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BULGARICA

MARGINAL DENSITIES OF THE WISHART
DISTRIBUTION

Evelina Veleva

Abstract. We consider marginal densities obtained by elimination of
non-diagonal elements of a positive definite random matrix with an arbi-
trary distribution. For a p× p random matrix W such a marginal density is
presented by a graph with p vertices. For every non-diagonal element of W,
included in the density we draw in the graph an undirected edge between the
corresponding vertices. By giving an equivalent definition of decomposable
graphs we show that the bounds of the integration with respect to every
excluded element of W can be exactly obtained if and only if the corre-
sponding graph is decomposable. The author gives in an explicit form some
of the marginal densities of an arbitrary Wishart distribution.

1. Introduction. Wishart distribution arises as the distribution of the

sample covariance matrix for a sample from a multivariate normal distribu-

tion. Let x1, . . . ,xn be n independent observations on a random vector x with

p-variate normal distribution Np(µ,Σ), p < n, with mean vector µ and posi-

tive definite covariance matrix Σ. Let S be the sample covariance matrix S =(∑n
i=1 (xi − x̄)(xi − x̄)t

)
/(n − 1), x̄ = (

∑n
i=1 xi) /n. Then the joint distribution

of the elements of the matrix S is Wishart distribution Wp (n − 1, 1/(n − 1)Σ)

(see [1], [5]). Hence the joint distributions of sets of elements of the matrix S are

marginal distributions of the Wishart distribution.
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Let W = (Wi,j) be a random matrix with Wishart distribution Wp(n,Σ).

Let W[{k, . . . , s}] denotes the submatrix of the matrix W, composed of the

rows and columns with numbers from the set {k, . . . , s}, where 1 ≤ k ≤ s ≤

p. It is known (see [1], [5]) that W[{k, . . . , s}] has again Wishart distribution

Ws−k+1(n,Σ[{k, . . . , s}]). This marginal distribution corresponds to all the ele-

ments {Wi,j , k ≤ i ≤ j ≤ s} on and above the main diagonal in the submatrix

W[{k, . . . , s}]. Marginal densities for the sets of the form

(1) {Wi,j , k ≤ i ≤ j ≤ s}\{Wq,r},

where k ≤ q < r ≤ s, are obtained in [6] by integration the density of the

Wishart distribution (2) below with respect to the element wq,r of the positive

definite matrix W. In this paper we give alternative representations of these mar-

ginal densities and obtain some generalizations. We consider marginal densities

obtained by elimination of non-diagonal elements of a positive definite random

matrix with an arbitrary distribution. For a p × p random matrix W such a

marginal density is presented by a graph with p vertices. For every non-diagonal

element of W, included in the density we draw in the graph an undirected edge

between the corresponding vertices. By giving an equivalent definition of decom-

posable graphs we show that the bounds of the integration with respect to every

excluded element of W can be exactly obtained if and only if the corresponding

graph is decomposable.

2. Preliminary notes. A p × p random matrix W with Wishart distrib-

ution Wp(n,Σ), where p < n + 1 and Σ is a positive definite p × p matrix, has

probability density function of the form

(2) fp,n,Σ(W) =
1

2np/2Γp (n/2) (detΣ)n/2
(det W)(n−p−1)/2e−tr(WΣ−1)/2

for any real p × p positive definite matrix W, where Γp(·) is the multivariate

gamma function defined as Γp (γ) = πp(p−1)/4
∏p

j=1 Γ[γ + (1 − j)/2] and det(·),

tr(·) denote the determinant and the trace of a matrix.

For a given p × p matrix W, by W[α, β] we denote the submatrix of W,

composed of the rows with numbers from the set α and the columns with numbers

from the set β, where α, β are nonempty subsets of the set {1, . . . , p}.

When β ≡ α, W[α,α] is denoted simply by W[α]. For the complement of α

in {1, . . . , p} we use the notation αc.
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For instance, W[{q}c, {r}c] denotes the submatrix, which can be obtained

from W by deleting its q-th row and r-th column.

The next Proposition, which is proved in [6], gives the bounds for the integra-

tion of the density function of a random positive definite matrix with an arbitrary

distribution with respect to an arbitrary chosen its non – diagonal element.

Proposition 1. Let W = (wi,j) be a real p× p symmetric matrix and q, r be

fixed integers, 1 ≤ q < r ≤ p. Let W0 be the matrix, obtained from the matrix

W by replacing the elements wq,r and wr,q with zeros. The matrix W is positive

definite if and only if the matrices W[{q}c] and W[{r}c] are positive definite and

the element wq,r satisfies the inequalities

A − B < wq,r < A + B

where

(3) A =
(−1)r−q det W0[{q}

c, {r}c]

detW[{q, r}c]
, B =

√
detW[{q}c] detW[{r}c]

detW[{q, r}c]
.

The result after the integration of the Wishart density (2) is given by the

next Proposition (see [6]) in terms of modified Bessel function of the first kind

Iv(·) (see [2], 8.445). Throughout the paper, the elements of the matrix Σ−1 are

denoted by σi,j, 1 ≤ i ≤ j ≤ p.

Proposition 2. Let W = (Wi,j) has Wishart distribution Wp(n,Σ) and q,

r be integers, 1 ≤ q < r ≤ p. Then the marginal density, corresponding to the set

of elements {Wi,j, 1 ≤ i ≤ j ≤ p}\{Wq,r} has the form

f
{Wq,r}

c(W0) =

L

2np/2Γp (n/2) (det Σ)n/2

(detW0[{q}
c] det W0[{r}

c])(n−p)/2

(det W0[{q, r}
c])(n−p+1)/2

e−tr(W0Σ−1)/2

for every symmetric p× p matrix W0 = (wi,j), such that wq,r = wr,q = 0 and the

matrices W0[{q}
c], W0[{r}

c] are both positive definite. If σq,r = 0, then

(4) L =
Γ ((n − p + 1) /2) Γ (1/2)

Γ ((n − p + 2) /2)
.

For σq,r
6= 0,

(5) L = Γ ((n − p + 1) /2) Γ (1/2) e−Aσq,r

(
2

Bσq,r

)(n−p)/2

I(n−p)/2(Bσq,r)

where A and B are given with (3).
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Let W = (Wi,j) be a p× p positive definite random matrix with an arbitrary

distribution. Let M be a subset of the set {Wi,j , 1 ≤ i < j ≤ p} of non-diagonal

elements of W. The marginal density fMc, obtained after integration of the

density function of W with respect to the variables from M , can be presented by

a graph G M with the set of vertices V = {1, . . . , p}. For every element Wi,j of

the set M c = {Wi,j, 1 ≤ i < j ≤ p}\M we draw in the graph an undirected edge

between the vertices “i” and “j”. The same idea is used in [7] to describe joint

densities of sample correlation coefficients.

We shall recall some definitions and properties of graphical models. These

standard ideas are covered more thoroughly in [4].

Consider a graph G = (V,E) with a finite set of vertices V and a set of

undirected edges E. G is called a complete graph if every pair of distinct vertices

is connected by an edge. A subset of vertices U ⊆ V defines an induced subgraph

GU of G which contains all the vertices U and any edges in E that connect

vertices in U . A clique is a complete subgraph that is maximal, that is, it is not

a subgraph of any other complete subgraph.

Definition 1. A graph G is decomposable if and only if the set of cliques of

G can be ordered as (C1,. . . , Ck) so that for each i = 2, . . . , k if Si = Ci ∩
i−1
∪

j=1
Cj

then Si ⊂ Cl for some l < i.

Decomposable graphs are also known as triangulated or chordal graphs; Definition

1 is equivalent to the requirement that G contains no chordless cycles of length

greater than 3. The next Proposition for decomposable graphs is given in [3].

Proposition 3. Disconnecting x and y by removing an edge (x, y) from a

decomposable graph G will result in a decomposable graph if and only if x and y

are contained in exactly one clique.

The next Proposition, proved in [8], is a generalization of the Sylvester’s

determinant identity.

Proposition 4. Let A be a square matrix of order n and let i, k, j, l be

integers, such that 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n. Then

det AdetA[{i, k}c, {j, l}c] = detA[{i}c, {j}c] det A[{k}c, {l}c]

− detA[{i}c, {l}c] det A[{k}c, {j}c].
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3. Main results. Let W = (Wi,j) be a p× p random matrix with Wishart

distribution Wp(n,Σ). The joint distribution of all Wi,j, 1 ≤ i ≤ j ≤ p corre-

sponds to a complete graph G = (V,E) with set of vertices V = {1, . . . , p} and

the set of edges E, connecting every pair of distinct vertices in V . The integration

of the density function (2) with respect to a variable wq,r, where 1 ≤ q < r ≤ p,

corresponds to removing in the graph G the edge connecting the vertices “q”

and “r”. The resulting graph G1 has two cliques C1 and C2, C1 = GV \{q} and

C2 = GV \{r}. According to Definition 1, G1 is a decomposable graph. The ob-

tained after the integration marginal density, given by Proposition 2, is defined

for all elements of the matrix W0, for which the submatrices corresponding to

the two cliques C1 and C2, i.e. W0[{q}
c] and W0[{r}

c], are both positive definite.

Let the next integration be with respect to variable wi,j, such that the edge

(i, j) belongs to exactly one of the cliques C1 and C2, i.e. (i, j) /∈ C1 ∩C2. These

are variables for which one of the indices is q or r. Then wi,j is an element of ex-

actly one of the matrices W0[{q}
c] and W0[{r}

c]. Consequently, the bounds of the

integration with respect to wi,j can be obtained by directly applying Proposition

1 to the matrix W0[{q}
c] or W0[{r}

c] where wi,j belongs.

If, however, the next integration is with respect to variable wk,s such that

{q, r} ∩ {k, s} = ∅, it will present in both the matrices W[{q}c] and W[{r}c]. For

any of the two matrices, Proposition 1 gives bounds for wk,s of the form

ai < wk,s < bi, i = 1, 2.

Then the integration with respect to wk,s have to be done in bounds from

max(a1, a2) to min(b1, b2). The obtained after this integration marginal den-

sity will be defined for all wi,j, 1 ≤ i ≤ j ≤ p, (i, j) 6= (q, r), (k, s) for which the

matrices W[{q, k}c], W[{q, s}c], W[{r, k}c] and W[{r, s}c] are positive definite

and

(6) max(a1, a2) < min(b1, b2).

The inequality (6) can be solved only numerically with respect to a third variable

which we would want to exclude.

Theorem 1. Let W = (Wi,j) be a p×p positive definite random matrix with

an arbitrary distribution and M be a subset of the set {Wi,j, 1 ≤ i < j ≤ p} of

non-diagonal elements of W. Then the bounds of the integration of the density

function of W with respect to all the elements of M can be exactly obtained

by directly applying Proposition 1 if and only if the corresponding graph G M is

decomposable.
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To prove Theorem 1 we first give an equivalent definition for decomposable

graphs.

Definition 2. A graph G is decomposable if and only if it is a complete graph

or it can be obtained from a complete graph by stepwise removing of edges such

that each removed edge at the moment of its elimination belongs to exactly one

clique.

Lemma 1. Definitions 1 and 2 for decomposable graphs are equivalent.

P r o o f o f L e m m a 1. Let at first G be a decomposable graph according

to Definition 1. We shall prove that G satisfies the condition in Definition 2.

We shall use mathematical induction on the number k of the cliques of G. Let

us assume at first that G has k = 2 cliques C1 and C2, and (C1 ∩ C2) ⊂ C1.

Let us denote by Vi the set of vertices of the subgraph Ci, i = 1, 2. Let G′

be the complete graph with set of vertices V1 ∪ V2. Then G can be obtained

from G′ by removing the edges, connecting each vertex from the set V1\V2, i.e.

V1 ∩ V2, with every vertex from the set V2\V1. The condition in Definition 2

will be satisfied if the elimination of the edges is done in the following sequence:

we choose an arbitrary vertex v1 from the set V1\V2 and one after the other

we remove every edge, connecting v1 with a vertex from the set V2\V1; then we

repeat this procedure for another arbitrary chosen vertex from V1\V2 and so on

until we do this for every vertex from the set V1\V2. After each removing of an

edge connecting the first vertex v1 with a vertex from the set V2\V1, the resulting

graph always has two cliques one of which is G′

(V1∪V2)\{v1}
, i.e. every time the

next edge to remove belongs to the other clique. After the last removing of an

edge connecting v1 with a vertex from V2\V1, the resulting graph has again two

cliques – one is G′

(V1∪V2)\{v1}
and the other is C1 = G′

V1
. Then we repeat this

procedure for another vertex v2 from the set V1\V2. After each removing of an

edge connecting v2 with a vertex from V2\V1, the resulting graph always has

three cliques two of which are C1 = G′

V1
and G′

(V1∪V2)\{v1,v2}
. Every time the

next edge to remove belongs to the third clique. After the last removing of an

edge connecting v2 with a vertex from V2\V1, the resulting graph has two cliques

– C1 = G′

V1
and G′

(V1∪V2)\{v1,v2}
. The removing of the edges connecting the rest

vertices from the set V1\V2 with vertices from V2\V1 runs analogously; every time

the removed edge belongs to exactly one clique. Finally, after the last removed

edge we obtain the graph G with the two cliques C1 = G′

V1
and C2 = G′

V2
.

Let us assume now that every decomposable, according to Definition 1, graph
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with k cliques satisfies the condition in Definition 2. Let G be a decomposable,

according to Definition 1, graph with k + 1 cliques C1, . . . , Ck+1. We shall prove

that G satisfies the condition in Definition 2. Let us denote by G1 and G2 the two

subgraphs G1 = Ck+1 and G2 = C1 ∪ . . .∪Ck. According to Definition 1, G2 is a

decomposable graph and G1∩G2 is contained in some Cl, l ≤ k. Let us denote by

Vi the set of vertices of the subgraph Gi, i = 1, 2. Let G′ be the complete graph

with the set of vertices V1 ∪V2. Let us remove at first in G′ the edges connecting

each vertex from the set V1\V2 with every vertex from the set V2\V1. As it was

already shown for the case k = 2, this can be done by stepwise removing of edges

such that each removed edge at the moment of its elimination belongs to exactly

one clique. The resulting graph will have two cliques - G1 = Ck+1 = G′

V1
and

G′

V2
. The subgraph G′

V2
is a complete graph with the set of vertices V2 of the

subgraph G2. Since G2 is a decomposable in the sense of Definition 1 graph with

k cliques, according to the induction assumption, it can be obtained from G′

V2

by stepwise removing of edges such that each removed edge at the moment of

its elimination belongs to exactly one clique. Hence G satisfies the condition in

Definition 2. Consequently, regardless of the number of the cliques in a graph,

if it is decomposable according to Definition 1 then it satisfies the condition in

Definition 2.

Let now G be a decomposable according to Definition 2 graph. If G is a

complete graph then it has only one clique and obviously the conditions of De-

finition 1 are satisfied. Let G be an incomplete graph which is obtained from a

complete graph by stepwise removing of edges such that each removed edge at

the moment of its elimination belongs to exactly one clique. Now we shall use

Proposition 3. We begin with a complete graph, which is a decomposable graph

in the sense of Definition 1, and each time we remove an edge which belongs to

exactly one clique. Consequently we stay all the time in the set of graphs which

are decomposable in the sense of Definition 1. �

P r o o f o f Th e o r e m 1. Using Lemma 1, Theorem 1 can be easily proved.

Let the graph G M be decomposable. According to Definition 2, this graph can

be obtained from a complete graph by stepwise removing of edges such that each

removed edge at the moment of its elimination belongs to exactly one clique.

The integration of the density function of W with respect to the variables from

M can be done in the same sequence as the removing of the edges. Then the

bounds of the integration for every element of M can be exactly obtained by

directly applying Proposition 1 to the submatrix of W composed of the rows and
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columns with numbers from the set of vertices of the corresponding clique.

Assume now that the graph G M is non-decomposable. Consequently, for

every sequence of removing of the excluded edges there always will be an edge

which belongs to at least two cliques at the moment of its elimination. Each

clique corresponds to a submatrix of the matrix W. For every such submatrix

Proposition 1 will give bounds ai, bi for the corresponding to this edge variable.

The integration with respect to this variable have to be done in bounds from

max(ai) to min(bi). �

The proof of Lemma 1 shows a possible sequence for excluding of the chosen

variables from the density of W such that the bounds of the integration with

respect to every excluded variable can be exactly obtained by directly applying

Proposition 1. Let the graph corresponding to the desired marginal density be

decomposable with k cliques which are ordered as C1, . . . , Ck, according to Defi-

nition 1. Let us denote by Vi the set of vertices of Ci, i = 1, . . . , k. We choose at

first an arbitrary vertex v from the last vertex set Vk and exclude one after an-

other all the variables with one of the indices v and the other index corresponding

to a vertex outside the Vk. Then we repeat this procedure for another arbitrary

chosen vertex from Vk and so on until we do this for all vertices in Vk. Next we

repeat the same for the subgraph C1 ∪ . . . ∪Ck−1 with respect to the last vertex

set Vk−1 in it and so on. Finally, we do this for the subgraph C1∪C2 with respect

to its last vertex set V2.

The quantity L in the marginal density given by Proposition 2 is more com-

plicated when σq,r
6= 0. Using 8.445 in [2], L can be expressed in terms of infinite

series as

L =
Γ
(

n−p+1
2

)
Γ
(

1
2

)

Γ
(

n−p+2
2

) e−Aσq,r

[
1 +

∞∑

k=1

(Bσq,r)2k

(ν + 1) . . . (ν + k)k!22k

]
,

where ν =
n − p

2
. Hence, according to 9.14 1 in [2], L has a representation by

the confluent hypergeometric limit functions 0F1(;α; z) of the form

L =
Γ
(

n−p+1
2

)
Γ
(

1
2

)

Γ
(

n−p+2
2

) e−Aσq,r

0F1

(
;
n − p + 2

2
;

(
Bσq,r

2

)2
)

.

When σq,r = 0, L takes the form (4).
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Theorem 2. Let W = (Wi,j) has Wishart distribution Wp(n,Σ) and q, r be

integers, 1 ≤ q < r ≤ p. When σq,r = 0, the marginal density f
{Wq,r}

c(W0) given

by Proposition 2, can be written in the form

(7) f
{Wq,r}

c(W0) =
fp−1,n,Σ[{q}c](W0[{q}

c]) fp−1,n,Σ[{r}c](W0[{r}
c])

fp−2,n,Σ[{q,r}c](W0[{q, r}c])
,

where fp,n,Σ(W) is the Wishart density, given by (2).

P r o o f. We shall prove the Theorem for q = p − 1 and r = p at first. From

σp−1,p = σp,p−1 = 0 it follows that det Σ[{p−1}c, {p}c] = det Σ[{p}c, {p−1}c] = 0.

Using this fact and applying Proposition 4, we obtain the next equalities, which

holds for 1 ≤ i, j < p − 1:

(8) det Σ detΣ[{i, p}c, {j, p}c] = det Σ[{i}c, {j}c] det Σ[{p}c]

− detΣ[{i}c, {p}c] detΣ[{p}c, {j}c];

detΣ[{p − 1}c] det Σ[{i, p − 1, p}c, {j, p − 1, p}c]

(9) = det Σ[{i, p − 1}c, {j, p − 1}c] detΣ[{p − 1, p}c]

− det Σ[{i, p − 1}c, {p − 1, p}c] detΣ[{p − 1, p}c, {j, p − 1}c];

(10) detΣ det Σ[{i, p}c, {p − 1, p}c] = det Σ[{i}c, {p − 1}c] det Σ[{p}c];

(11) detΣ detΣ[{p − 1, p}c] = detΣ[{p − 1}c] det Σ[{p}c];

(12) detΣ detΣ[{i, p − 1}c, {p − 1, p}c] = − detΣ[{i}c, {p}c] det Σ[{p − 1}c].

We shall use the equalities (8), (9), (11), (12) to prove that

(13) tr(W0Σ
−1) = tr{W0[{p − 1}c](Σ[{p − 1}c])−1

} + tr{W0[{p}
c](Σ[{p}c])−1

}

−tr{W0[{p − 1, p}c](Σ[{p − 1, p}c])−1
}.

Let us denote the elements of the matrices (Σ[{p − 1}c])−1, (Σ[{p}c])−1 and

(Σ[{p − 1, p}c])−1 with σi,j
p−1, σi,j

p and σi,j
p−1,p respectively. Let 1 ≤ i, j < p − 1.
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The coefficient of wi,j in the left hand side of (13) is σi,j, while in the right hand

side it is σi,j
p−1 + σi,j

p − σi,j
p−1,p. Consequently, we have to prove that

(14)
detΣ[{i}c, {j}c]

detΣ
=

detΣ[{i, p − 1}c, {j, p − 1}c]

detΣ[{p − 1}c]

+
detΣ[{i, p}c, {j, p}c]

det Σ[{p}c]
−

detΣ[{i, p − 1, p}c, {j, p − 1, p}c]

det Σ[{p − 1, p}c]
.

Dividing (8) by detΣ detΣ[{p}c] we obtain that

(15)
detΣ[{i}c, {j}c]

detΣ
−

detΣ[{i, p}c, {j, p}c]

detΣ[{p}c]

=
detΣ[{i}c, {p}c] det Σ[{p}c, {j}c]

detΣ detΣ[{p}c]
.

Dividing (9) by detΣ[{p − 1}c] det Σ[{p − 1, p}c] we derive

(16)
det Σ[{i, p − 1}c, {j, p − 1}c]

det Σ[{p − 1}c]
−

detΣ[{i, p − 1, p}c, {j, p − 1, p}c]

detΣ[{p − 1, p}c]

=
det Σ[{i, p − 1}c, {p − 1, p}c] det Σ[{p − 1, p}c, {j, p − 1}c]

detΣ[{p − 1}c] det Σ[{p − 1, p}c]
.

From (15) and (16) we get that (14) is equivalent to the equality

detΣ[{i, }c, {p}c] det Σ[{p}c, {j}c]

detΣ det Σ[{p}c]

=
detΣ[{i, p − 1}c, {p − 1, p}c] detΣ[{p − 1, p}c, {j, p − 1}c]

det Σ[{p − 1}c] detΣ[{p − 1, p}c]

which can be verified using (11) and (12). By comparing the coefficients of wi,p−1

in both sides of equality (13) we get the condition

detΣ[{i}c, {p − 1}c]

detΣ
=

detΣ[{i, p}c, {p − 1, p}c]

detΣ[{p}c]

which follows directly from (10). Finally, comparing the coefficients of wi,p in

both sides of (13) we get the relation

detΣ[{i}c, {p}c]

detΣ
=

− det Σ[{i, p − 1}c, {p − 1, p}c]

det Σ[{p − 1}c]
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which follows from (12). Consequently, the representation (13) holds. The condi-

tion 1/det Σ = (det Σ[{p − 1, p}c]) / (det Σ[{p − 1}c] detΣ[{p}c]) for the covari-

ance matrix Σ can be derived from (11). Finally, we can easily check that

L/Γp(n/2) = Γp−2(n/2)/ (Γp−1(n/2))2, where L is given by (4). Consequently,

the Theorem is true for q = p − 1 and r = p.

Let now q, r be arbitrary integers, 1 ≤ q < r ≤ p. Let in the matrix W0 we

place the q’th and r’th rows after the last row, and q’th and r’th columns after the

last column. We shall obtain a matrix W′

0 with detW′

0 = detW0. Let us do the

same with the matrix Σ and obtain analogously a matrix Σ′ with detΣ′ = detΣ.

Since tr(W0Σ
−1) = tr(W′

0Σ
′−1), the density f

{Wq,r}
c(W0) can be expresses in

terms of W′

0 and Σ′. The element wq,r = 0 of W0 lies on the (p − 1)’th row and

p’th column of the matrix W′

0. The Theorem is true for q = p − 1 and r = p,

hence

f
{Wq,r}

c(W0) =
fp−1,n,Σ′[{p−1}c](W

′

0[{p − 1}c]) fp−1,n,Σ′[{p}c](W
′

0[{p}
c])

fp−2,n,Σ′[{p−1,p}c](W′

0[{p − 1, p}c])

=
fp−1,n,Σ[{q}c](W0[{q}

c]) fp−1,n,Σ[{r}c](W0[{r}
c])

fp−2,n,Σ[{q,r}c](W0[{q, r}c])
. �

We shall denote the number of the elements of a set V by |V |.

Theorem 3. Let W = (Wi,j) has Wishart distribution Wp(n,Σ) and M be

a subset of the set {Wi,j, 1 ≤ i < j ≤ p} of non-diagonal elements of W. Let

σi,j = 0 for every element Wi,j of M . Let the graph G M be decomposable with

k cliques C1, . . . , Ck, ordered according to Definition 1 and Vi be the set of

vertices of Ci, i = 1, . . . , k. Then the joint density fMc of the elements of the set

M c = {Wi,j, 1 ≤ i < j ≤ p}\M can be written in the form

fMc(W0) =

k∏
i=1

f
|Vi|,n,Σ[{Vi}](W0[{Vi}])

k∏
i=2

f
|Ui|,n,Σ[{Ui}](W0[{Ui}])

,

where W0 = (wi,j) is a p× p symmetric matrix, such that wi,j = 0 for Wi,j ∈ M ;

fp,n,Σ(W) is the Wishart density function given by (2) and Ui = (V1∪ . . .∪Vi−1)∩

Vi, i = 2, . . . , k.
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P r o o f. The proof is by induction and follows the scheme of the proof of

Lemma 1. �
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