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MARGINAL DENSITIES OF THE WISHART
DISTRIBUTION

Evelina Veleva

ABSTRACT. We consider marginal densities obtained by elimination of
non-diagonal elements of a positive definite random matrix with an arbi-
trary distribution. For a p x p random matrix W such a marginal density is
presented by a graph with p vertices. For every non-diagonal element of W,
included in the density we draw in the graph an undirected edge between the
corresponding vertices. By giving an equivalent definition of decomposable
graphs we show that the bounds of the integration with respect to every
excluded element of W can be exactly obtained if and only if the corre-
sponding graph is decomposable. The author gives in an explicit form some
of the marginal densities of an arbitrary Wishart distribution.

1. Introduction. Wishart distribution arises as the distribution of the
sample covariance matrix for a sample from a multivariate normal distribu-
tion. Let x3,...,x, be n independent observations on a random vector x with
p-variate normal distribution N,(p, %), p < n, with mean vector p and posi-
tive definite covariance matrix 3. Let S be the sample covariance matrix S =
(X0 (i —X)(xs —%)") /(n— 1), x = (37, x;) /n. Then the joint distribution
of the elements of the matrix S is Wishart distribution W, (n — 1, 1/(n — 1))
(see [1], [5]). Hence the joint distributions of sets of elements of the matrix S are
marginal distributions of the Wishart distribution.
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Let W = (W;;) be a random matrix with Wishart distribution W(n,X).
Let W[{k,...,s}| denotes the submatrix of the matrix W, composed of the
rows and columns with numbers from the set {k,...,s}, where 1 < k < s <
p. It is known (see [1], [5]) that W[{k,...,s}] has again Wishart distribution
We_kt1(n,X[{k, ..., s}]). This marginal distribution corresponds to all the ele-
ments {W; j,k < i < j < s} on and above the main diagonal in the submatrix
W[{k,...,s}]. Marginal densities for the sets of the form

(1) {Wij,k <i<j < spP\{Wyr},

where £k < ¢ < r < s, are obtained in [6] by integration the density of the
Wishart distribution (2) below with respect to the element wg, of the positive
definite matrix W. In this paper we give alternative representations of these mar-
ginal densities and obtain some generalizations. We consider marginal densities
obtained by elimination of non-diagonal elements of a positive definite random
matrix with an arbitrary distribution. For a p X p random matrix W such a
marginal density is presented by a graph with p vertices. For every non-diagonal
element of W, included in the density we draw in the graph an undirected edge
between the corresponding vertices. By giving an equivalent definition of decom-
posable graphs we show that the bounds of the integration with respect to every
excluded element of W can be exactly obtained if and only if the corresponding
graph is decomposable.

2. Preliminary notes. A p x p random matrix W with Wishart distrib-
ution Wy (n,X), where p < n+ 1 and X is a positive definite p x p matrix, has
probability density function of the form

1
~ 2m/2T, (n/2) (det X)/2

9 W det W (n—p—l)/?e—tr(WE_l)/Q
2)  frnx(W) ( )

for any real p x p positive definite matrix W, where I',(+) is the multivariate
gamma function defined as T, (y) = 7P~/ [F-i Ty + (1 —5)/2] and det(-),
tr(-) denote the determinant and the trace of a matrix.

For a given p x p matrix W, by W][a, 5] we denote the submatrix of W,
composed of the rows with numbers from the set « and the columns with numbers
from the set 3, where «, [ are nonempty subsets of the set {1,...,p}.

When 5 = a, W|a, o] is denoted simply by W|a]. For the complement of «
in {1,...,p} we use the notation a*.
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For instance, W[{q}¢, {r}] denotes the submatrix, which can be obtained
from W by deleting its ¢-th row and r-th column.

The next Proposition, which is proved in [6], gives the bounds for the integra-
tion of the density function of a random positive definite matrix with an arbitrary
distribution with respect to an arbitrary chosen its non — diagonal element.

Proposition 1. Let W = (w; ;) be a real p x p symmetric matriz and q,r be
fized integers, 1 < g < r < p. Let Wq be the matriz, obtained from the matriz
W by replacing the elements wq, and wyq with zeros. The matriz W is positive
definite if and only if the matrices W[{q}] and W[{r}] are positive definite and
the element wg , satisfies the inequalities

A-B<wg, <A+B

where

(=) 9det Wo[{q}", {r}"] ~/det W[{g}°] det W[{r}°]
(3 A= detWig, 1] , B= TtWie T

The result after the integration of the Wishart density (2) is given by the
next Proposition (see [6]) in terms of modified Bessel function of the first kind
I,(+) (see [2], 8.445). Throughout the paper, the elements of the matrix X! are
denoted by ol 1< <j<p.

Proposition 2. Let W = (W; ;) has Wishart distribution Wp(n,X) and g,
r be integers, 1 < g < r < p. Then the marginal density, corresponding to the set
of elements {W; j, 1 <1 < j < p}\{Wy,} has the form

fow,ye(Wo) =
L (det Wol{g}] det Wo[{r}D" " w0
27P/2T, (n/2) (det 2)™/2  (det Wo[{g, r})) " P+1/2

for every symmetric p x p matric Wo = (w;;), such that wy, = w, 4 = 0 and the
matrices Wol{q}¢], Wo[{r}¢] are both positive definite. If 9" =0, then

P((n-p+1)/2) D(1/2)

W P T T
For %" £ 0,
. 9 (n—p)/2
O L=T(-p 0D T2 A (F2) T Lapa(Bon)

where A and B are given with (3).
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Let W = (W; ;) be a p x p positive definite random matrix with an arbitrary
distribution. Let M be a subset of the set {W; ;,1 <i < j < p} of non-diagonal
elements of W. The marginal density fase, obtained after integration of the
density function of W with respect to the variables from M, can be presented by
a graph G_jr with the set of vertices V' = {1,...,p}. For every element W; ; of
the set M¢ = {W;;,1 <i<j <p}\M we draw in the graph an undirected edge

“sn
]

between the vertices and “j”. The same idea is used in [7] to describe joint
densities of sample correlation coefficients.

We shall recall some definitions and properties of graphical models. These
standard ideas are covered more thoroughly in [4].

Consider a graph G = (V, E) with a finite set of vertices V' and a set of
undirected edges E. G is called a complete graph if every pair of distinct vertices
is connected by an edge. A subset of vertices U C V defines an induced subgraph
Gy of G which contains all the vertices U and any edges in E that connect
vertices in U. A clique is a complete subgraph that is maximal, that is, it is not

a subgraph of any other complete subgraph.

Definition 1. A graph G is decomposable if and only if the set of cliques of
G can be ordered as (Cy,..., Cy) so that for eachi=2,...,k if S; = C;N 1011 C;
j=
then S; C Cy for some | < i.

Decomposable graphs are also known as triangulated or chordal graphs; Definition
1 is equivalent to the requirement that G contains no chordless cycles of length
greater than 3. The next Proposition for decomposable graphs is given in [3].

Proposition 3. Disconnecting x and y by removing an edge (x,y) from a
decomposable graph G will result in a decomposable graph if and only if x and y
are contained in exactly one clique.

The next Proposition, proved in [8], is a generalization of the Sylvester’s
determinant identity.

Proposition 4. Let A be a square matriz of order n and let i, k, j, [ be
integers, such that 1 <i<k<n,1<j<l<n. Then

det Adet A[{i, k}¢, {7,1}°] = det A[{i}, {j}°] det A[{k}, {l} ]
— det A{i}", {1}°] det A[{k}", {j}°].
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3. Main results. Let W = (W; ;) be a p x p random matrix with Wishart
distribution Wy(n,X). The joint distribution of all W; ;, 1 < i < j < p corre-
sponds to a complete graph G = (V, E) with set of vertices V = {1,...,p} and
the set of edges F, connecting every pair of distinct vertices in V. The integration
of the density function (2) with respect to a variable wy,, where 1 < ¢ < r < p,
corresponds to removing in the graph G the edge connecting the vertices “q”
and “r”. The resulting graph G has two cliques C and Cs, C7 = GV\{q} and
Cy = Gy\{r}- According to Definition 1, G is a decomposable graph. The ob-
tained after the integration marginal density, given by Proposition 2, is defined
for all elements of the matrix Wy, for which the submatrices corresponding to
the two cliques Cy and Cy, i.e. Wy[{¢}¢] and W[{r}¢], are both positive definite.

Let the next integration be with respect to variable w; ;, such that the edge
(4,7) belongs to exactly one of the cliques C} and Cs, i.e. (i,7) ¢ C1 N Cy. These
are variables for which one of the indices is ¢ or r. Then w; ; is an element of ex-
actly one of the matrices Wy [{¢}¢] and Wy[{r}¢]. Consequently, the bounds of the
integration with respect to w; ; can be obtained by directly applying Proposition
1 to the matrix Wo[{q}¢] or Wq[{r}¢] where w; ; belongs.

If, however, the next integration is with respect to variable wy, s such that
{q,r} N{k,s} =0, it will present in both the matrices W[{q}¢] and W[{r}¢]. For
any of the two matrices, Proposition 1 gives bounds for wy, s of the form

a; < Wk s <b;, i=12.

Then the integration with respect to wy have to be done in bounds from
max(ai,az) to min(by,be). The obtained after this integration marginal den-
sity will be defined for all w; ;, 1 <1i < j <p, (i,5) # (¢,7), (k,s) for which the
matrices W[{q, k}¢], W[{q, s}¢], W[{r, k}¢] and W[{r, s}¢| are positive definite
and

(6) max(ai,as) < min(by, ba).

The inequality (6) can be solved only numerically with respect to a third variable
which we would want to exclude.

Theorem 1. Let W = (W; ;) be a p x p positive definite random matriz with
an arbitrary distribution and M be a subset of the set {W;;,1 < i < j < p} of
non-diagonal elements of W. Then the bounds of the integration of the density
function of W with respect to all the elements of M can be eractly obtained
by directly applying Proposition 1 if and only if the corresponding graph G_pr is
decomposable.
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To prove Theorem 1 we first give an equivalent definition for decomposable
graphs.

Definition 2. A graph G is decomposable if and only if it is a complete graph
or it can be obtained from a complete graph by stepwise removing of edges such
that each removed edge at the moment of its elimination belongs to exactly one
clique.

Lemma 1. Definitions 1 and 2 for decomposable graphs are equivalent.

Proof of Lemma 1. Let at first G be a decomposable graph according
to Definition 1. We shall prove that G satisfies the condition in Definition 2.
We shall use mathematical induction on the number & of the cliques of G. Let
us assume at first that G has k = 2 cliques C; and Cs, and (Cy N Cy) C Ch.
Let us denote by V; the set of vertices of the subgraph C;, i = 1,2. Let G’
be the complete graph with set of vertices V3 U V5. Then G can be obtained
from G’ by removing the edges, connecting each vertex from the set V;\Va, i.e.
Vi N Va, with every vertex from the set Vo\Vi. The condition in Definition 2
will be satisfied if the elimination of the edges is done in the following sequence:
we choose an arbitrary vertex vy from the set V3\V2 and one after the other
we remove every edge, connecting v; with a vertex from the set V5\Vj; then we
repeat this procedure for another arbitrary chosen vertex from V;\V, and so on
until we do this for every vertex from the set Vj\Va;. After each removing of an
edge connecting the first vertex vq with a vertex from the set V2\ Vi, the resulting
graph always has two cliques one of which is G’(Vlqu)\ {1} i.e. every time the
next edge to remove belongs to the other clique. After the last removing of an
edge connecting v1 with a vertex from V5\Vj, the resulting graph has again two
cliques — one is G/(V1UV2)\ (o) and the other is Cy = GY.. Then we repeat this
procedure for another vertex vy from the set V;\Va2. After each removing of an
edge connecting ve with a vertex from V5\Vj, the resulting graph always has
three cliques two of which are C; = G7, and G/(V1UV2)\ (1,00} EVery time the
next edge to remove belongs to the third clique. After the last removing of an
edge connecting ve with a vertex from V2\ Vi, the resulting graph has two cliques
- Cy =Gy, and G,(V1UV2)\{U1,U2}' The removing of the edges connecting the rest
vertices from the set V;\V, with vertices from V5\V; runs analogously; every time
the removed edge belongs to exactly one clique. Finally, after the last removed
edge we obtain the graph G with the two cliques C1 = Gy, and Cy = GY,.
Let us assume now that every decomposable, according to Definition 1, graph
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with k cliques satisfies the condition in Definition 2. Let G be a decomposable,
according to Definition 1, graph with &£+ 1 cliques C, ..., Cx11. We shall prove
that G satisfies the condition in Definition 2. Let us denote by G and G4 the two
subgraphs G; = Cy41 and Gy = C1 U...UCy. According to Definition 1, G is a
decomposable graph and G1 NGy is contained in some Cj, [ < k. Let us denote by
V; the set of vertices of the subgraph G;, i = 1,2. Let G’ be the complete graph
with the set of vertices V3 U V5. Let us remove at first in G’ the edges connecting
each vertex from the set V1\V, with every vertex from the set V5\V;. As it was
already shown for the case k = 2, this can be done by stepwise removing of edges
such that each removed edge at the moment of its elimination belongs to exactly
one clique. The resulting graph will have two cliques - G; = Ciy1 = GQ/l and

V,- The subgraph GY, is a complete graph with the set of vertices Va of the
subgraph G5. Since G5 is a decomposable in the sense of Definition 1 graph with
k cliques, according to the induction assumption, it can be obtained from G’V2
by stepwise removing of edges such that each removed edge at the moment of
its elimination belongs to exactly one clique. Hence G satisfies the condition in
Definition 2. Consequently, regardless of the number of the cliques in a graph,
if it is decomposable according to Definition 1 then it satisfies the condition in
Definition 2.

Let now G be a decomposable according to Definition 2 graph. If G is a
complete graph then it has only one clique and obviously the conditions of De-
finition 1 are satisfied. Let G be an incomplete graph which is obtained from a
complete graph by stepwise removing of edges such that each removed edge at
the moment of its elimination belongs to exactly one clique. Now we shall use
Proposition 3. We begin with a complete graph, which is a decomposable graph
in the sense of Definition 1, and each time we remove an edge which belongs to
exactly one clique. Consequently we stay all the time in the set of graphs which
are decomposable in the sense of Definition 1. [

Proof of Theorem 1. Using Lemma 1, Theorem 1 can be easily proved.
Let the graph G_j; be decomposable. According to Definition 2, this graph can
be obtained from a complete graph by stepwise removing of edges such that each
removed edge at the moment of its elimination belongs to exactly one clique.
The integration of the density function of W with respect to the variables from
M can be done in the same sequence as the removing of the edges. Then the
bounds of the integration for every element of M can be exactly obtained by
directly applying Proposition 1 to the submatrix of W composed of the rows and
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columns with numbers from the set of vertices of the corresponding clique.

Assume now that the graph G_j; is non-decomposable. Consequently, for
every sequence of removing of the excluded edges there always will be an edge
which belongs to at least two cliques at the moment of its elimination. Each
clique corresponds to a submatrix of the matrix W. For every such submatrix
Proposition 1 will give bounds a;, b; for the corresponding to this edge variable.
The integration with respect to this variable have to be done in bounds from
max(a;) to min(b;). O

The proof of Lemma 1 shows a possible sequence for excluding of the chosen
variables from the density of W such that the bounds of the integration with
respect to every excluded variable can be exactly obtained by directly applying
Proposition 1. Let the graph corresponding to the desired marginal density be
decomposable with k cliques which are ordered as (Y, ..., Cg, according to Defi-
nition 1. Let us denote by V; the set of vertices of C;, i =1,...,k. We choose at
first an arbitrary vertex v from the last vertex set Vi and exclude one after an-
other all the variables with one of the indices v and the other index corresponding
to a vertex outside the Vi. Then we repeat this procedure for another arbitrary
chosen vertex from Vj and so on until we do this for all vertices in V. Next we
repeat the same for the subgraph Cy U ... U Cy_1 with respect to the last vertex
set Vi_1 in it and so on. Finally, we do this for the subgraph CyUC5 with respect
to its last vertex set V5.

The quantity L in the marginal density given by Proposition 2 is more com-
plicated when %" # 0. Using 8.445 in [2], L can be expressed in terms of infinite

series as
F<R_Tp+2> 1 (v+1)...(v+k)k22k |’
e % Hence, according to 9.14 1 in [2], L has a representation by

the confluent hypergeometric limit functions o F} (; «; z) of the form

n—p+1 1 2
L F( 2 ) F(2)€7AUQ’T0F1 <‘n—p—|—2' <ng> )

—p+2 ’ 2 T\ 2
r(=)

When 09" = 0, L takes the form (4).
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Theorem 2. Let W = (W, ;) has Wishart distribution Wy(n,X) and q, r be
integers, 1 < q <r <p. When c%" =0, the marginal density f{qu,ﬁ}C(WO) given
by Proposition 2, can be written in the form
fpfl,n,E[{q}C] (WO [{Q}C]) fpfl,n,E[{r}C] (WO [{T}C])

Fo—2mn.2(0ry (Wol{g: 73¢]) ’

where fpn (W) is the Wishart density, given by (2).

(7) fowg e (Wo) =

Proof. We shall prove the Theorem for ¢ = p — 1 and r = p at first. From
oP~bP = gPP~1 = ( it follows that det S[{p—1}¢, {p}¢] = det X[{p}¢, {p—1}¢] = 0.
Using this fact and applying Proposition 4, we obtain the next equalities, which
holds for 1 < i, 5 <p—1:

(8)  detXdet B[{i,p}*, {j,p}°] = det £[{i}*, {j}] det Z[{p}]
—det X[{i}*, {p}*] det Z{p}*, {7}°];
det X[{p — 1} det S[{i,p — 1,p}, {j.p — 1, p}]
(9) = det Z[{i,p — 1}, {j,p — 1}]det Z[{p — 1,p}“]

—det B[{7,p — 1}°,{p — 1, p}“ldet Z[{p — 1,p}°, {j,p — 1}];
(10) det X det X[{i,p}", {p — 1, p}] = det L[{i}*, {p — 1} det Z[{p}“];
(11) det X det S[{p — 1,p}¢] = det B[{p — 1}°] det Z[{p}°];

(12)  detXdet X[{i,p — 1}°,{p — 1,p}°] = —det B[{i}, {p}‘] det Z[{p — 1}°].
We shall use the equalities (8), (9), (11), (12) to prove that
(13) tr(Wox™") = tr{Wo[{p — 1}](S[{p — 13D~} + tr{Wo[{p}I(Z[{p}) "}

—tT{WO[{p - 17p}c](2[{p - lap}c])_l}'

Let us denote the elements of the matrices (X[{p — D=1, (S[H{p}]) ! and
(EHp — 1,p})) 7" with 0,7, 037 and 0,7 | respectively. Let 1 <4,j <p— 1.
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The coefficient of w; ; in the left hand side of (13) is ¢, while in the right hand

side it is a;’z 1+ aﬁ,’j — ot Consequently, we have to prove that

p—1,p*
(14) det X[{i}*, {j}] _ detX[{i,p -1} {j,p — 1}°]
det & det X[{p — 1}
det £[{i, p}©, {j,p}°]  detX[{i,p —1,p} {j,p — 1,p}"]
det S[{p}°] det X[{p — 1,p}°] '

Dividing (8) by det X det X[{p}¢] we obtain that

det B[{i}°, {5}°]  det X[{i,p}", {4, p}"]
det det S[{p}]
_ det B[{i}°, {p}] det S[{p}*, {4}]
det X det X[{p}] '

(15)

Dividing (9) by det X[{p — 1}¢] det X[{p — 1, p}©] we derive

det S[{i,p — 1}, {j,p — 1}°]  detZ[{i,p — 1, p}*, {j,p — 1,p}"]
det X[{p — 1}] det X[{p — 1,p}*]
_ detX[{i,p — 1}, {p — 1, p} det S[{p — 1,p}°, {j,p — 1}°]
detS[{p — 1} det S[{p — 1, p}°] '
From (15) and (16) we get that (14) is equivalent to the equality
det X[{i, }°, {p}] det X[{p}©, {j}]
det X det X[{p}¢]

_ detX[{i,p —1}° {p — 1,p}|det S[{p — L, p}*, {j.p — 1}°]
det S[{p — 1}¢] det =[{p — 1, p}]

which can be verified using (11) and (12). By comparing the coefficients of w; 1
in both sides of equality (13) we get the condition

det X[{i}, {p — 1}°] _ det X[{i,p}*, {p — 1,p}"]
det det X[{p}]

(16)

which follows directly from (10). Finally, comparing the coefficients of w;, in
both sides of (13) we get the relation
det X[{i}°, {p}] _ —det Z[{i,p — 1}, {p — 1, p}*]

det® - det X[{p — 1}]
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which follows from (12). Consequently, the representation (13) holds. The condi-
tion 1/det¥ = (det X[{p — 1,p}¢]) / (det X[{p — 1}¢] det X[{p}¢]) for the covari-
ance matrix ¥ can be derived from (11). Finally, we can easily check that
L/Tp(n/2) = Tp_o(n/2)/ (Tp_1(n/2))*, where L is given by (4). Consequently,
the Theorem is true for g =p—1 and r = p.

Let now ¢, r be arbitrary integers, 1 < ¢ < r < p. Let in the matrix Wy we
place the ¢’th and r’th rows after the last row, and ¢’th and r’th columns after the
last column. We shall obtain a matrix W/ with detW’g = detWj. Let us do the
same with the matrix ¥ and obtain analogously a matrix X/ with detX’ = detX.
Since tr(WoX™!) = tr(W/oX'~1), the density fw, 3c(Wo) can be expresses in
terms of W’y and ¥'. The element wg, = 0 of Wy lies on the (p — 1)’th row and
p’th column of the matrix W/y. The Theorem is true for ¢ = p — 1 and r = p,
hence

fo—tn1tp—13 ] (Wol{p — 13 fomtns1m39) (Wol{p}])
fp—2,n,2’[{p—1,p}c] (WIO[{p - 1,p}c])

Fwqye(Wo) =

_ Fo1m3igy Wolla} D fo-rnsiry (Wol{r}])

. O
fp72,n,2[{q,r}c] (WO [{(L T}C])

We shall denote the number of the elements of a set V' by [V|.

Theorem 3. Let W = (W, ;) has Wishart distribution Wp(n,X) and M be
a subset of the set {W;;,1 < i < j < p} of non-diagonal elements of W. Let
ol =0 for every element Wi of M. Let the graph G_p be decomposable with
k cliques Cy, ..., Ck, ordered according to Definition 1 and V; be the set of
vertices of C, i = 1,..., k. Then the joint density fare of the elements of the set
M ={W;;,1<i<j<pH\M can be written in the form

k

I it zigvinn (Wol{Vi}))
fue(Wo) = 5= :

I1 fivgnzioe (Wol{Ui])

where Wo = (wj ;) is a p X p symmetric matriz, such that w; j =0 for W; ; € M;
fpns(W) is the Wishart density function given by (2) and U; = (V1U...UV;_1)N
Vi,i=2,...,k.
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Proof. The proof is by induction and follows the scheme of the proof of
Lemma 1. O
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