ
−1 )(0,∞), ACr−1

loc , φχ
(r−τ0)λ
0 χ

−(τ∞−τ0)λ
−1 Dr)


 (Lp(w)(0,∞), ACr−1
loc , φDr) : Bi′,j′(σ

−1; η),
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where λ = 1 − 1/σ.

Proposition 4.2 shows that the linear operator Bi,j(σ; ξ) clears the multi-

plier χ
(r−τ0)λ
0 χ

−(τ∞−τ0)λ
−1 from the second term of the K-functional, but also clears

χ
−(γ0+1/p)λ
0 χ

−(γ∞−γ0)λ
−1 as an additional weight in both terms. The exponents

of the weight in the first term of the K-functional are restricted by Hardy’s
inequality and there are practically no restrictions on the second term weight.
The applying of that operator affects the power of the Jacobean-type weights in
both terms of the K-functional at both ends of the domain.

If we consider (B1,j(σ; ξ)f)(x) with ξ > 1 for x ∈ (1,∞) and functions

f ∈ L1,loc(1,∞) such that χ
−j/σ−1
0 f ∈ L1(2,∞) if j < r, we get an operator with

similar properties which affects the powers of the Jacobean-type weights in both
terms of the K-functional but only at infinity.

Proposition 4.3. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ > 1, j = 1, 2, . . . , r,
w = χγ1

1 χ
γ∞−γ1

0 , where γ1 ∈ Γ+(p) and γ∞ ∈ Γ∗
j(p), and λ = 1 − 1/σ. Then for

every f ∈ Lp(wχ
−(γ∞+1/p)λ
0 )(1,∞) we have

‖wB1,j(σ; ξ)f‖p(1,∞) ≤ c‖wχ
−(γ∞+1/p)λ
0 f‖p(1,∞).

Also for every τ1, τ∞ ∈ R, φ = χτ1
1 χ

τ∞−τ1
0 and g ∈ ACr−1

loc (1,∞) we have

‖wφ(B1,j(σ; ξ)g)(r)‖p(1,∞) ∼ ‖wχ
−(γ∞+1/p)λ
0 φχ

(r−τ∞)λ
0 g(r)‖p(1,∞).

P r o o f. We proceed as in the proof of Proposition 4.1 but take into
account that y1/σ − 1 ∼ (y − 1)y−λ for 1 < y < ∞. Also let us note that
when estimating the Lp-norm on the interval (1, ξ) of the integral summands of
B1,j(σ; ξ)f we use Proposition 2.3, b) with γ = γ1+1/p and β = γ1−1+1/p as in
the proof of Proposition 3.3 and then make the change of the variable xσ = y. �

As above from Propositions 2.2 and 4.3 we get

Proposition 4.4. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ, η > 1 and w =
χγ1

1 χ
γ∞−γ1

0 with γ1 ∈ Γ+(p) and γ∞, (γ∞ + 1/p)/σ − 1/p 6∈ Γ∗
exc(p). Let j, j ′

be determined by Γ∗
j(p) 3 γ∞ and Γ∗

j′(p) 3 (γ∞ + 1/p)/σ − 1/p. Finally, let

φ = χτ1
1 χ

τ∞−τ1
0 , τ1, τ∞ ∈ R. Then

B1,j(σ; ξ) : (Lp(wχ
−(γ∞+1/p)λ
0 )(1,∞), ACr−1

loc , φχ
(r−τ∞)λ
0 Dr)


 (Lp(w)(1,∞), ACr−1
loc , φDr) : B1,j′(σ

−1; η),



82 Borislav R. Draganov, Kamen G. Ivanov

where λ = 1 − 1/σ.

Proposition 4.4 shows that B1,j(σ; ξ) clears the multiplier χ
(r−τ∞)λ
0 from

the second term of the K-functional, but also clears χ
−(γ∞+1/p)λ
0 as an additional

weight in both terms. Once again the exponents of the weight in the first term
are restricted by Hardy’s inequality and there are practically no restrictions on
the second term weight. The applying of that operator affects the power of the
Jacobean-type weights in both terms of the K-functional only at infinity.

Let σ > 0 and ξ ∈ (0, 1) be fixed. Then the operator Bi,r(σ; ξ) is well

defined for f ∈ L1,loc(0, 1) such that χ
(1−i)/σ−1
0 f ∈ L1(0, 1/2) if i > 1. Like in

the case of a semi-infinite domain we establish the assertions:

Proposition 4.5. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ ∈ (0, 1), i =
1, 2, . . . , r, w = χγ0

0 χ
γ1

1 , where γ0 ∈ Γ∗
i (p) and γ1 ∈ Γ+(p), and λ = 1 − 1/σ.

Then for every f ∈ Lp(wχ
−(γ0+1/p)λ
0 )(0, 1) we have

‖wBi,r(σ; ξ)f‖p(0,1) ≤ c‖wχ
−(γ0+1/p)λ
0 f‖p(0,1).

Also for every τ0, τ1 ∈ R, φ = χτ0
0 χ

τ1
1 and g ∈ ACr−1

loc (0, 1) we have

‖wφ(Bi,r(σ; ξ)g)(r)‖p(0,1) ∼ ‖wχ
−(γ0+1/p)λ
0 φχ

(r−τ0)λ
0 g(r)‖p(0,1).

In the proof of the above proposition we take into account that 1−y1/σ ∼
1 − y for 0 < y < 1.

Proposition 4.6. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ, η ∈ (0, 1) and
w = χγ0

0 χ
γ1

1 with γ0, (γ0 + 1/p)/σ − 1/p 6∈ Γ∗
exc(p) and γ1 ∈ Γ+(p). Let i, i′ be

determined by Γ∗
i (p) 3 γ0 and Γ∗

i′(p) 3 (γ0+1/p)/σ−1/p. Finally, let φ = χτ0
0 χ

τ1
1 ,

τ0, τ1 ∈ R. Then

Bi,r(σ; ξ) : (Lp(wχ
−(γ0+1/p)λ
0 )(0, 1), ACr−1

loc , φχ
(r−τ0)λ
0 Dr)


 (Lp(w)(0, 1), ACr−1
loc , φDr) : Bi′,r(σ

−1; η),

where λ = 1 − 1/σ.

Now we shall investigate the behaviour of operators of the type of B(σ) for
σ < 0. First, let us observe that Bi,j(σ; ξ), defined in (4.8), can also be considered

for a negative σ, x ∈ (0,∞) and f ∈ L1,loc(0,∞) such that χ
(1−i)/σ−1
0 f ∈ L1(1,∞)

if i > 1 and χ
−j/σ−1
0 f ∈ L1(0, 1) if j < r.
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Proposition 4.7. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, ξ > 0, i, j = 1, 2, . . . , r,
i ≤ j, w = χγ0

0 χ
γ∞−γ0

−1 and w̄ = χγ∞
0 χγ0−γ∞

−1 , where γ0 ∈ Γ∗
i (p) and γ∞ ∈ Γ∗

j (p),

and λ = 1 − 1/σ. Then for every f ∈ Lp(w̄χ
−(γ∞+1/p)λ
0 χ

−(γ0−γ∞)λ
−1 )(0,∞) we

have
‖wBi,j(σ; ξ)f‖p(0,∞) ≤ c‖w̄χ

−(γ∞+1/p)λ
0 χ

−(γ0−γ∞)λ
−1 f‖p(0,∞).

Also for every τ0, τ∞ ∈ R, φ = χτ0
0 χ

τ∞−τ0
−1 , φ̄=χτ∞

0 χτ0−τ∞
−1 and g ∈ACr−1

loc (0,∞)
we have

‖wφ(Bi,j(σ; ξ)g)(r)‖p(0,∞)

∼ ‖w̄χ
−(γ∞+1/p)λ
0 χ

−(γ0−γ∞)λ
−1 φ̄χ

(r−τ∞)λ
0 χ

−(τ0−τ∞)λ
−1 g(r)‖p(0,∞).

P r o o f. The proof is similar to that of Proposition 4.1 – it is based on
the same Hardy’s inequalities and change of the variable xσ = y, but now, since
σ < 0, we have y1/σ + 1 ∼ y1/σ(y + 1)−1/σ for 0 < y <∞. �

Proposition 4.8. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, ξ, η > 0, w =
χγ0

0 χ
γ∞−γ0

−1 and w̄ = χγ∞
0 χγ0−γ∞

−1 with γ0, γ∞, (γ0 + 1/p)/σ − 1/p, (γ∞ + 1/p)/σ −
1/p 6∈ Γ∗

exc(p). Assume that i ≤ j and i′ ≤ j′, where i, j, i′, j′ are determined by
Γ∗

i (p) 3 γ0, Γ∗
j(p) 3 γ∞, Γ∗

i′(p) 3 (γ∞ +1/p)/σ−1/p and Γ∗
j′(p) 3 (γ0 +1/p)/σ−

1/p. Finally, let φ = χτ0
0 χ

τ∞−τ0
−1 and φ̄ = χτ∞

0 χτ0−τ∞
−1 with τ0, τ∞ ∈ R. Then

Bi,j(σ; ξ) :

(Lp(w̄χ
−(γ∞+1/p)λ
0 χ

−(γ0−γ∞)λ
−1 )(0,∞), ACr−1

loc , φ̄χ
(r−τ∞)λ
0 χ

−(τ0−τ∞)λ
−1 Dr)


 (Lp(w)(0,∞), ACr−1
loc , φDr) : Bi′,j′(σ

−1; η),

where λ = 1 − 1/σ.

We notice that Bi,j(σ; ξ) with σ < 0 changes the weights like Bi,j(σ; ξ)
with σ > 0 as it interchanges the behaviour of the weights at 0 and at infinity,
i.e. it changes the places of the exponents γ0 and γ∞.

(B1,j(σ; ξ)f)(x) with σ < 0 and ξ > 1 is well defined for x ∈ (1,∞) and

f ∈ L1,loc(0, 1) such that χ
−j/σ−1
0 f ∈ L1(0, 1/2) if j < r. As above we establish

the assertion:

Proposition 4.9. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, ξ > 1, j = 1, 2, . . . , r,
w = χγ1

1 χ
γ∞−γ1

0 and w̄ = χγ∞
0 χγ1

1 , where γ1 ∈ Γ+(p) and γ∞ ∈ Γ∗
j(p), and

λ = 1 − 1/σ. Then for every f ∈ Lp(w̄χ
−(γ∞+1/p)λ
0 )(0, 1) we have

‖wB1,j(σ; ξ)f‖p(1,∞) ≤ c‖w̄χ
−(γ∞+1/p)λ
0 f‖p(0,1).
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Also for every τ1, τ∞ ∈ R, φ = χτ1
1 χ

τ∞−τ1
0 , φ̄ = χτ∞

0 χτ1
1 and g ∈ ACr−1

loc (0, 1) we
have

‖wφ(B1,j(σ; ξ)g)(r)‖p(1,∞) ∼ ‖w̄χ
−(γ∞+1/p)λ
0 φ̄χ

(r−τ∞)λ
0 g(r)‖p(0,1).

P r o o f. We proceed as in the proof of Proposition 4.3. Since σ < 0 the
change of the variable y = xσ maps the interval (1,∞) onto (0, 1) and we have
y1/σ − 1 ∼ y1/σ(1 − y) for 0 < y < 1. �

Next, we observe that (Bi,r(σ; η)f)(x) with σ < 0 and η ∈ (0, 1) is well

defined for x ∈ (0, 1) and f ∈ L1,loc(1,∞) such that χ
(1−i)/σ−1
0 f ∈ L1(2,∞) if

i > 1. Now, we have

Proposition 4.10. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, η ∈ (0, 1), i =
1, 2, . . . , r, w = χγ0

0 χ
γ1

1 and w̄ = χγ1

1 χ
γ0−γ1

0 , where γ0 ∈ Γ∗
i (p) and γ1 ∈ Γ+(p),

and λ = 1 − 1/σ. Then for every f ∈ Lp(w̄χ
−(γ0+1/p)λ
0 )(1,∞) we have

‖wBi,r(σ; η)f‖p(0,1) ≤ c‖w̄χ
−(γ0+1/p)λ
0 f‖p(1,∞).

Also for every τ0, τ1 ∈ R, φ = χτ0
0 χ

τ1
1 , φ̄ = χτ1

1 χ
τ0−τ1
0 and g ∈ ACr−1

loc (1,∞) we
have

‖wφ(Bi,r(σ; η)g)(r)‖p(0,1) ∼ ‖w̄χ
−(γ0+1/p)λ
0 φ̄χ

(r−τ0)λ
0 g(r)‖p(1,∞).

In the proof of the above proposition we take into account that 1−y1/σ ∼
(y − 1)y−1 for 1 < y <∞.

Unlike the previous operators, now the quasi-inverse operators ofB1,j(σ; ξ)
with σ < 0 are among Bi,r(σ

−1; η) and vice versa. Propositions 2.2, 4.9, 4.10 and
property (4.5) imply

Proposition 4.11. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, ξ ∈ (1,∞), η ∈ (0, 1),
w = χγ1

1 χ
γ∞−γ1

0 and w̄ = χγ∞
0 χγ1

1 with γ1 ∈ Γ+(p) and γ∞, (γ∞ + 1/p)/σ − 1/p 6∈
Γ∗

exc(p). Let j, i′ be determined by Γ∗
j (p) 3 γ∞ and Γ∗

i′(p) 3 (γ∞ + 1/p)/σ − 1/p.

Finally, let φ = χτ1
1 χ

τ∞−τ1
0 , φ̄ = χτ∞

0 χτ1
1 with τ1, τ∞ ∈ R. Then

(4.10) B1,j(σ; ξ) : (Lp(w̄χ
−(γ∞+1/p)λ
0 )(0, 1), ACr−1

loc , φ̄χ
(r−τ∞)λ
0 Dr)


 (Lp(w)(1,∞), ACr−1
loc , φDr) : Bi′,r(σ

−1; η),

where λ = 1 − 1/σ.
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P r o o f. Proposition 4.9 and Proposition 4.10 imply that the operators
A = B1,j(σ; ξ) and B = Bi′,r(σ

−1; η) satisfy conditions (a) – (d) of Definition 2.1

with (X1, Y1,D1) = (Lp(w̄χ
−(γ∞+1/p)λ
0 )(0, 1), ACr−1

loc , φ̄χ
(r−τ∞)λ
0 Dr) and

(X2, Y2,D2) = (Lp(w)(1,∞), ACr−1
loc , φDr). Next, we observe that if ξ > 1, then

ξσ ∈ (0, 1). Consequently, (4.3) and (4.9) imply the remaining assumptions of
Proposition 2.2 with X̄1 = L1,loc(0, 1), X̄2 = L1,loc(1,∞) and Ā = B(σ; ξ) (hence
Ā−1 = B(σ−1; ξσ), see (4.5)), which proves (4.10). �

For the sake of completeness we also give explicitly relation (4.10) in
reverse order.

Proposition 4.12. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, η ∈ (0, 1), ξ ∈ (1,∞),
w = χγ0

0 χ
γ1

1 and w̄ = χγ1

1 χ
γ0−γ1

0 with γ0, (γ0 + 1/p)/σ − 1/p 6∈ Γ∗
exc(p) and γ1 ∈

Γ+(p). Let i, j ′ be determined by Γ∗
i (p) 3 γ0 and Γ∗

j′(p) 3 (γ0 + 1/p)/σ − 1/p.

Finally, let φ = χτ0
0 χ

τ1
1 , φ̄ = χτ1

1 χ
τ0−τ1
0 with τ0, τ1 ∈ R. Then

Bi,r(σ; η) : (Lp(w̄χ
−(γ0+1/p)λ
0 )(1,∞), ACr−1

loc , φ̄χ
(r−τ0)λ
0 Dr)


 (Lp(w)(0, 1), ACr−1
loc , φDr) : B1,j′(σ

−1; ξ),

where λ = 1 − 1/σ.

Note that in Propositions 4.9 or 4.11 the exponent of the initial weight

w̄χ
−(γ0+1/p)λ
0 at 0 is (γ∞ +1/p)/σ− 1/p. It is changed by the operator B1,j(σ, ξ)

to exponent of the target weight w at ∞ equal to γ∞. This value is returned to
(γ∞ + 1/p)/σ − 1/p by the operator Bi,r(σ

−1, η) in Propositions 4.10 or 4.12. In
the four propositions the exponents of the weights of type w at 1 remain equal to
γ1, i.e. unchanged. These operators have similar action on the weights of type φ.

4.2. Transformed operators of type B. Now, using Propositions 2.5
and 2.6, we give the explicit form of the results from the previous subsection for
functions defined on (a,∞) and (a, b).

Definiton 4.2. Let r ∈ N, σ > 0, i, j ∈ N as i ≤ j ≤ r, and ξ ∈ (a,∞).
For x ∈ (a,∞) and f ∈ L1,loc(a,∞), satisfying the additional requirements

χ
(1−i)/σ−1
a f ∈ L1(a, a + 1) if i > 1 and χ

−j/σ−1
a f ∈ L1(a + 1,∞) if j < r,

we set

(4.11) (Bi,j(σ; a,∞; ξ)f)(x) = (T(−a)Bi,j(σ, ξ − a)T(a)f)(x),
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that is,

(Bi,j(σ; a,∞; ξ)f)(x) = f(a+ (x− a)σ)

+
i∑

k=2

βr,k(σ)(x − a)k−1

∫ x

a
(y − a)−kf(a+ (y − a)σ) dy

+

j∑

k=i+1

βr,k(σ)(x− a)k−1

∫ x

ξ
(y − a)−kf(a+ (y − a)σ) dy

−

r∑

k=j+1

βr,k(σ)(x− a)k−1

∫ ∞

x
(y − a)−kf(a+ (y − a)σ) dy,

where βr,k(σ) are defined in (4.2).

Proposition 4.2 generalizes to

Proposition 4.13. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ, η > a, and
w = χγa

a χ
γ∞−γa

a−1 with γa, γ∞, (γa + 1/p)/σ − 1/p, (γ∞ + 1/p)/σ − 1/p 6∈ Γ∗
exc(p).

Assume that i ≤ j and i′ ≤ j′, where i, j, i′, j′ are determined by Γ∗
i (p) 3 γa,

Γ∗
j(p) 3 γ∞, Γ∗

i′(p) 3 (γa + 1/p)/σ − 1/p and Γ∗
j′(p) 3 (γ∞ + 1/p)/σ − 1/p.

Finally, let φ = χτa
a χ

τ∞−τa

a−1 , τa, τ∞ ∈ R. Then

Bi,j(σ; a,∞; ξ) :

(Lp(wχ
−(γa+1/p)λ
a χ

−(γ∞−γa)λ
a−1 )(a,∞), ACr−1

loc , φχ(r−τa)λ
a χ

−(τ∞−τa)λ
a−1 Dr)


 (Lp(w)(a,∞), ACr−1
loc , φDr) : Bi′,j′(σ

−1; a,∞; η),

where λ = 1 − 1/σ.

Definition 4.3. Let r ∈ N, σ > 0, j ∈ N as j ≤ r, and ξ ∈ (a,∞). For

x ∈ (a,∞) and f ∈ L1,loc(a,∞), satisfying the additional requirement χ
−j/σ−1
a f ∈

L1(a+ 1,∞) if j < r, we set

(Bj(σ;∞, a; ξ)f)(x) = (T(1 − a)B1,j(σ; ξ − a+ 1)T(a − 1)f)(x),

that is,

(Bj(σ;∞, a; ξ)f)(x) = f(a− 1 + (x− a+ 1)σ)

+

j∑

k=2

βr,k(σ)(x− a+ 1)k−1

∫ x

ξ
(y − a+ 1)−kf(a− 1 + (y − a+ 1)σ) dy

−
r∑

k=j+1

βr,k(σ)(x − a+ 1)k−1

∫ ∞

x
(y − a+ 1)−kf(a− 1 + (y − a+ 1)σ) dy,
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where βr,k(σ) are defined in (4.2).

Proposition 4.4 generalizes to

Proposition 4.14. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ, η > a and
w = χγa

a χ
γ∞−γa

a−1 with γa ∈ Γ+(p) and γ∞, (γ∞ + 1/p)/σ − 1/p 6∈ Γ∗
exc(p). Let

j, j′ be determined by Γ∗
j(p) 3 γ∞ and Γ∗

j′(p) 3 (γ∞ + 1/p)/σ − 1/p. Finally, let

φ = χτa
a χ

τ∞−τa

a−1 , τa, τ∞ ∈ R. Then

Bj(σ;∞, a; ξ) : (Lp(wχ
−(γ∞+1/p)λ
a−1 )(a,∞), ACr−1

loc , φχ
(r−τ∞)λ
a−1 Dr)


 (Lp(w)(a,∞), ACr−1
loc , φDr) : Bj′(σ

−1;∞, a; η),

where λ = 1 − 1/σ.

Definition 4.4. Let r ∈ N, σ > 0, i ∈ N as i ≤ r, and ξ ∈ (a, b). Let s
be one of the ends of the interval (a, b) and e – the other. For x ∈ (a, b) and f ∈

L1,loc(a, b), satisfying the additional requirement χ
(1−i)/σ−1
s f ∈ L1(s, (s+ e)/2) if

i > 1, we set

(Bi(σ; s, e; ξ)f)(x)

= (T(−s) S((e − s)−1)Bi,r(σ; (ξ − s)/(e− s)) S(e − s)T(s)f)(x),

that is,

(Bi(σ; s, e; ξ)f)(x) = f

(
s+ (e− s)

(
x− s

e− s

)σ)

+
1

e− s

i∑

k=2

βr,k(σ)

(
x− s

e− s

)k−1 ∫ x

s

(
y − s

e− s

)−k

f

(
s+ (e− s)

(
y − s

e− s

)σ)
dy,

+
1

e− s

r∑

k=i+1

βr,k(σ)

(
x− s

e− s

)k−1 ∫ x

ξ

(
y − s

e− s

)−k

f

(
s+ (e− s)

(
y − s

e− s

)σ)
dy,

where βr,k(σ) are defined in (4.2).

Proposition 4.6 generalizes to

Proposition 4.15. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, ξ, η ∈ (a, b) and
w = χγs

s χ
γe
e with γs, (γs + 1/p)/σ − 1/p 6∈ Γ∗

exc(p) and γe ∈ Γ+(p). Let i, i′ be
determined by Γ∗

i (p) 3 γs and Γ∗
i′(p) 3 (γs+1/p)/σ−1/p. Finally, let φ = χτs

s χ
τe
e ,

τs, τe ∈ R. Then

Bi(σ; s, e; ξ) : (Lp(wχ
−(γs+1/p)λ
s )(a, b), ACr−1

loc , φχ(r−τs)λ
s Dr)


 (Lp(w)(a, b), ACr−1
loc , φDr) : Bi′(σ

−1; s, e; η),
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where λ = 1 − 1/σ.

Let us note that the last proposition generalizes [3, Proposition 5.5].

Definition 4.5. Let r ∈ N, σ < 0, i, j ∈ N as i ≤ j ≤ r, and ξ ∈ (a,∞).
For x ∈ (a,∞) and f ∈ L1,loc(a,∞), satisfying the additional requirements

χ
(1−i)/σ−1
a f ∈ L1(a + 1,∞) if i > 1 and χ

−j/σ−1
a f ∈ L1(a, a + 1) if j < r,

we define (Bi,j(σ; a,∞; ξ)f)(x) by (4.11).

From Proposition 4.8 we derive the analogue of Proposition 4.13 for a
negative σ.

Proposition 4.16. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, ξ, η > a, w =
χγa

a χ
γ∞−γa

a−1 and w̄ = χγ∞
a χγa−γ∞

a−1 with γa, γ∞, (γa + 1/p)/σ− 1/p, (γ∞ + 1/p)/σ−
1/p 6∈ Γ∗

exc(p). Assume that i ≤ j and i′ ≤ j′, where i, j, i′, j′ are determined by
Γ∗

i (p) 3 γa, Γ∗
j(p) 3 γ∞, Γ∗

i′(p) 3 (γ∞ +1/p)/σ−1/p and Γ∗
j′(p) 3 (γa +1/p)/σ−

1/p. Finally, let φ = χτa
a χ

τ∞−τa

a−1 and φ̄ = χτ∞
a χτa−τ∞

a−1 with τa, τ∞ ∈ R. Then

Bi,j(σ; a,∞; ξ) :

(Lp(w̄χ
−(γ∞+1/p)λ
a χ

−(γa−γ∞)λ
a−1 )(a,∞), ACr−1

loc , φ̄χ(r−τ∞)λ
a χ

−(τa−τ∞)λ
a−1 Dr)


 (Lp(w)(a,∞), ACr−1
loc , φDr) : Bi′,j′(σ

−1; a,∞; η),

where λ = 1 − 1/σ.

Definition 4.6. Let r ∈ N, σ < 0, j ∈ N as j ≤ r and (a, b) be an
interval. Let s be one of the ends of the interval (a, b), e – the other and ξ ∈
(e,∞). For x ∈ (e,∞) and f ∈ L1,loc(a, b), satisfying the additional requirement

χ
−j/σ−1
s f ∈ L1(s, (s+ e)/2) if j < r, we set

Bj(σ; s, e;∞, e; ξ)f)(x) = (T(1 − e)B1,j(σ; ξ − e+ 1)S(e − s)T(s)f)(x),

that is,

Bj(σ;s, e;∞, e; ξ)f)(x) = f(s+ (e− s)(x− e+ 1)σ)

+

j∑

k=2

βr,k(σ)(x− e+ 1)k−1

∫ x

ξ
y−kf(s+ (e− s)(y − e+ 1)σ) dy

−
r∑

k=j+1

βr,k(σ)(x − e+ 1)k−1

∫ ∞

x
y−kf(s+ (e− s)(y − e+ 1)σ) dy,
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where βr,k(σ) are defined in (4.2).

Definition 4.7. Let r ∈ N, σ < 0, i ∈ N as i ≤ r and (a, b) be an
interval. Let s be one of the ends of the interval (a, b), e – the other and η ∈
(a, b). For x ∈ (a, b) and f ∈ L1,loc(e,∞), satisfying the additional requirement

χ
(1−i)/σ−1
e f ∈ L1(e+ 1,∞) if i > 1, we set

(Bi(σ;∞, e; s, e; η)f)(x)

= (T(−s) S((e − s)−1)Bi,r(σ; (η − s)/(e− s))T(e − 1)f)(x),

that is,

(Bi(σ;∞, e; s, e; η)f)(x) = f

((
x− s

e− s

)σ

+ e− 1

)

+
1

e− s

i∑

k=2

βr,k(σ)

(
x− s

e− s

)k−1 ∫ x

s

(
y − s

e− s

)−k

f

((
y − s

e− s

)σ

+ e− 1

)
dy

+
1

e− s

r∑

k=i+1

βr,k(σ)

(
x− s

e− s

)k−1 ∫ x

η

(
y − s

e− s

)−k

f

((
y − s

e− s

)σ

+ e− 1

)
dy,

where βr,k(σ) are defined in (4.2).

Proposition 4.11 and Proposition 4.12 generalize to

Proposition 4.17. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, ξ ∈ (e,∞), η ∈ (a, b),
w = χγe

e χ
γ∞−γe

e−1 and w̄ = χγ∞
s χγe

e with γe ∈ Γ+(p) and γ∞, (γ∞ + 1/p)/σ − 1/p 6∈
Γ∗

exc(p). Let j, i′ be determined by Γ∗
j (p) 3 γ∞ and Γ∗

i′(p) 3 (γ∞ + 1/p)/σ − 1/p.

Finally, let φ = χτe
e χ

τ∞−τe

e−1 , φ̄ = χτ∞
s χτe

e with τe, τ∞ ∈ R. Then

Bj(σ; s, e;∞, e; ξ) : (Lp(w̄χ
−(γ∞+1/p)λ
s )(a, b), ACr−1

loc , φ̄χ(r−τ∞)λ
s Dr)


 (Lp(w)(e,∞), ACr−1
loc , φDr) : Bi′(σ

−1;∞, e; s, e; η),

where λ = 1 − 1/σ.

Proposition 4.18. Let r ∈ N, 1 ≤ p ≤ ∞, σ < 0, η ∈ (a, b), ξ ∈ (e,∞),
w = χγs

s χ
γe
e and w̄ = χγe

e χ
γs−γe

e−1 with γs, (γs + 1/p)/σ − 1/p 6∈ Γ∗
exc(p) and γe ∈

Γ+(p). Let i, j ′ be determined by Γ∗
i (p) 3 γs and Γ∗

j′(p) 3 (γs + 1/p)/σ − 1/p.

Finally, let φ = χτs
s χ

τe
e , φ̄ = χτe

e χ
τs−τe

e−1 with τs, τe ∈ R. Then

Bi(σ;∞, e; s, e; η) : (Lp(w̄χ
−(γs+1/p)λ
e−1 )(e,∞), ACr−1

loc , φ̄χ
(r−τs)λ
e−1 Dr)


 (Lp(w)(a, b), ACr−1
loc , φDr) : Bj′(σ

−1; s, e;∞, e; ξ),
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where λ = 1 − 1/σ.

Remark 4.2. In the case r = 1 all results in Section 4 are valid without
any restrictions on the weights w = χγa

a χ
γ∞−γa

a−1 and w̄ = χγa
a χ

γb

b .

4.3. Overview of the transformed operators. We summarize the
notations for the operators of type A and B in Table 2. All of them act from a
subspace of L1,loc(ζ, η) to a subspace of L1,loc(ζ

′, η′). We denote by s one of the
ends of the interval (ζ, η) at which the operator modify a weight singularity and
by e the other end. Both s < e and s > e are possible. When e = ∞ the operator
modifies singularities at both ends s and e and has two indexes. When e < ∞
the operator modifies a singularity only at s and has one index.

In order to simplify a little bit the notations we try to consider when
possible only the case (ζ, η) = (ζ ′, η′) and to omit ζ ′, η′ from the notation. This
is so in all types of operators but for B`(σ) with σ < 0.

Table 2. Overview of the operators

Operators s, e Description

Ai,j(ρ; s, e; ξ), e = ∞ modify the singularities of w at both
ρ ∈ R ends s and e, 0 ≤ i ≤ j ≤ r.

A`(ρ; s, e; ξ), e <∞ modify a singularity of w only at s,
ρ ∈ R s = ∞ 0 ≤ ` ≤ r, ` stays for j while i = 0.

A`(ρ; s, e; ξ), e <∞ modify a singularity of w only at s,
ρ ∈ R s <∞ 0 ≤ ` ≤ r, ` stays for i while j = r.

Bi,j(σ; s, e; ξ), e = ∞ modify singularities of w and ϕ at both
σ > 0 ends s and e, 1 ≤ i ≤ j ≤ r.

B`(σ; s, e; ξ), e <∞ modify singularities of w and ϕ only at s,
σ > 0 s = ∞ 1 ≤ ` ≤ r, ` stays for j while i = 1.

B`(σ; s, e; ξ), e <∞ modify singularities of w and ϕ only at s,
σ > 0 s <∞ 1 ≤ ` ≤ r, ` stays for i while j = r.

Bi,j(σ; s, e; ξ), e = ∞ modify singularities of w and ϕ at both
σ < 0 ends s and e while interchanging them,

1 ≤ i ≤ j ≤ r.

B`(σ; s, e; s′, e′; ξ), e <∞ modify singularities of w and ϕ at s and s′,
σ < 0, e = e′ s <∞ preserve singularities at e and e′,

s′ = ∞ 1 ≤ ` ≤ r, ` stays for j while i = 1.

B`(σ; s, e; s′, e′; ξ), e <∞ modify singularities of w and ϕ at s and s′,
σ < 0, e = e′ s = ∞ preserve singularities at e and e′,

s′ <∞ 1 ≤ ` ≤ r, ` stays for i while j = r.
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The indexes i and j are connected with the behaviour of the image
function at a finite end of (ζ ′, η′) and at ∞ respectively. We always require
f ∈ L1,loc(ζ, η). When i > 0 in A(ρ) or i > 1 in B(σ), or when j < r we impose
on f additional requirements, which are given in the definitions in Sections 3
and 4.

In all cases ξ belongs to the domain where the images are defined, i.e.
ξ ∈ (ζ ′, η′). The operators do not depend on the value of ξ provided i = j in the
description part of the table. In this case we may replace ξ by ∗.

5. Algebraic properties of the operators. Relations (3.3), (4.4)
and (4.7) can be extended to the operators we considered in the previous two
sections if the fixed integral limit is one and the same in all integral summands
in the definition of the operator. Under these assumptions with the notations

ηξ,σ = s+ (e− s)

(
ξ − s

e− s

)σ

, η̃ξ,σ = e− 1 +

(
ξ − s

e− s

)σ

the following relations hold provided that all operators involved are defined:

i) Ai,j(ρ; a,∞; ξ)Ai,j(σ; a,∞; ξ) = Ai,j(ρ + σ; a,∞; ξ) for either i = j = 0, or
i = 0, j = r, or i = j = r;

ii) Aj(ρ;∞, a; ξ)Aj(σ;∞, a; ξ) = Aj(ρ+ σ;∞, a; ξ) for either j = 0, or j = r;

iii) Ai(ρ; s, e; ξ)Ai(σ; s, e; ξ) = Ai(ρ+ σ; s, e; ξ) for either i = 0, or i = r;

iv) Bi,j(σ; a,∞; ξ)Bi,j(ρ; a,∞; a + (ξ − a)σ) = Bi,j(σρ; a,∞; ξ) for either i =
j = 1, or i = 1, j = r, or i = j = r;

v) Bj(σ;∞, a; ξ)Bj(ρ;∞, a; a − 1 + (ξ − a + 1)σ) = Bj(σρ;∞, a; ξ) for either
j = 0, or j = r;

vi) Bi(σ; s, e; ξ)Bi(ρ; s, e; ηξ,σ) = Bi(σρ; s, e; ξ) for either i = 0, or i = r;

vii) Bj(σ; s, e;∞, e; ξ)Bi(ρ; s, e; s+(e− s)(ξ− e+1)σ) = Bj(σρ; s, e;∞, e; ξ) for
either i = 1, j = r, or i = r, j = 1;

viii) Bj(σ;∞, e; ξ)Bj(ρ; s, e;∞, e, e − 1 + (ξ − e+ 1)σ) = Bj(σρ; s, e;∞, e; ξ) for
either j = 0, or j = r;

ix) Bi(σ;∞, e; s, e; ξ)Bj (ρ; s, e;∞, e; η̃ξ,σ) = Bi(σρ; s, e; ξ) for either i = 1, j =
r, or i = r, j = 1;
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x) Bi(σ;∞, e; s, e; ξ)Bj (ρ;∞, e; η̃ξ,σ) = Bi(σρ;∞, e; s, e; ξ) for either i = 1,
j = r, or i = r, j = 1;

xi) Bi(σ; s, e; ξ)Bi(ρ;∞, e; s, e; ηξ,σ) = Bi(σρ;∞, e; s, e; ξ) for either i = 0, or
i = r;

xii) Bj(σ; s, e;∞, e; ξ)Bi(ρ;∞, e; s, e; s + (e − s)(ξ − e + 1)σ) = Bj(σρ;∞, e; ξ)
for either i = 1, j = r, or i = r, j = 1;

xiii) Bi,j(σ; a,∞; ξ)Ai′ ,j′(ρ; a,∞; a + (ξ − a)σ) =Ai′,j′(ρσ; a,∞; ξ)Bi,j(σ; a,∞; ξ)
for either i = j = 1, i′ = j′ = 0, or i = 1, i′ = 0, j = j′ = r, or i = i′ = j =
j′ = r;

xiv) Bj(σ;∞, a; ξ)Aj′(ρ;∞, a; a−1+(ξ−a+1)σ)=Aj′(ρσ;∞, a; ξ)Bj(σ;∞, a; ξ)
for either j = 1, j ′ = 0, or j = j ′ = r;

xv) Bi(σ; s, e; ξ)Ai′ (ρ; s, e; ηξ,σ) = Ai′(ρσ; s, e; ξ)Bi(σ; s, e; ξ) for either i = 1,
i′ = 0, or i = i′ = r;

xvi) Bj(σ; s, e;∞, e; ξ)Ai(ρ; s, e; s + (e− s)(ξ − e+ 1)σ)
= Aj′(ρσ;∞, e; ξ)Bj(σ; s, e;∞, e; ξ) for either i = 0, j = j ′ = r, or

i = r, j = 1, j ′ = 0;

xvii) Bi(σ;∞, e; s, e; ξ)Aj (ρ;∞, e; η̃ξ,σ) = Ai′(ρσ; s, e; ξ)Bi(σ;∞, e; s, e; ξ) for either
i = 1, i′ = 0, j = r, or i = i′ = r, j = 0.

All above properties concern operators which treat one and the same
singular point (or its image if B(σ) with σ < 0 is involved). For the treatment of
different singular points we established in [3, Proposition 5.1] that the operators
A0(ρ; a, b; ξ) and A0(σ; b, a; ξ) commute. We can extend this property (provided
that all operators involved are defined) to

xviii) Ai(ρ; a, b; ξ)Ai(σ; b, a; ξ) = Ai(σ; b, a; ξ)Ai(ρ; a, b; ξ) for either i = 0, or
i = r;

xix) A0,j(ρ; a,∞; ξ)Aj(σ;∞, a; ξ) = Aj(σ;∞, a; ξ)A0,j(ρ; a,∞; ξ) for either
j= 0, or j = r.

As it was demonstrated in [3, Remark 5.1] the commutativity is not
intrinsic when two consecutive operators, one of which is of type B, are used
for treating singularities at opposite ends of the domain.
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6. Equivalence between K-functionals. Characterization of
K-functionals by one modulus. The results in Sections 3 and 4 enable us
to deduce a number of equivalences between different K-functionals and hence
their characterization by appropriately defined moduli of smoothness.

Throughout the section we shall use the notations given in Table 3, where
the κ’s, λ’s, µ’s and ν’s are real numbers.

Table 3. Initial and target weights

I, Ĩ w ϕ w̃ ϕ̃

(a, b) χκa

a χκb

b χλa

a χλb

b χµa

a χµb

b χνa

a χνb

b

(a,∞) χκa

a χκ∞−κa

a−1
χλa

a χλ∞−λa

a−1
χµa

a χµ∞−µa

a−1
χνa

a χν∞−νa

a−1

We recall that Proposition 2.1 implies that if the linear operators A and
B satisfy the relation

(6.1) A : (Lp(w)(I), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(Ĩ), ACr−1

loc , ϕ̃
rDr) : B,

then we have the equivalences:

K(f, tr;Lp(w)(I), ACr−1
loc , ϕrDr) ∼ K(Af, tr;Lp(w̃)(Ĩ), ACr−1

loc , ϕ̃rDr)

and

K(F, tr;Lp(w̃)(Ĩ), ACr−1
loc , ϕ̃rDr) ∼ K(BF, tr;Lp(w)(I), ACr−1

loc , ϕrDr).

We shall construct operators A and B satisfying (6.1) as combinations of
operators of type A and B, studied in Sections 3 and 4. In some cases we shall
need to index the A and B operators by subscripts of the type ik, jk, i

′
k and j′k

in order to emphasize their place and role. In forming the subscripts, we follow
the rules:

• Subscripts ik, jk are used in the definition of A and primed subscripts i′k,
j′k – in the definition of B;

• The use of i or j is in conformity with the definitions of the A and B
operators (see Subsection 4.3);



94 Borislav R. Draganov, Kamen G. Ivanov

• k corresponds to the position of the operator from left to right in the
definition of A and from right to left in the definition of B. Thus the
operators with equal values of k in the definition of A and B are quasi-
inverse to one another.

We arrange the results into several subsections according to the relations
between the exponents of the weights ϕ and ϕ̃ in (1.2). Examining all operators
in Section 4 we see that only the two operators B`(σ; s, e; s′, e′; ξ) (with σ < 0
and one of s and s′ being a finite number and the other – infinity) change the
sign of (1 − λs)(1 − λe), but simultaneously they change the type of the interval
from finite to semi-infinite or vice versa. All other operators preserve both the
sign of (1−λs)(1−λe) and the type of the interval (either finite or semi-infinite).
So, the cases when (1 − λs)(1 − λe)(1 − νs′)(1 − νe′) > 0 are considered in the
first three subsections – the finite interval is treated in Subsection 6.1, while
the semi-infinite interval is treated in Subsections 6.2 and 6.3. The cases when
(1 − λs)(1 − λe)(1 − νs′)(1 − νe′) < 0 together with a change of the type of the
interval (three of the points s, e, s′, e′ are finite and one is infinite) are considered
in Subsection 6.4.

6.1. The case (1 − λa)(1 − λb)(1 − νa)(1 − νb) > 0. We start with
the case (1− λa)(1− νa) > 0, (1 − λb)(1− νb) > 0 on the finite interval (a, b). By
means of Propositions 3.9 and 4.15 we first extend the result in [3, Theorem 5.3]
by weakening the condition κa > −1/p to κa 6∈ Γexc(p).

Proposition 6.1. Let r ∈ N and 1 ≤ p ≤ ∞. Let the real numbers
κa, κb, µa, µb, λa, λb, νa, νb and the integer i′ satisfy the conditions:

(1 − λa)(1 − νa) > 0, (1 − λb)(1 − νb) > 0,

κa ∈ Γi′(p), κb, µa, µb > −1/p.

Set

A = B1(σb; b, a; ξ)B1(σa; a, b; ξ)A0(ρb; b, a; ξ)A0(ρa; a, b; ξ),

B = Ai′(−ρa; a, b; η)A0(−ρb; b, a; η)B1(σ
−1
a ; a, b; η)B1(σ

−1
b ; b, a; η),

where ξ, η ∈ (a, b) and

σa =
1 − νa

1 − λa
, σb =

1 − νb

1 − λb
, ρa = κa +

1

p
−
µa + 1/p

σa
, ρb = κb +

1

p
−
µb + 1/p

σb
.
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Then

A : (Lp(w)(a, b), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a, b), ACr−1

loc , ϕ̃rDr) : B.

P r o o f. The assertion of the theorem follows from the relations:

(Lp(χ
µa
a χµb

b )(a, b), ACr−1
loc , χrνa

a χrνb

b Dr)

B1(σb; b, a; ξ) �� B1(σ
−1
b ; b, a; η)Step 1

(Lp(χ
µa
a χ

(µb+1/p)/σb−1/p
b )(a, b), ACr−1

loc , χrνa
a χrλb

b Dr)

B1(σa; a, b; ξ) �� B1(σ
−1
a ; a, b; η)Step 2

(Lp(χ
(µa+1/p)/σa−1/p
a χ

(µb+1/p)/σb−1/p
b )(a, b), ACr−1

loc , χrλa
a χrλb

b Dr)

A0(ρb; b, a; ξ) �� A0(−ρb; b, a; η)Step 3

(Lp(χ
(µa+1/p)/σa−1/p
a χκb

b )(a, b), ACr−1
loc , χrλa

a χrλb

b Dr)

A0(ρa; a, b; ξ) �� Ai′(−ρa; a, b; η)Step 4

(Lp(χ
κa
a χκb

b )(a, b), ACr−1
loc , χrλa

a χrλb

b Dr) .

In this scheme we consider the operators in the definition of A from left to
right because that simplifies the application of Proposition 3.9 and Proposition
4.15.

Step 1. We use Proposition 4.15 with s = b, e = a, i = i′ = 1, σ = σb > 0,
γe = µa ∈ Γ+(p), γs = µb ∈ Γ∗

1(p), τs = rνs and τe = rνe as we take into
consideration that (µb + 1/p)/σb − 1/p ∈ Γ∗

1(p) for µb > −1/p and σb > 0, and
also τb + (r − τb)(1 − 1/σb) = rνb + r − rνb − r(1 − νb)/σb = rλb.

Step 2. We apply again Proposition 4.15 but now in respect to the weight
singularity at the other end of the interval, i.e. for s = a, e = b. So we put in
Proposition 4.15 i = i′ = 1, σ = σa > 0, γs = µa ∈ Γ∗

1(p), γe = (µb + 1/p)/σb −
1/p ∈ Γ+(p), τs = rνs and τe = rλe. As above we also have (µa +1/p)/σa−1/p ∈
Γ∗

1(p) and τa + (r − τa)(1 − 1/σa) = rλa.
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Step 3. We apply Proposition 3.9 with s = b, e = a, i = i′ = 0, ρ = ρb,
γe = (µa+1/p)/σa−1/p ∈ Γ+(p) (since µa > −1/p, σa > 0), γs = (µb+1/p)/σb−
1/p ∈ Γ0(p) (since µb > −1/p, σb > 0) and φ = χrλa

a χrλb

b . Let us observe that
γs + ρ = κb ∈ Γ0(p).

Step 4. We use Proposition 3.9 with s = a, e = b, i = 0, ρ = ρa,
γs = (µa + 1/p)/σa − 1/p ∈ Γ0(p), γe = κb ∈ Γ+(p) and φ = χrλa

a χrλb

b as
γs + ρ = κa ∈ Γi′(p). �

Remark 6.1. It is not necessary for the point ξ ∈ (a, b) to be one and
the same in all the components of the definition of the operator A. We use one
and the same point ξ in order to simplify the notations. The same is true for the
point η and the operator B.

If we combine operators of type A and B in another way, then we get
equivalence between the K-functionals under weaker assumptions than in Propo-
sition 6.1 – the restriction µb > −1/p is replaced by µb 6∈ Γexc(p). Note that
the A and B operators in the two propositions are different as in Proposition 6.2
below λb and νb are interchanged in σb as well as κb and µb in ρb, comparing to
σa and ρa respectively (cf. Sec. 5, xv).

Proposition 6.2. Let r ∈ N and 1 ≤ p ≤ ∞. Let the real numbers
κa, κb, µa, µb, λa, λb, νa, νb and the integers i1, i

′
4 satisfy the conditions:

(1 − λa)(1 − νa) > 0, (1 − λb)(1 − νb) > 0,

κa ∈ Γi′4
(p), κb, µa > −1/p, µb ∈ Γi1(p).

Set

A = Ai1(−ρb; b, a; ξ)B1(σ
−1
b ; b, a; ξ)B1(σa; a, b; ξ)A0(ρa; a, b; ξ),

B = Ai′4
(−ρa; a, b; η)B1(σ

−1
a ; a, b; η)B1(σb; b, a; η)A0(ρb; b, a; η),

where ξ, η ∈ (a, b) and

σa =
1 − νa

1 − λa
, σb =

1 − λb

1 − νb
,

ρa = κa +
1

p
−
µa + 1/p

σa
, ρb = µb +

1

p
−
κb + 1/p

σb
.

Then

A : (Lp(w)(a, b), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a, b), ACr−1

loc , ϕ̃rDr) : B.
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P r o o f. As above the assertion of the theorem follows from the relations:

(Lp(χ
µa
a χµb

b )(a, b), ACr−1
loc , χrνa

a χrνb

b Dr)

Ai1(−ρb; b, a; ξ) �� A0(ρb; b, a; η)Step 1

(Lp(χ
µa
a χ

(κb+1/p)/σb−1/p
b )(a, b), ACr−1

loc , χrνa
a χrνb

b Dr)

B1(σ
−1
b ; b, a; ξ) �� B1(σb; b, a; η)Step 2

(Lp(χ
µa
a χκb

b )(a, b), ACr−1
loc , χrνa

a χrλb

b Dr)

B1(σa; a, b; ξ) �� B1(σ
−1
a ; a, b; η)Step 3

(Lp(χ
(µa+1/p)/σa−1/p
a χκb

b )(a, b), ACr−1
loc , χrλa

a χrλb

b Dr)

A0(ρa; a, b; ξ) �� Ai′4
(−ρa; a, b; η)Step 4

Lp(χ
κa
a χκb

b )(a, b), ACr−1
loc , χrλa

a χrλb

b Dr) .

At steps 1 and 4 we use Proposition 3.9 and at steps 2 and 3 – Proposition
4.15. �

Finally, we generalize Proposition 6.1 and Proposition 6.2 by imposing
two independent couples of restrictions – one on the κ’s and another on the µ’s.

Theorem 6.1. Let r ∈ N, 1 ≤ p ≤ ∞, (1 − λa)(1 − νa) > 0 and
(1−λb)(1− νb) > 0. Let also κa, κb, µa, µb 6∈ Γexc(p) as one of the κ’s and one of
the µ’s are in Γ0(p). Then there exist linear operators A and B, constructed as
compositions of the operators in Sections 3 and 4, such that

A : (Lp(w)(a, b), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a, b), ACr−1

loc , ϕ̃rDr) : B.

Remark 6.2. Explicit constructions of the operators A and B, whose
existence is stated in the theorem, are given in its proof.

P r o o f o f Th e o r e m 6.1. The restrictions on the exponents of the
weights w and w̃ fall into at least one of the four combinations:

1) κa, µa 6∈ Γexc(p) and κb, µb > −1/p;

2) κa, µb 6∈ Γexc(p) and κb, µa > −1/p;

3) κa, µa > −1/p and κb, µb 6∈ Γexc(p); and

4) κa, µb > −1/p and κb, µa 6∈ Γexc(p).
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Let us note that by interchanging a and b in 1) and 2), we get respectively
3) and 4). Consequently, if the operators A and B give a solution in case 1) (or
2)), then by interchanging a and b in their definition, we get operators, which
solve case 3) (or 4)). Thus it is sufficient to consider only the cases 1) and 2).
Case 2) is solved by Proposition 6.2.

It only remains to consider case 1). Let i0 be such that Γi0(p) 3 µa. If
i0 = 0, then Proposition 6.1 (or Proposition 6.2) gives an appropriate definition

of A and B. If i0 ≥ 1, we fix µ#
a > −1/p and set w̃# = χµ#

a
a χµb

b . Let the

parameters ξ, η, σa, σb, ρb and i′ be defined in Proposition 6.1 and let ρ#
a =

κa + 1/p− (µ#
a + 1/p)/σa. Then Proposition 6.1 implies that the operators

A
# = B1(σb; b, a; ξ)B1(σa; a, b; ξ)A0(ρb; b, a; ξ)A0(ρ

#
a ; a, b; ξ),

B
# = Ai′(−ρ

#
a ; a, b; η)A0(−ρb; b, a; η)B1(σ

−1
a ; a, b; η)B1(σ

−1
b ; b, a; η)

satisfy

A
# : (Lp(w)(a, b), ACr−1

loc , ϕrDr) 
 (Lp(w̃
#)(a, b), ACr−1

loc , ϕ̃rDr) : B
#.

Next, by Proposition 3.9 we have

Ai0(µ
#
a − µa; a, b; ξ) : (Lp(w̃

#)(a, b), ACr−1
loc , ϕ̃rDr)


 (Lp(w̃)(a, b), ACr−1
loc , ϕ̃rDr) : A0(µa − µ#

a ; a, b; η).

Then A = Ai0(µ
#
a − µa; a, b; ξ)A

# and B = B#A0(µa − µ#
a ; a, b; η) satisfy the

assertion of the theorem in case 1) and complete the proof. �

As a corollary of Proposition 6.1 and [3, Theorems 5.4] in the partial case
µa = µb = 0, νa = νb = 0, we get the following characterization of the weighted
K-functional K(f, tr;Lp(w)(a, b), ACr−1

loc , ϕrDr), which generalizes the result in
[3, Corollary 5.2].

Theorem 6.2. Let r ∈ N, 1 ≤ p ≤ ∞ and λa, λb ∈ (−∞, 1). For p <∞
we assume that κa, κb 6∈ Γexc(p) as one of them is in Γ0(p), and for p = ∞ we
assume that κa = κb = 0. Set

A = B1(σb; b, a; ξ)B1(σa; a, b; ξ)A0(ρb; b, a; ξ)A0(ρa; a, b; ξ),

where ξ ∈ (a, b) and

σa =
1

1 − λa
, σb =

1

1 − λb
, ρa = κa +

λa

p
, ρb = κb +

λb

p
.
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Then for t > 0 and f ∈ Lp(w)(a, b) we have

K(f, tr;Lp(w)(a, b), ACr−1
loc , ϕrDr) ∼ ωr(Af, t)p(a,b).

P r o o f. The assertion for p = ∞ is contained in [3, Theorems 5.4] (or,
equivalently, in the first two steps of the proof of Proposition 6.1). Note that
ρa = ρb = 0 and A is defined by only two operators of type B.

In the case 1 ≤ p <∞, if κa 6∈ Γexc(p) and κb > −1/p, we set µa = µb = 0
and νa = νb = 0 in Proposition 6.1 and get

(6.2) K(f, tr;Lp(w)(a, b), ACr−1
loc , ϕrDr) ∼ K(Af, tr;Lp(a, b), AC

r−1
loc , Dr).

In the opposite case when κa > −1/p and κb 6∈ Γexc(p) we follow the
proof of Proposition 6.1 for µa = µb = 0 and νa = νb = 0. Steps 1 and 2 are
the same whereas steps 3 and 4 are interchanged as the intermediate triplet is

(Lp(χ
κa
a χ

(µb+1/p)/σb−1/p
b )(a, b), ACr−1

loc , χrλa
a χrλb

b Dr). Thus we get

A
# : (Lp(w)(a, b), ACr−1

loc , ϕrDr) 
 (Lp(a, b), AC
r−1
loc , Dr) : B

#,

where

A
# = B1(σb; b, a; ξ)B1(σa; a, b; ξ)A0(ρa; a, b; ξ)A0(ρb; b, a; ξ),

B
# = Ai′4

(−ρb; b, a; η)A0(−ρa; a, b; η)B1(σ
−1
a ; a, b; η)B1(σ

−1
b ; b, a; η)

as i′4 is such that Γi′4
(p) 3 κb. Hence (6.2) is true with A# instead of A. But it

is established in property xviii) in Section 5 (or [3, Proposition 5.1]) that

A0(ρa; a, b; ξ)A0(ρb; b, a; ξ) = A0(ρb; b, a; ξ)A0(ρa; a, b; ξ),

hence A# = A and (6.2) holds under the assumptions of the theorem. Since the
unweighted K-functional on the right of (6.2) is equivalent to the unweighted
fixed-step modulus of smoothness ωr, we get the assertion of the theorem. �

Note that the operator A in Theorem 6.2 is one and the same for the
restrictions κa 6∈ Γexc(p), κb > −1/p and κa > −1/p, κb 6∈ Γexc(p). The same
is true for the operator A in Proposition 6.1, but is not true in general for the
operators in Proposition 6.2 and the operator B in Proposition 6.1.

Let us now consider the case (1 − λa)(1 − νa) < 0, (1 − λb)(1 − νb) < 0.
The sub-case (1 − λa)(1 − νb) < 0 has no solution (cf. classes C1 and C7 in
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Subsection 6.5), while the other sub-case (1 − λa)(1 − νb) > 0 is covered by the
next theorem, which easily follows from the results in this subsection.

Theorem 6.3. Let r ∈ N, 1 ≤ p ≤ ∞, (1 − λa)(1 − νb) > 0 and
(1 − λb)(1 − νa) > 0. Let also κa, κb, µa, µb 6∈ Γexc(p) as one of the κ’s and one
of the µ’s are in Γ0(p). Set w̄ = χκb

a χ
κa

b and ϕ̄ = χλb
a χ

λa

b . Let A and B be the
operators in Theorem 6.1, satisfying

A : (Lp(w̄)(a, b), ACr−1
loc , ϕ̄rDr) 
 (Lp(w̃)(a, b), ACr−1

loc , ϕ̃rDr) : B.

Then

AS(−1)T(a + b) : (Lp(w)(a, b), ACr−1
loc , ϕrDr) 


(Lp(w̃)(a, b), ACr−1
loc , ϕ̃rDr) : T(−a− b) S(−1)B.

P r o o f. According to the assumptions of the theorem we can apply
Theorem 6.1 to the triplets (Lp(w̄)(a, b), ACr−1

loc , ϕ̄rDr) and (Lp(w̃)(a, b), ACr−1
loc ,

ϕ̃rDr) and the result is modified by Proposition 2.8. �

Remark 6.3. The conditions on ϕ and ϕ̃ in Theorems 6.1 and 6.3 are
different but not disjoint. Both theorems are applicable in the cases when the
signs of (1 − λa), (1 − λb), (1 − νa), (1 − νb) are one and the same.

6.2. The case (1 − λa)(1 − νa) > 0, (1 − λ∞)(1 − ν∞) > 0.
In the semi-finite interval (a,∞) we begin with the case (1 − λa)(1 − νa) >
0, (1 − λ∞)(1 − ν∞) > 0.

Proposition 6.3. Let r ∈ N and 1 ≤ p ≤ ∞. Let the real numbers
κa, κ∞, µa, µ∞, λa, λ∞, νa, ν∞ and the integers j1, j2, j3, j4, i

′
4, j

′
4 satisfy the condi-

tions:

(1 − λa)(1 − νa) > 0, (1 − λ∞)(1 − ν∞) > 0,

κa ∈ Γi′4
(p), κ∞ ∈ Γj′4

(p), i′4 ≤ j′4, µa > −1/p, µ∞ ∈ Γ∗
j1(p),(

µ∞ +
1

p

)
1 − λa

1 − νa
−

1

p
∈ Γ∗

j2(p),

(
µ∞ +

1

p

)
1 − λ∞
1 − ν∞

−
1

p
∈ Γj3(p),

κ∞ − κa +

(
µa +

1

p

)
1 − λa

1 − νa
−

1

p
∈ Γj4(p).

Set

A = B1,j1(σa; a,∞; ξ)Bj2(σ∞;∞, a; ξ)Aj3(ρ∞;∞, a; ξ)A0,j4(ρa; a,∞; ξ),

B = Ai′4,j′4
(−ρa; a,∞; η)Aj′3

(−ρ∞;∞, a; η)Bj′2
(σ−1

∞ ;∞, a; η)B1,j′1
(σ−1

a ; a,∞; η),
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where ξ, η > a, j ′1 = j2, j
′
2 = max{1, j3}, j

′
3 = j4 and

σa =
1 − νa

1 − λa
, σ∞ =

1 − ν∞
1 − λ∞

1 − λa

1 − νa
,

ρa = κa +
1

p
−
µa + 1/p

σa
, ρ∞ = κ∞ − κa −

µ∞ + 1/p

σaσ∞
+
µa + 1/p

σa
.

Then

A : (Lp(w)(a,∞), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

P r o o f. The proof follows the scheme:

(Lp(χ
µa
a χµ∞−µa

a−1 )(a,∞), ACr−1
loc , χrνa

a χ
r(ν∞−νa)
a−1 Dr)

B1,j1(σa; a,∞; ξ) �� B1,j′1
(σ−1

a ; a,∞; η)Step 1

(Lp(χ
(µa+1/p)/σa−1/p
a χ

(µ∞−µa)/σa

a−1 )(a,∞), ACr−1
loc , χrλa

a χ
r(ν∞−νa)/σa

a−1 Dr)

Bj2(σ∞;∞, a; ξ) �� Bj′2
(σ−1

∞ ;∞, a; η)Step 2

(Lp(χ
(µa+1/p)/σa−1/p
a χϑ

a−1)(a,∞), ACr−1
loc , χrλa

a χ
r(λ∞−λa)
a−1 Dr)

Aj3(ρ∞;∞, a; ξ) �� Aj′3
(−ρ∞;∞, a; η)Step 3

(Lp(χ
(µa+1/p)/σa−1/p
a χκ∞−κa

a−1 )(a,∞), ACr−1
loc , χrλa

a χ
r(λ∞−λa)
a−1 Dr)

A0,j4(ρa; a,∞; ξ) �� Ai′4,j′4
(−ρa; a,∞; η)Step 4

Lp(χ
κa
a χκ∞−κa

a−1 )(a,∞), ACr−1
loc , χrλa

a χ
r(λ∞−λa)
a−1 Dr) ,

where ϑ = (µ∞ + 1/p)/(σaσ∞) − (µa + 1/p)/σa = κ∞ − κa − ρ∞. Step 1 is
accomplished by Proposition 4.13, Step 2 – by Proposition 4.14, Step 3 – by
Proposition 3.8, and Step 4 – by Proposition 3.7. �

Restrictions like (µ∞ + 1/p)/σa − 1/p /∈ Γexc(p) in Proposition 6.3 can
be easily avoided by the use of additional operators of type A. By means of
Proposition 6.3 and Proposition 3.7 we can construct operators A and B which
satisfy the following property.

Theorem 6.4. Let r ∈ N, 1 ≤ p ≤ ∞, (1 − λa)(1 − νa) > 0 and
(1−λ∞)(1−ν∞) > 0. Let also κa ∈ Γi′(p), κ∞ ∈ Γj′(p) as i′ ≤ j′ and µa ∈ Γi(p),
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µ∞ ∈ Γj(p) as i ≤ j. Then there exist linear operators A and B, constructed as
compositions of the operators in Sections 3 and 4, such that

A : (Lp(w)(a,∞), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

P r o o f. Let ρ̃ be so large that

µa + ρ̃, µ∞ + ρ̃ > −1/p, κ∞ − κa +

(
µa + ρ̃+

1

p

)
1 − λa

1 − νa
> 0.

Then Proposition 6.3 implies that the operators

A
# = B1,1(σa; a,∞; ∗)B1(σ∞;∞, a; ∗)A0(ρ

#
∞;∞, a; ∗)A0,0(ρ

#
a ; a,∞; ∗),

B
# = Ai′,j′(−ρ

#
a ; a,∞; η)A0(−ρ

#
∞;∞, a; ∗)B1(σ

−1
∞ ;∞, a; ∗)B1,1(σ

−1
a ; a,∞; ∗),

where η, σa, σ∞ are defined as in Proposition 6.3 and

ρ#
a = κa +

1

p
−
µa + ρ̃+ 1/p

σa
, ρ#

∞ = κ∞ − κa −
µ∞ + ρ̃+ 1/p

σaσ∞
+
µa + ρ̃+ 1/p

σa
,

satisfy the relation

A
# : (Lp(w)(a,∞), ACr−1

loc , ϕrDr) 
 (Lp(w̃χ
ρ̃
a)(a,∞), ACr−1

loc , ϕ̃rDr) : B
#.

By means of Proposition 3.7 we get

Ai,j(ρ̃; a,∞; ξ) : (Lp(w̃χ
ρ̃
a)(a,∞), ACr−1

loc , ϕ̃rDr)


 (Lp(w̃)(a,∞), ACr−1
loc , ϕ̃rDr) : A0,0(−ρ̃; a,∞; ∗),

where ξ > a. The operators A =Ai,j(ρ̃; a,∞; ξ)A# and B = B#A0,0(−ρ̃; a,∞; ∗)
satisfy the assertion of the theorem. �

If we use only operators of type B, we establish the relation

Proposition 6.4. Let r ∈ N and 1 ≤ p ≤ ∞. Let the real numbers
κa, κ∞, λa, λ∞, νa, ν∞ and the integers j1, j2, j

′
2 satisfy the conditions:

(1 − λa)(1 − νa) > 0, (1 − λ∞)(1 − ν∞) > 0,

κa ∈ Γ+(p), κ∞ ∈ Γ∗
j′2

(p),

(
κ∞ +

1

p

)
1 − ν∞
1 − λ∞

−
1

p
∈ Γ∗

j1(p),

(
κ∞ +

1

p

)
1 − ν∞
1 − λ∞

1 − λa

1 − νa
−

1

p
∈ Γ∗

j2(p).
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Set

µa =

(
κa +

1

p

)
σa −

1

p
, µ∞ =

(
κ∞ +

1

p

)
σaσ∞ −

1

p

and

A = B1,j1(σa; a,∞; ξ)Bj2(σ∞;∞, a; ξ),

B = Bj′2
(σ−1

∞ ;∞, a; η)B1,j′1
(σ−1

a ; a,∞; η),

where ξ, η > a, j ′1 = j2 and

σa =
1 − νa

1 − λa
, σ∞ =

1 − ν∞
1 − λ∞

1 − λa

1 − νa
.

Then

A : (Lp(w)(a,∞), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

P r o o f. The first two steps in the proof of Proposition 6.3 verify this
assertion. �

By Propositions 3.7, 6.3 and 6.4 we establish the following characterization.

Theorem 6.5. Let r ∈ N, 1 ≤ p ≤ ∞ and λa, λ∞ ∈ (−∞, 1). Let us set

σa =
1

1 − λa
, σ∞ =

1 − λa

1 − λ∞
.

a) For p <∞ we assume that κa ∈ Γi′(p) and κ∞ ∈ Γj′(p) as i′ ≤ j′ and
set

A = A0,0(ρ̃; a,∞; ∗)B1,1(σa; a,∞; ∗)B1(σ∞;∞, a; ∗)

A0(ρ∞;∞, a; ∗)A0,0(ρa; a,∞; ∗),

where ρ̃+ 1/p > max{0, (κa − κ∞)σa} and

ρa = κa − ρ̃+

(
ρ̃+

1

p

)
λa, ρ∞ = κ∞ − κa +

(
ρ̃+

1

p

)
(λ∞ − λa).

b) For p = ∞ we assume that κa = κ∞ = 0 and set

A = B1,1(σa; a,∞; ∗)B1(σ∞;∞, a; ∗).
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Then for t > 0 and f ∈ Lp(w)(a,∞) we have

K(f, tr;Lp(w)(a,∞), ACr−1
loc , ϕrDr) ∼ ωr(Af, t)p(a,∞).

P r o o f. Assertion b) follows from Proposition 6.4 with p = ∞ and κa =
κ∞ = 0, νa = νb = 0. For p < ∞ we set in Proposition 6.3 µa = µ∞ = ρ̃,
νa = ν∞ = 0 and get

(6.3) A
# : (Lp(w)(a,∞), ACr−1

loc , ϕrDr) 
 (Lp(χ
ρ̃
a)(a,∞), ACr−1

loc , Dr) : B
#,

where

A
# = B1,1(σa; a,∞; ∗)B1(σ∞;∞, a; ∗)A0(ρ∞;∞, a; ∗)A0,0(ρa; a,∞; ∗),

B
# = Ai′,j′(−ρa; a,∞; η)A0(−ρ∞;∞, a; ∗)B1(σ

−1
∞ ;∞, a; ∗)B1,1(σ

−1
a ; a,∞; ∗)

and η > a. Next, by Proposition 3.7 we get

(6.4) A0,0(ρ̃; a,∞; ∗) : (Lp(χ
ρ̃
a)(a,∞), ACr−1

loc , ϕrDr)


 (Lp(a,∞), ACr−1
loc , ϕrDr) : A0,0(−ρ̃; a,∞; ∗).

Now, (6.3) and (6.4) yield assertion a). �

Let us note that in the case p < ∞ if (κ∞ − κa)σa > −1/p, then we can
fix ρ̃ = 0 and the operator A is defined by four operators of type A and B. Also,
if κa > −1/p and κ∞ 6∈ Γexc(p), then we can use in Theorem 6.5 the operator

A = B1,1(σa; a,∞; ∗)A0,0(ρ̄a; a,∞; ∗)B1(σ∞;∞, a; ∗)A0(ρ̄∞;∞, a; ∗),

where σa, σ∞ are as in the theorem, ρ̄a = κa + λa/p and ρ̄∞ = κ∞ + 1/p− (κa +
1/p)/σ∞.

6.3. The case (1 − λa)(1 − ν∞) < 0, (1 − λ∞)(1 − νa) < 0. Let us
now consider the other possible case for the semi-infinite interval (a,∞), namely
(1 − λa)(1 − νa) < 0, (1 − λ∞)(1 − ν∞) < 0 . Unlike the finite interval, here
the sub-case (1 − λa)(1 − ν∞) > 0 has no solution (cf. classes C2 and C8 in
Subsection 6.5), while the other sub-case (1 − λa)(1 − ν∞) < 0 permits quasi-
invertible continuous mappings. The results do not follow easily from the results
in Subsection 6.2 (no “mirror” operators for semi-infinite intervals) and require
the use of operator Bi,j(σ; a,∞; ξ) with σ < 0.
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The restrictions on the exponents of ϕ and ϕ̃ can be summarized as (1−
λa)(1 − ν∞) < 0, (1 − λ∞)(1 − νa) < 0. Note the specific restriction µ∞ < −1/p
in the following proposition.

Proposition 6.5. Let r ∈ N and 1 ≤ p ≤ ∞. Let the real numbers
κa, κ∞, µa, µ∞, λa, λ∞, νa, ν∞ and the integers i1, j1, j2, j3, j4, i

′
4, j

′
4 satisfy the

conditions:

(1 − λa)(1 − ν∞) < 0, (1 − λ∞)(1 − νa) < 0,

κa ∈ Γi′4
(p), κ∞ ∈ Γj′4

(p), i′4 ≤ j′4, µa ∈ Γ∗
i1(p), µ∞ ∈ Γj1(p), 1 ≤ i1 ≤ j1,(

µa +
1

p

)
1 − λa

1 − ν∞
−

1

p
∈ Γ∗

j2(p),

(
µa +

1

p

)
1 − λ∞
1 − νa

−
1

p
∈ Γj3(p),

κ∞ − κa +

(
µ∞ +

1

p

)
1 − λa

1 − ν∞
−

1

p
∈ Γj4(p).

Set

A=Bi1,j1(σa,∞; a,∞; ξ)Bj2(σ∞,a;∞, a; ξ)Aj3(ρ∞,a;∞, a; ξ)A0,j4(ρa,∞; a,∞; ξ),

B=Ai′4,j′4
(−ρa,∞; a,∞; η)Aj′3

(−ρ∞,a;∞, a; η)

Bj′2
(σ−1

∞,a;∞, a; η)B1,j′1
(σ−1

a,∞; a,∞; η),

where ξ, η > a, j ′1 = j2, j
′
2 = max{1, j3}, j

′
3 = j4 and

σa,∞ =
1 − ν∞
1 − λa

, σ∞,a =
1 − νa

1 − λ∞

1 − λa

1 − ν∞
,

ρa,∞ = κa +
1

p
−
µ∞ + 1/p

σa,∞
, ρ∞,a = κ∞ − κa −

µa + 1/p

σa,∞σ∞,a
+
µ∞ + 1/p

σa,∞
.

Then

A : (Lp(w)(a,∞), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

P r o o f. The proof follows the scheme:

(Lp(χ
µa
a χµ∞−µa

a−1 )(a,∞), ACr−1
loc , χrνa

a χ
r(ν∞−νa)
a−1 Dr)

Bi1,j1(σa,∞; a,∞; ξ) �� B1,j′1
(σ−1

a,∞; a,∞; η)Step 1

(Lp(χ
(µ∞+1/p)/σa,∞−1/p
a χ

(µa−µ∞)/σa,∞

a−1 )(a,∞),ACr−1
loc , χrλa

a χ
r(νa−ν∞)/σa,∞

a−1 Dr)

Bj2(σ∞,a;∞, a; ξ) �� Bj′2
(σ−1

∞,a;∞, a; η)Step 2
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(Lp(χ
(µ∞+1/p)/σa,∞−1/p
a χϑ

a−1)(a,∞), ACr−1
loc , χrλa

a χ
r(λ∞−λa)
a−1 Dr)

Aj3(ρ∞,a;∞, a; ξ) �� Aj′3
(−ρ∞,a;∞, a; η)Step 3

(Lp(χ
(µ∞+1/p)/σa,∞−1/p
a χκ∞−κa

a−1 )(a,∞), ACr−1
loc , χrλa

a χ
r(λ∞−λa)
a−1 Dr)

A0,j4(ρa,∞; a,∞; ξ) �� Ai′4,j′4
(−ρa,∞; a,∞; η)Step 4

Lp(χ
κa
a χκ∞−κa

a−1 )(a,∞), ACr−1
loc , χrλa

a χ
r(λ∞−λa)
a−1 Dr) ,

where ϑ = (µa + 1/p)/(σa,∞σ∞,a) − (µ∞ + 1/p)/σa,∞ = κ∞ − κa − ρ∞,a. Step 1
is accomplished by Proposition 4.16, Step 2 – by Proposition 4.14, Step 3 – by
Proposition 3.8, and Step 4 – by Proposition 3.7. �

From Proposition 6.5 and Proposition 3.7 we get

Theorem 6.6. Let r ∈ N, 1 ≤ p ≤ ∞, (1 − λa)(1 − ν∞) < 0 and
(1−λ∞)(1−νa) < 0. Let also κa ∈ Γi′(p), κ∞ ∈ Γj′(p) as i′ ≤ j′ and µa ∈ Γi(p),
µ∞ ∈ Γj(p) as i ≤ j. Then there exist linear operators A and B, constructed as
compositions of the operators in Sections 3 and 4, such that

A : (Lp(w)(a,∞), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

P r o o f. Since the proof is similar to the one of Theorem 6.4 we shall only
sketch it. We fix ρ̃ such that

µa + ρ̃, µ∞ + ρ̃ < 1 − r − 1/p, κ∞ − κa +

(
µ∞ + ρ̃+

1

p

)
1 − λa

1 − ν∞
> 0.

Proposition 6.5 gives an operator which maps quasi-invertibly continuously the
triplet (Lp(w)(a,∞), ACr−1

loc , ϕrDr) onto (Lp(w̃χ
ρ̃
a)(a,∞), ACr−1

loc , ϕ̃rDr). Now,
Proposition 3.7 gives an operator of type A which maps quasi-invertibly continu-
ously the latter onto the triplet (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr). �

Remark 6.4. The conditions on ϕ and ϕ̃ in Theorems 6.4 and 6.6 are
different but not disjoint. Both theorems are applicable in the cases when the
signs of (1−λa), −(1−λ∞), (1−νa), −(1−ν∞) are one and the same (cf. Remark
6.3).

If we use only operators of type B, we establish the relation
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Proposition 6.6. Let r ∈ N and 1 ≤ p ≤ ∞. Let the real numbers
κa, κ∞, λa, λ∞, νa, ν∞ and the integers i1, j1, j2, j

′
2 satisfy the conditions:

(1 − λa)(1 − ν∞) < 0, (1 − λ∞)(1 − νa) < 0,

κa ∈ Γ+(p), κ∞ ∈ Γ∗
j′2

(p),
(
κ∞ +

1

p

)
1 − νa

1 − λ∞
−

1

p
∈ Γ∗

i1(p),

(
κa +

1

p

)
1 − ν∞
1 − λa

−
1

p
∈ Γ∗

j1(p), i1 ≤ j1,

(
κ∞ +

1

p

)
1 − νa

1 − λ∞

1 − λa

1 − ν∞
−

1

p
∈ Γ∗

j2(p).

Set

µa =

(
κ∞ +

1

p

)
σa,∞σ∞,a −

1

p
, µ∞ =

(
κa +

1

p

)
σa,∞ −

1

p
,

and

A = Bi1,j1(σa,∞; a,∞; ξ)Bj2(σ∞,a;∞, a; ξ),

B = Bj′2
(σ−1

∞,a;∞, a; η)B1,j′1
(σ−1

a,∞; a,∞; η),

where ξ, η > a, j ′1 = j2 and

σa,∞ =
1 − ν∞
1 − λa

, σ∞,a =
1 − νa

1 − λ∞

1 − λa

1 − ν∞
.

Then

A : (Lp(w)(a,∞), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

P r o o f. The first two steps in the proof of Proposition 6.5 verify this
assertion. �

Now we can establish (1.3) for K-functionals with λa, λ∞ > 1.

Theorem 6.7. Let r ∈ N, 1 ≤ p ≤ ∞ and λa, λ∞ ∈ (1,∞). Let us set

σa =
1

1 − λa
, σ∞ =

1 − λa

1 − λ∞
.

a) For p <∞ we assume that κa ∈ Γi′(p) and κ∞ ∈ Γj′(p) as i′ ≤ j′ and
set

A = A0,0(ρ̃; a,∞; ∗)Br,r(σa; a,∞; ∗)B1(σ∞;∞, a; ∗)

A0(ρ∞;∞, a; ∗)A0,0(ρa; a,∞; ∗),
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where ρ̃+ 1/p < min{1 − r, (κa − κ∞)σa} and

ρa = κa − ρ̃+

(
ρ̃+

1

p

)
λa, ρ∞ = κ∞ − κa +

(
ρ̃+

1

p

)
(λ∞ − λa).

b) For p = ∞ we assume that κa = κ∞ = 0 and set

A = B1,1(σa; a,∞; ∗)B1(σ∞;∞, a; ∗).

Then for t > 0 and f ∈ Lp(w)(a,∞) we have

K(f, tr;Lp(w)(a,∞), ACr−1
loc , ϕrDr) ∼ ωr(Af, t)p(a,∞).

P r o o f. Assertion b) is contained in Proposition 6.6. To prove a) we
proceed as in the proof of Theorem 6.5. We set

A
# = Br,r(σa; a,∞; ∗)B1(σ∞;∞, a; ∗)A0(ρ∞;∞, a; ∗)A0,0(ρa; a,∞; ∗),

B
# = Ai′,j′(−ρa; a,∞; η)A0(−ρ∞;∞, a; ∗)B1(σ

−1
∞ ;∞, a; ∗)B1,1(σ

−1
a ; a,∞; ∗),

where η > a. Then Proposition 3.7 and Proposition 6.5 (with µa = µ∞ = ρ̃ and
νa = ν∞ = 0) imply

(Lp(a,∞), ACr−1
loc , Dr)

A0,0(ρ̃; a,∞; ∗) �� Ar,r(−ρ̃; a,∞; ∗)

(Lp(χ
ρ̃
a)(a,∞), ACr−1

loc , Dr)

A
# �� B

#

(Lp(w)(a,∞), ACr−1
loc , ϕrDr) ,

which verifies a). �

6.4. Transfer between finite and semi-infinite intervals. In this
subsection we consider the cases which require the type of the interval to be
changed. The quasi-invertible maps work in both directions. So, without loss of
generality, we may assume that the initial triplet is defined on a finite interval
(a, b) and the target triplet is defined on (a,∞). Hence, the requirement for λ’s
and ν’s is (1 − λa)(1 − λb)(1 − νa)(1 − ν∞) < 0.
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We start with the case (1 − λa)(1 − νa) > 0, (1 − λb)(1 − ν∞) < 0.
Like in the previous subsection the specific restriction in the first proposition is
µ∞ < −1/p.

Proposition 6.7. Let r ∈ N and 1 ≤ p ≤ ∞. Let the real numbers
κa, κb, µa, µ∞, λa, λb, νa, ν∞ and the integers j1, i

′
4 satisfy the conditions:

(1 − λa)(1 − νa) > 0, (1 − λb)(1 − ν∞) < 0,

κa ∈ Γi′4
(p), κb, µa > −1/p, µ∞ ∈ Γj1(p), j1 > 0.

SetA = Bj1(σb,∞; b, a;∞, a; ξ1)B1(σa; a, b; ξ2)A0(ρb,∞; b, a; ξ2)A0(ρa; a, b; ξ2),

B = Ai′4
(−ρa; a, b; η)A0(−ρb,∞; b, a; η)B1(σ

−1
a ; a, b; η)B1(σ

−1
b,∞;∞, a; b, a; η),

where ξ1 ∈ (a,∞), ξ2, η ∈ (a, b) and

σa =
1 − νa

1 − λa
, σb,∞ =

1 − ν∞
1 − λb

,

ρa = κa +
1

p
−
µa + 1/p

σa
, ρb,∞ = κb +

1

p
−
µ∞ + 1/p

σb,∞
.

Then
A : (Lp(w)(a, b), ACr−1

loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1
loc , ϕ̃rDr) : B.

P r o o f. The proof follows the scheme (cf. the proof of Proposition 6.1 for
steps 2–4):

(Lp(χ
µa
a χµ∞−µa

a−1 )(a,∞), ACr−1
loc , χrνa

a χ
r(ν∞−νa)
a−1 Dr)

Bj1(σb,∞; b, a;∞, a; ξ1) �� B1(σ
−1
b,∞;∞, a; b, a; η)Step 1

(Lp(χ
µa
a χ

(µ∞+1/p)/σb,∞−1/p
b )(a, b), ACr−1

loc , χrνa
a χrλb

b Dr)

B1(σa; a, b; ξ2) �� B1(σ
−1
a ; a, b; η)Step 2

(Lp(χ
(µa+1/p)/σa−1/p
a χ

(µ∞+1/p)/σb,∞−1/p
b )(a, b), ACr−1

loc , χrλa
a χrλb

b Dr)

A0(ρb,∞; b, a; ξ2) �� A0(−ρb,∞; b, a; η)Step 3

(Lp(χ
(µa+1/p)/σa−1/p
a χκb

b )(a, b), ACr−1
loc , χrλa

a χrλb

b Dr)

A0(ρa; a, b; ξ2) �� Ai′4
(−ρa; a, b; η)Step 4

(Lp(χ
κa
a χκb

b )(a, b), ACr−1
loc , χrλa

a χrλb

b Dr) .
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Step 1 is accomplished by Proposition 4.17, Step 2 – by Proposition 4.15 and
steps 3 and 4 – by Proposition 3.9. �

Remark 6.5. Let us note that by interchanging steps 3 and 4 in the
proof of Proposition 6.7 we establish that if

κa, µa > −1/p, κb ∈ Γi′4
(p), µ∞ ∈ Γj1(p), j1 > 0,

then the operators

A = Bj1(σb,∞; b, a;∞, a; ξ1)B1(σa; a, b; ξ2)A0(ρa; a, b; ξ2)A0(ρb,∞; b, a; ξ2),

B = Ai′4
(−ρb,∞; b, a; η)A0(−ρa; a, b; η)B1(σ

−1
a ; a, b; η)B1(σ

−1
b,∞;∞, a; b, a; η)

will do the quasi-invertible continuous mapping of the proposition. Let us also
recall that by property xviii) in Section 5 (or [3, Proposition 5.1])

A0(ρa; a, b; ξ2)A0(ρb,∞; b, a; ξ2) = A0(ρb,∞; b, a; ξ2)A0(ρa; a, b; ξ2),

i.e. in both cases operators A are one and the same.

As in the previous subsections we generalize the assertion of the last
theorem by using additional operators of type A in the definition of A and B.

Theorem 6.8. Let r ∈ N, 1 ≤ p ≤ ∞, (1 − λa)(1 − νa) > 0 and
(1 − λb)(1 − ν∞) < 0. Let also κa, κb 6∈ Γexc(p) as one of them is in Γ0(p), and
µa ∈ Γi(p), µ∞ ∈ Γj(p) as i ≤ j. Then there exist linear operators A and B,
constructed as compositions of the operators in Sections 3 and 4, such that

A : (Lp(w)(a, b), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

P r o o f. Let κa ∈ Γi′4
(p) and κb > −1/p. We choose ρ̃a and ρ̃∞ so that

(6.5) µa + ρ̃a ∈ Γ0(p), µ∞ + ρ̃a ∈ Γj0(p), µ∞ + ρ̃∞ ∈ Γj1(p) as j1 > 0.

Set µ#
a = µa+ ρ̃a, µ

#
∞ = µ∞+ ρ̃∞, w̃# = χµ#

a
a χµ#

∞−µ#
a

a−1 , j′ = j0 and j′0 = j1.
Define the operators

A
# = Bj1(σb,∞; b, a;∞, a; ξ)B1(σa; a, b; η)A0(ρ

#
b,∞; b, a; η)A0(ρ

#
a ; a, b; η),

B
# = Ai′4

(−ρ#
a ; a, b; η)A0(−ρ

#
b,∞; b, a; η)B1(σ

−1
a ; a, b; η)B1(σ

−1
b,∞;∞, a; b, a; η),
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where the parameters η, σa, σb,∞ are given in Proposition 6.7 and

ρ#
a = κa +

1

p
−
µa + ρ̃a + 1/p

σa
, ρ#

b,∞ = κb +
1

p
−
µ∞ + ρ̃∞ + 1/p

σb,∞
.

We apply the scheme

(Lp(w̃)(a,∞), ACr−1
loc , ϕ̃rDr)

Ai,j(ρ̃a; a,∞; ξ) �� A0,j′(−ρ̃a; a,∞; ξ)Step 1

(Lp(χ
µ#

a
a χµ∞−µa

a−1 )(a,∞), ACr−1
loc , ϕ̃rDr)

Aj0(ρ̃∞ − ρ̃a;∞, a; ξ) �� Aj′0
(ρ̃a − ρ̃∞;∞, a; ξ)Step 2

(Lp(w̃
#)(a,∞), ACr−1

loc , ϕ̃rDr)

A
# �� B

#Step 3

(Lp(w)(a,∞), ACr−1
loc , ϕrDr) .

Propositions 3.7 and 3.8 with ξ > a are used respectively at Steps 1 and 2 taking
into account that µ#

a + µ∞ − µa ∈ Γj0(p). At step 3 we use Proposition 6.7 with
w̃# instead of w̃. The above scheme implies that the operators

A = Ai,j(ρ̃a; a,∞; ξ)Aj0(ρ̃∞ − ρ̃a;∞, a; ξ)A#,

B = B
#Aj′0

(ρ̃a − ρ̃∞;∞, a; ξ)A0,j′(−ρ̃a; a,∞; ξ)

satisfy the assertion of the theorem.

In the case κa > −1/p and κb ∈ Γi′4
(p) in view of Remark 6.5 it is enough

to interchange the places of the operators of type A in the definition of B#. �

Remark 6.6. In both cases κa ∈ Γi(p), κb ∈ Γ0(p) and κa ∈ Γ0(p),
κb ∈ Γi′(p) the operators A are one and the same. The operators B are one and
the same for i = i′ = 0 and different otherwise.

In general, the operators A and B consists of 6 operators of type A and B.
But in the case µ∞ < µa (note that µ∞ ≥ µa implies i = j) it is clear from (6.5)
that we can choose ρ̃∞ = ρ̃a and reduce the number of operators to 5. Similar
reduction can be achieved for µa ∈ Γ0(p) when we can choose ρ̃a = 0.

The first two steps in the proof of Proposition 6.7 imply
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Proposition 6.8. Let r ∈ N and 1 ≤ p ≤ ∞. Let the real numbers
κa, κb, λa, λb, νa, ν∞ and the integer j satisfy the conditions:

(1 − λa)(1 − νa) > 0, (1 − λb)(1 − ν∞) < 0,

κa, κb ∈ Γ+(p),

(
κb +

1

p

)
1 − ν∞
1 − λb

−
1

p
∈ Γ∗

j(p).

Set

µa =

(
κa +

1

p

)
σa −

1

p
, µ∞ =

(
κa +

1

p

)
σb,∞ −

1

p

and

A = Bj(σb,∞; b, a;∞, a; ξ1)B1(σa; a, b; ξ2),

B = B1(σ
−1
a ; a, b; η)B1(σ

−1
b,∞;∞, a; b, a; η),

where ξ1 ∈ (a,∞), ξ2, η ∈ (a, b) and

σa =
1 − νa

1 − λa
, σb,∞ =

1 − ν∞
1 − λb

.

Then

A : (Lp(w)(a, b), ACr−1
loc , ϕrDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

We get the following two characterization theorems by means of the
operators constructed in the proof of Theorem 6.8 and Remark 6.6 (for p < ∞)
or by Proposition 6.8 (for p = ∞).

Theorem 6.9. Let r ∈ N, 1 ≤ p ≤ ∞, ξ ∈ (a, b), λa ∈ (−∞, 1) and
λb ∈ (1,∞). Let us set

σa =
1

1 − λa
, σb =

1

1 − λb
.

a) For p <∞ we assume that κa, κb 6∈ Γexc(p) as one of them is in Γ0(p),
and set

A = A0(ρ̃∞;∞, a; ∗)Bj1(σb; b, a;∞, a; ξ1)B1(σa; a, b; ξ)

A0(ρb; b, a; ξ)A0(ρa; a, b; ξ),

where ξ1 ∈ (a,∞), ρ̃∞ ∈ Γj1(p), j1 > 0 and
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ρa = κa +
λa

p
, ρb = κb +

λb

p
− ρ̃∞(1 − λb).

b) For p = ∞ we assume that κa = κ∞ = 0 and set

A = B1(σb; b, a;∞, a; ∗)B1(σa; a, b; ξ).

Then for t > 0 and f ∈ Lp(w)(a, b) we have

K(f, tr;Lp(w)(a, b), ACr−1
loc , ϕrDr) ∼ ωr(Af, t)p(a,∞).

P r o o f. Assertion a) follows from the considerations in the proof of
Theorem 6.8 with µa = µ∞ = 0, νa = ν∞ = 0 and ρ̃a = 0. Assertion b)
follows from Proposition 6.8 with p = ∞, κa = κb = 0 and νa = ν∞ = 0. �

Looking at the quasi-invertible continuous map in Theorem 6.8 with B

being the direct operator and A its quasi-inverse we get

Theorem 6.10. Let r ∈ N, 1 ≤ p ≤ ∞, η ∈ (a, b), η1 ∈ (a,∞),
λa ∈ (−∞, 1) and λ∞ ∈ (1,∞). Let us set

σa =
1

1 − λa
, σ∞ =

1

1 − λ∞
.

a) For p <∞ we assume that κa ∈ Γi(p), κ∞ ∈ Γj(p) as i ≤ j and set

A = A0(ρa; a, b; η)A0(ρ∞; b, a; η)B1(σa; a, b; η)B1(σ∞;∞, a; b, a; η)

Aj1(ρ̃a − ρ̃∞;∞, a; η1)A0,j0(−ρ̃a; a,∞; η1),

where ρ̃a, ρ̃∞, j0, j1 are chosen so that

κa + ρ̃a ∈ Γ0(p), κ∞ + ρ̃a ∈ Γj0(p), κ∞ + ρ̃∞ ∈ Γj1(p), j1 > 0

and

ρa =
κa + ρ̃a + 1/p

1 − λa
−

1

p
, ρ∞ =

κ∞ + ρ̃∞ + 1/p

1 − λ∞
−

1

p
.

b) For p = ∞ we assume that µa = µ∞ = 0 and set

A = B1(σa; a, b; η)B1(σ∞;∞, a; b, a; η).

Then for t > 0 and f ∈ Lp(w)(a,∞) we have

K(f, tr;Lp(w)(a,∞), ACr−1
loc , ϕrDr) ∼ ωr(Af, t)p(a,b).
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P r o o f. Assertion a) follows from the considerations in the proof of
Theorem 6.8 as we set κa = κb = 0 and λa = λb = 0. Assertion b) follows
from Proposition 6.8 with p = ∞, κa = κb = 0 and λa = λb = 0. In both cases
we use the operator B and at the end replace the µ’s by κ’s, the ν’s by λ’s and
finally denote operator B by A. Note that the σ’s here denote the reverse of the
σ’s in Theorem 6.8, while the ρ’s are the opposite. �

In the case p < ∞ the number of operators of type A in Theorem 6.10
can be reduced if the κ’s satisfy some additional restrictions. For example, if
κa > −1/p, κ∞ ∈ Γj(p), j > 0, we can set ρ̃a = ρ̃∞ = 0 and then A is defined by
four operators. If κa, κ∞ > −1/p, then we can set ρ̃a = 0 and get five operators.
The same is true if κ∞ < κa because then we can choose ρ̃a = ρ̃∞.

Let us now consider the other case (1−λa)(1−νa) < 0, (1−λb)(1−ν∞) > 0.
The sub-case (1−λa)(1−λb) > 0 has no solution in the terms of the operators of
type A and B (cf. classes C1 for (a, b) and C8 for (a,∞) or classes C7 for (a, b)
and C2 for (a,∞) in Subsection 6.5).

The remaining sub-case (1−λa)(1−λb) < 0 is covered by the next remark,
which easily follows from the previous results in this subsection. (Note that one
cannot expect an analogue of Theorem 6.10 in this sub-case, because it would
require target weight ϕ̃ = 1 in a finite interval!)

Remark 6.7. The cases λa > 1, λb, νa, ν∞ < 1 and λa < 1, λb, νa, ν∞ >
1 can be solved by applying the “mirror” operator from Proposition 2.8 together
with the operators from Propositions 6.7, 6.8 and Theorems 6.8, 6.9.

In order to demonstrate this approach we establish the following analogue
of Theorem 6.8.

Theorem 6.11. Let r ∈ N, 1 ≤ p ≤ ∞, (1 − λa)(1 − ν∞) < 0 and
(1 − λb)(1 − νa) > 0. Let also κa, κb 6∈ Γexc(p) as one of them is in Γ0(p) and
µa ∈ Γi(p), µ∞ ∈ Γj(p) as i ≤ j. Set w̄ = χκb

a χ
κa

b and ϕ̄ = χλb
a χ

λa

b . Let A and B

be the operators in Theorem 6.8, satisfying

A : (Lp(w̄)(a, b), ACr−1
loc , ϕ̄rDr) 
 (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr) : B.

Then

AS(−1)T(a + b) : (Lp(w)(a, b), ACr−1
loc , ϕrDr) 


(Lp(w̃)(a,∞), ACr−1
loc , ϕ̃rDr) : T(−a− b) S(−1)B.
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P r o o f. If we interchange λa and λb, then the hypotheses of Theorem
6.8 will be fulfilled and we can apply it to the triplets (Lp(w̄)(a, b), ACr−1

loc , ϕ̄rDr)
and (Lp(w̃)(a,∞), ACr−1

loc , ϕ̃rDr). Then we apply Proposition 2.8. �

If we would like to avoid using the “mirror” operator, then we can proceed
as follows.

Remark 6.8. If we interchange a and b everywhere in Propositions 6.7,
6.8 and Theorem 6.8, we get their analogues in the case (1 − λa)(1 − ν∞) < 0
and (1 − λb)(1 − νb) > 0 and hence the analogue of Theorem 6.9 for λa > 1,
λb < 1. Note that the interval of the target triplet is (b,∞) and not (a,∞) as in
Remark 6.7. Of course, as explained in Subsection 2.1, relations like η ∈ (b, a)
are supposed to be understood as η ∈ (a, b).

6.5. Solutions of (1.2) and of (1.3). The results of the previous
subsections related to (1.2) can be summarized in the following three theorems.

Theorem 6.12. Let r ∈ N and 1 ≤ p ≤ ∞. Let the interval and the
weights of the triplet (Lp(w)(I), ACr−1

loc , ϕrDr) be in one of the following classes:

C1) (a, b), λa < 1, λb < 1, κa, κb 6∈ Γexc(p) as one of them is in Γ0(p);

C2) (a,∞), λa < 1, λ∞ > 1, κa ∈ Γi(p), κ∞ ∈ Γj(p) as i ≤ j.

Let the triplet (Lp(w̃)(Ĩ), ACr−1
loc , ϕ̃rDr) satisfy the same condition. Then there

is a linear operator A, constructed as a composition of the operators in Sections
3 and 4, such that (1.2) holds for every f ∈ Lp(w)(I) and every t ∈ (0, 1].

P r o o f. If both triplets (Lp(w)(I), ACr−1
loc , ϕrDr) and (Lp(w̃)(Ĩ), ACr−1

loc ,
ϕ̃rDr) are in the class C1, then the conclusion follows from Theorem 6.1 and if
they are in the class C2, then the conclusion follows from Theorem 6.4. When
one of the triplets is in the class C1 and the other – in C2 we apply Theorem
6.8. �

Theorem 6.13. Let r ∈ N and 1 ≤ p ≤ ∞. Let the interval and the
weights of the triplet (Lp(w)(I), ACr−1

loc , ϕrDr) be in one of the following classes:

C3) (a,∞), λa < 1, λ∞ < 1, κa ∈ Γi(p), κ∞ ∈ Γj(p) as i ≤ j;

C4) (a,∞), λa > 1, λ∞ > 1, κa ∈ Γi(p), κ∞ ∈ Γj(p) as i ≤ j;

C5) (a, b), λa < 1, λb > 1, κa, κb 6∈ Γexc(p) as one of them is in Γ0(p);

C6) (a, b), λa > 1, λb < 1, κa, κb 6∈ Γexc(p) as one of them is in Γ0(p).
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Let the triplet (Lp(w̃)(Ĩ), ACr−1
loc , ϕ̃rDr) satisfy the same condition. Then there

is a linear operator A, constructed as a composition of the operators in Sections
3 and 4, such that (1.2) holds for every f ∈ Lp(w)(I) and every t ∈ (0, 1].

P r o o f. If both triplets (Lp(w)(I), ACr−1
loc , ϕrDr) and (Lp(w̃)(Ĩ), ACr−1

loc ,
ϕ̃rDr) are in the class C3 or in the class C4, then the conclusion follows from
Theorem 6.4 and if they are in the class C5 or in the class C6, then the conclusion
follows from Theorem 6.1. When one of the triplets is in the class C3 and the
other – in C4 we apply Theorem 6.6. When one of the triplets is in the class C3

and the other – in C5 we apply Theorem 6.8. When one of the triplets is in the
class C3 and the other – in C6 we apply Theorem 6.11. When one of the triplets
is in the class C4 and the other – in C5 we apply Theorem 6.11. When one of the
triplets is in the class C4 and the other – in C6 we apply Theorem 6.8. When one
of the triplets is in the class C5 and the other – in C6 we apply Theorem 6.3. �

Theorem 6.14. Let r ∈ N and 1 ≤ p ≤ ∞. Let the interval and the
weights of the triplet (Lp(w)(I), ACr−1

loc , ϕrDr) be in one of the following classes:

C7) (a, b), λa > 1, λb > 1, κa, κb 6∈ Γexc(p) as one of them is in Γ0(p);

C8) (a,∞), λa > 1, λ∞ < 1, κa ∈ Γi(p), κ∞ ∈ Γj(p) as i ≤ j.

Let the triplet (Lp(w̃)(Ĩ), ACr−1
loc , ϕ̃rDr) satisfy the same condition. Then there

is a linear operator A, constructed as a composition of the operators in Sections
3 and 4, such that (1.2) holds for every f ∈ Lp(w)(I) and every t ∈ (0, 1].

P r o o f. The proof is the same as of Theorem 6.12. �

Let us consider the intervals and the exponents of the weight ϕ described
in the classes C1 – C8. The operators from Section 3 do not change the classes.
On the other hand the operators from Section 4 can vary the weight ϕ and the
interval I, but always staying in the same set of classes (described in one of the
three theorems above) as the original weight. Hence, the three sets of classes are
mutually disjoint when treated by the operators studied in this article.

Let us turn our attention to the equivalence (1.3). For 1 ≤ p < ∞ the
weights ϕ = 1 and w = 1 are contained in the class C1 for a finite interval and
in the class C3 for a semi-infinite interval. Hence, Theorem 6.12 gives for every
triplet from C1 or C2 an operator A for which the equivalence (1.3) holds with a
finite Ĩ. Similarly, Theorem 6.13 gives for every triplet from C3, C4, C5 or C6 an
operator A for which the equivalence (1.3) holds with a semi-infinite Ĩ.

If p = ∞, then 0 ∈ Γexc(p). Now Theorem 6.2, items b) in Theorems 6.5,
6.7, 6.9 (together with Remark 6.8) and 6.10 imply that (1.3) holds when the
corresponding κ’s are 0.
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Theorem 6.15. Let r ∈ N and 1 ≤ p ≤ ∞. For p < ∞ let the interval
and the weights of the triplet (Lp(w)(I), ACr−1

loc , ϕrDr) be in one of the classes C1

– C6. For p = ∞ let the interval and the λ’s be in one of the classes C1 – C6 while
the κ’s be 0. Then there is a linear operator A, constructed as a composition of
the operators in Sections 3 and 4, such that (1.3) holds for every f ∈ Lp(w)(I)
and every t ∈ (0, 1].

For triplets from the classes C7 and C8 we cannot establish (1.3) using
only the operators studied in this article. On the other hand, there are cases
(not included in C1 – C6) when (1.3) is valid with such operators. Results in this
respect will be given in [7].

7. Characterization of K-functionals by two moduli
7.1. Separating the singularities. The next lemma will be used for

separating the singularities at the end-points of the interval. If ψ is a function
defined on I ⊂ R and J ⊂ I, then we use the same notation ψ for the restriction
ψ|J of ψ on J .

Lemma 7.1. Let I1 = (ā, b1) and I2 = (a1, b̄) be two intervals on the real
line such that ā < a1 < b1 < b̄, where ā is finite or −∞ and b̄ is finite or ∞. Let
I = (ā, b̄) = I1∪I2 and let w and ϕ be non-negative measurable on I weights such
that w ∼ 1 and ϕ ∼ 1 on [a1, b1]. Then for r ∈ N, 1 ≤ p ≤ ∞, 0 < t ≤ b1 − a1

and f ∈ Lp(w)(I) we have

K(f, tr;Lp(w)(I), ACr−1
loc , ϕrDr)

∼ K(f, tr;Lp(w)(I1), AC
r−1
loc , ϕrDr) +K(f, tr;Lp(w)(I2), AC

r−1
loc , ϕrDr).

Assertions like this lemma are standard tools in K-functional theory. The
proof follows the lines of the proof of [1, p.176, Lemma 2.3]. The restriction
t ≤ b̄− ā (combined with the finite ratio (b̄− ā)/(b1 − a1) requirement) in [1] is
replaced by t ≤ b1 − a1 here.

7.2. Solutions of (1.4). In order to characterize the K-functional (1.1)
for a wider range of parameters we separate the singularities by means of Lemma
7.1. Then we can establish (1.4) with 1 ≤ p < ∞ for all cases of intervals I,
including I = (−∞,∞), weights ϕ with exponents different than 1 and weights
w with exponents not in Γexc(p). This follows from the fact, that one of the ends
of both intervals I1 and I2 obtained after the application of Lemma 7.1 is a finite
point (b1 and a1 respectively) with exponents of ϕ and w equal to 0. So, we
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reduce the original problem to two problems, each of which falls into one of the
classes C1, C2, C3, C5 or C6.

Consider I = (ā, b̄), where either ā = a is finite or ā = −∞ and either
b̄ = b is finite or b̄ = ∞. Depending on the values of λ, we define the intervals Ĩ1,
Ĩ2 and the linear operators A1, A2 in Tables 4 and 5, where for −∞ ≤ s ≤ ∞ we
have set

σs =
1

1 − λs
, ρs = κs +

λs

p
.

Table 4. Definition of A1

λ A1 Ĩ1

λa < 1 B1(σa; a, b1; ξ1)A0(ρa; a, b1; ξ1) (a, b1)

λa > 1 Br(σa; a, b1;∞, b1; ξ2)A0(ρa; a, b1; ξ1) (b1,∞)

λ−∞ < 1 B1(σ−∞;∞,−b1; ∗)A0(ρ−∞;∞,−b1; ∗)S(−1) (−b1,∞)

λ−∞ > 1 B1(σ−∞;∞,−b1;−a2,−b1; ξ4)Ar(ρ−∞;∞,−b1; ξ3)S(−1) (−b1,−a2)

Table 5. Definition of A2

λ A2 Ĩ2

λb < 1 B1(σb; b, a1; ξ5)A0(ρb; b, a1; ξ5) (a1, b)

λb > 1 Br(σb; b, a1;∞, a1; ξ6)A0(ρb; b, a1; ξ5) (a1,∞)

λ∞ < 1 B1(σ∞;∞, a1; ∗)A0(ρ∞;∞, a1; ∗) (a1,∞)

λ∞ > 1 B1(σ∞;∞, a1; b2, a1; ξ5)Ar(ρ∞;∞, a1; ξ6) (a1, b2)

Let us note that the domain of the functions on which A1 is defined is I1 = (ā, b1),
and the domain of the functions on which A2 is defined is I2 = (a1, b̄). In the
cases λ−∞ > 1 and λ∞ > 1, considered in the last rows of the two tables, one
can choose arbitrary real points for the numbers a2 and b2 such that a2 < b1 and
b2 > a1.
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Using Lemma 7.1, Proposition 2.7, Theorems 6.2, 6.5, 6.9, 6.10 and
Remark 6.8 we get

Theorem 7.1. Let r ∈ N, 1 ≤ p ≤ ∞, −∞ ≤ ā < a1 < b1 < b̄ ≤ ∞,
I = (ā, b̄) and λā, λb̄ 6= 1. Let κā, κb̄ /∈ Γexc(p) if p < ∞ or κā, κb̄ = 0 if p = ∞.
Let the operators A1,A2 and the intervals Ĩ1, Ĩ2 be defined in Tables 4 and 5.
Then (1.4) holds for every f ∈ Lp(w)(I) and t ∈ (0, 1].

P r o o f. First, we separate the singularities by means of Lemma 7.1.
Further, we have:

1. If b̄ = b ∈ R, λb < 1, we apply Theorem 6.2.

2. If ā = a ∈ R, λa < 1, we apply Theorem 6.2.

3. If b̄ = b ∈ R, λb > 1, we apply Theorem 6.9 with p < ∞, j1 = r and
get that A

#
2 = A0(ρ̃∞;∞, a1; ∗)Br(σb; b, a1;∞, a1; ξ6)A0(ρ

#
b ; b, a1; ξ5) with

ρ#
b = κb + λb/p − ρ̃∞(1 − λb) does the job for A2. We complete the proof

by showing that A
#
2 f − A2f ∈ Πr−1 for every f ∈ Lp(χ

κb

b )(I2): first we
use that A0(ρ̃∞;∞, a1; ∗)F − Ar(ρ̃∞;∞, a1; ξ6)F ∈ Πr−1 for every F ∈
L1,loc(a1,∞) ∩ L1(χ

ρ̃∞−1
a1 )(a1 + 1,∞), next we interchange the order of Ar

and Br by property xvi) of Section 5 and, finally, we get a single operator
A0 by property iii) of the same section. For p = ∞ Theorem 6.9 gives

A
#
2 = B1(σb; b, a1;∞, a1; ∗) and we have by definition A

#
2 f − A2f ∈ Πr−1

for every f ∈ L∞(I2).

4. The case ā = a ∈ R, λa > 1 is considered as Case 3, using also Remark 6.8.

5. If b̄ = ∞, λ∞ < 1, we apply Theorem 6.5.

6. If ā = −∞, λ−∞ < 1, we apply operator S(−1) to reduce it to Case 5.

7. If b̄ = ∞, λ∞ > 1, we apply Theorem 6.10 with ρ̃a1
= 0 and ρ̃∞ such that

j1 = r as well as properties xvii) and ii) of Section 5.

8. If ā = −∞, λ−∞ > 1, we apply operator S(−1) to reduce it to Case 7. �

Remark 7.1. Let us note that operator A2 used in the case λb > 1,
is not bounded, but A2f ∈ Lp(a1,∞) + Πr−1 for every f ∈ Lp(χ

κb

b )(I2) and the
r-th modulus of A2f is finite. The same is valid in the case λa > 1. On the other
hand, the operators in the cases λ±∞ > 1, obtained by similar procedures, are
bounded.
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In the cases of common hypotheses of Theorem 6.15 and Theorem 7.1 we
note that the conclusion of Theorem 6.15 is stronger, while the operators A1 and
A2 in Theorem 7.1 are simpler than A in Theorem 6.15.

8. K-functionals for spaces of continuous functions. Let −∞ ≤
ā < b̄ ≤ ∞. So far in the case p = ∞ we have considered K-functionals (1.1)
in which the infimum is taken over the functions g ∈ AC r−1

loc (ā, b̄) such that
wg,wϕrg(r) ∈ L∞(ā, b̄) – that is on the largest possible set. In this section
we shall consider K-functionals of the type (1.1), in whose definition L∞(w)(ā, b̄)
is replaced by any of the spaces:

C(w)(ā, b̄) = {f : wf ∈ C(ā, b̄)},

C(w)[ā, b̄) = {f ∈ C(w)(ā, b̄) : ∃ lim
x→ā+0

(wf)(x)},

C(w)(ā, b̄] = {f ∈ C(w)(ā, b̄) : ∃ lim
x→b̄−0

(wf)(x)},

C(w)[ā, b̄] = C(w)[ā, b̄) ∩ C(w)(ā, b̄].

(8.1)

The additional requirements at the end-points of the domain, e.g. the existence
of limx→ā+0w(x)f(x), are called “weighted limit conditions”.

Let us start with the space C(w)(ā, b̄). For every f ∈ L∞(w)(ā, b̄) all
functions g in (1.1) obviously satisfy g ∈ C(w)(ā, b̄). Hence the replacement of
L∞(w) by C(w) in (1.1) means that we only require in addition g(r) to be locally
continuous, i.e. g(r) ∈ L∞(wϕr)(ā, b̄) is replaced by g(r) ∈ C(wϕr)(ā, b̄).

From the fact that the operators A(ρ; ξ) and B(σ; ξ) map the space of
locally continuous functions into itself and from properties (3.5) and (4.3) by
straightforward arguments we have

Proposition 8.1. All assertions in Sections 3, 4, 6 and 7 hold in the
case p = ∞ with L∞ replaced by C.

In the proof of Proposition 8.1 for the validity of the assertions connected
with the classical fixed-step moduli ωr, including Theorems 6.15 and 7.1 with L∞

replaced by C, one also needs the following auxiliary statement.

Proposition 8.2. Let −∞ ≤ ā < b̄ ≤ ∞ and either I = (ā, b̄), or
I = [ā, b̄), or I = (ā, b̄], or I = [ā, b̄]. Then for f ∈ C(I) and 0 < t < b̄ − ā we
have

K(f, tr;C(I), ACr−1
loc , Dr) ∼ K(f, tr;L∞(ā, b̄), ACr−1

loc , Dr) ∼ ωr(f, t)∞(ā,b̄).
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P r o o f. The assertion follows from the inequalities

(8.2) c ωr(f, t)∞(ā,b̄) ≤ K(f, tr;L∞(ā, b̄), ACr−1
loc , D

r)

≤ K(f, tr;C(I), ACr−1
loc , Dr) ≤ c ωr(f, t)∞(ā,b̄).

The first inequality in (8.2) is standard in the characterization of the
unweighted K-functionals by moduli and follows from the properties of the modu-
li. The second inequality in (8.2) is trivial because the infimum in the second
K-functional is taken over a narrower set than in the first K-functional. Finally,
the combinations of r-iterated Steklov’s means (see e.g. [1, p. 177]) and their
r-th derivatives belong to C(I) for f ∈ C(I), which justifies the third inequality
in (8.2). �

In particular, Proposition 8.2 says that for functions f ∈ C(a,∞] the
space on which the infimum is taken in the definition of the unweighted K-
functionalK(f, tr;L∞(a,∞), ACr−1

loc , Dr) can be restricted to {g ∈ ACr−1
loc (a,∞) :

g, g(r) ∈ C(a,∞]} and get an equivalent K-functional. Considering the weighted
K-functional (1.1) in the framework of the operators studied in this article it
is natural to assume that the infimum in K(f, tr;C(w)(a,∞], ACr−1

loc , ϕrDr) is
taken on the set {g ∈ C(w)(a,∞] : g(r) ∈ C(wϕr)(a,∞]} (and similarly for the
other weighted limit conditions).

In order to treat the spaces other than C(w)(ā, b̄) in (8.1) we need addi-
tionally to trace out how the operators of type A and B preserve the existence
of a weighted limit at the ends of the interval.

Lemma 8.1. Let α, σ 6= 0, β ∈ R, −∞ < a < ξ < ∞ and γ =
(1 − α− β)/σ.

a) Set ζ = a for σ > 0, α > 0; ζ = ξ for σα < 0; ζ = ∞ for σ < 0, α < 0.
Then for every f ∈ C(χγ

a)[a, ξ) we have

lim
(x−a)σ→0

1

(x− a)α

∫ x

ζ
(y − a)−βf(a+ (y − a)σ) dy =

1

α
lim
u→a

(u− a)γf(u).

b) Set ζ = a for σ < 0, α > 0; ζ = ξ for σα > 0; ζ = ∞ for σ > 0, α < 0.
Then for every f ∈ C(χγ

a)(ξ,∞] we have

lim
(x−a)σ→∞

1

(x− a)α

∫ x

ζ
(y − a)−βf(a+ (y − a)σ) dy =

1

α
lim

u→∞
(u− a)γf(u).
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P r o o f. In the case a) by standard analytic arguments for family of
kernels with concentrated mass we have

lim
(x−a)σ→0

1

(x− a)α

∫ x

ζ
(y − a)−βf(a+ (y − a)σ) dy

= lim
(x−a)σ→0

∫ x

ζ

(y − a)α−1

(x− a)α
dy · lim

(y−a)σ→0
(y − a)1−α−βf(a+ (y − a)σ).

Under the assumptions on ζ the first limit is α−1. Then, in the second limit we
set u− a = (y − a)σ and prove case a). The proof of case b) is similar. �

By means of this lemma we establish

Proposition 8.3. In the case p = ∞ every of Propositions 3.7, 3.8,
3.9, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18 holds as L∞ is replaced by C with one
or two weighted limit conditions at the ends of the domains of the initial and
target triplets. Operators of type A and B with σ > 0 preserve the end point ā
and/or b̄ at which the weighted limit exists. Operators Bi,j(σ; a,∞; ξ) with σ < 0
interchange the ends a and ∞ at which the weighted limit exists. Operators
Bi(σ;∞, e; s, e; ξ) and Bj(σ; s, e;∞, e; ξ) with σ < 0 interchange the ends s and
∞ and/or preserve the end e at which the weighted limit exists.

P r o o f. In view of Proposition 8.1 it is enough to study the weighted
limit behaviour of the operators of type A and B.

If an operator A or B treats a singularity at an end-point, at which the
weighted limit exists (this is always the case for the operators with two indexes),
then we apply Lemma 8.1. For the operators of type A we additionally set σ = 1.

Otherwise, the point at which the weighted limit exists (in all such cases
denoted by e) is finite and Af (or Bf) is continuous at this point by definition.
Note that the exponent of the weight of the C-space to which Af (or Bf) belongs
is in Γ+(∞) = [0,∞) according to the assumptions of the respective proposition.

Finally, the existence of a weighted limit of (Af)(r) (or (Bf)(r)) is gover-
ned by the same rules in view of (3.5) and (4.3). This completes the proof. �

Now, Proposition 8.3 allows to enhance the results in Section 6.

Proposition 8.4. All assertions in Section 6 hold in the case p = ∞
with initial space L∞(w)(ā, b̄) replaced by C(w)[ā, b̄] and target space L∞(w̃)(ā′, b̄′)
replaced by C(w̃)[ā′, b̄′].

Remark 8.1. Proposition 8.4 holds in the case of initial space C(w)[ā, b̄)
when the target space of continuous functions satisfies the weighted limit condi-
tion at the end of (ā′, b̄′) which corresponds to ā in the application of the operator
A. A similar assertion holds for C(w)(ā, b̄].
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The next statement sums up the unweighted moduli characterization
results for the spaces of continuous functions (8.1).

Theorem 8.1. Theorems 6.15 and 7.1 hold in the case p = ∞ when L∞

is replaced by C with any of the additional weighted limit conditions.
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