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FRACTAL ANALYSIS FOR CANCER RESEARCH: CASE
STUDY AND SIMULATION OF FRACTALS

Milan Stehĺık∗ , Fabian Wartner
Mária Minárová†

Abstract. This paper discusses the possibilities of application of fractal
geometry for cancer research. Fractal geometry is a new tool that can be
extremely useful for many problems in almost every scientific field. The
studies recently done in medicine show fractals can be applied for cancer
detection and the description of pathological architecture of tumors. This
fact is not surprising, as due to the irregular structure, cancerous cells can
be interpreted as fractals. Cancer diagnosis can be done via determination
of fractal dimension. A likelihood ratio test for the Hausdorff dimension
is employed in [7]. We empirically checked the obtained tests on Sierpin-
ski Carpet and on cancer data. However, several issues arisen, especially
those related to simulation of fractals which may mimic tissues. These are
discussed in the present paper.

1. Introduction. The term fractal came from the Latin adjective fractus
meaning fragmented or broken and was originally given to highly irregular sets by
the French mathematician Benoit Mandelbrot in 1975 [4]. He characterized frac-
tal as ”a rough or fragmented geometric shape that can be split into parts, each
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of which is (at least approximately) a reduced-size copy of the whole”. Mandel-
brot introduced fractals as a new class of mathematical objects which represent
nature. Many areas of science, such as physics, chemistry and biology, soon recog-
nized how powerful his ideas were. In mathematics, a new area, namely fractal
geometry, came up and developed very quickly on the base of geometric measure
theory, harmonic analysis, dynamical systems and ergodic theory. Fractal geom-
etry can be viewed as an extension of the classical Euclidean geometry. Fractal
dimension is a number associated with a fractal that can be used to compare one
fractal to another. It shows how densely the fractal occupies the metric space in
which it is situated. Fractal dimensions are of great importance, because they
can be attached to real-world data as well. Every fractal, including fractals found
in nature, has its own dimension and this dimension can be measured by means
of experiments. There are many ways of defining fractal dimension. Such terms,
as the Hausdorff, the Sandbox, the box-counting and the packing dimensions are
widely used. Hausdorff dimension plays an important role in developing general
mathematical theory. On the other hand, the box-counting dimension can be
easily implemented in practice, that is why it is so widely used. Box-counting
dimension is probably the simplest dimension in use.

[1] discussed planar tissue preparations in mice which has a remarkably con-
sistent scaling exponents (fractal dimensions) for tumor vasculature even among
tumor lines that have quite different vascular densities and growth characteris-
tics. An extensive study of cancer risk assessment on simulated and real data and
fractal based cancer is given in [7]. Both non-random and random carpets are
modelling the cancer growth. On the other hand, in previous investigations, it
has been shown that the texture of mammary tissue, as seen at low magnification,
may be characterized quantitatively in terms of stereology (see [5] and references
therein). In [6], the images of the mammary cases were reexamined (20 cases
of mastopathy and 20 cases of mammary cancer, each with 10 images). In [8] a
construction of a statistical test is given, which enables to distinguish between
the two groups.

The paper is organized as follows. Case study discriminating the mammary
tissues motivates fractal analysis for cancer research in section 2. In section 3
we illustrate issues which we met by simulation of fractals. Such simulations are
useful for validation of statistical procedures on complex sets.

2. Case study. Data has been taken from [6] and are collected from his-
tological examination whose result was a grey level image with a resolution of
512x512 pixels. These 400 histological images of mammary tissues were trans-
mitted to black-and-white binary images with a black-and-white CCD camera.
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These binary images consisted two phases only. We have used ImageJ software
(see Appendix) to determine the box-counting dimension of binary images.

Fig. 1 Histogram of empirical box-counting dimensions

2.1. Goodness of fit. Naturally, the box-counting dimensions of these 391
binary images are between 1 and 2. The mean is 1.590 and standard deviation
is 0.142. The lowest dimension is 1.104 and the highest dimension is 1.872. The
histogram plotted in Figure 1 shows a skewed to the left distribution. To fit a
distribution to the data it was assumed that it could be a gamma distribution or a
Weibull distribution. Estimation of Gamma distribution gives shape parameter
λ̂ = 125.379 and scale β̂ = 78.98. For Weibull distribution we obtained (by
method of moments) shape parameter λ̂ = 13.68 and scale β̂ = 1.648.

To test goodness of fit we applied a Kolmogorov-Smirnov test. For testing
the statistical software R was used, more precisely the procedure ”ks.test” with
the estimated parameter values above. Based on Kolmogorov-Smirnov test the
gamma distribution is not acceptable for the fit. The Kolmogorov-Smirnov test
for Weibull distribution shows a test statistic d=0.0489 and a corresponding p-
value pV = 0.3069. For a given α = 0.05 the null hypothesis cannot be rejected,
which means that data may be considered to follow a Weibull distribution with
parameter values given above. Same results show the QQ-plots for gamma and
Weibull distribution, plotted on Figure 2. The points in QQ-plot of Weibull
distribution are nearly on a 45 degree line; in contrast the points of QQ-plot of
gamma distribution show a slight curve and are above a 45 degree line. The
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Fig. 2. QQ-plot for gamma and Weibull distribution

Fig. 3. Goodness of fit of Weibull distribution

histogram (plotted at Figure 3) demonstrates fitting of Weibull distribution with
the underlying data, which is quite good.
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Table 1. Lower percentiles of empirical distribution

Lower percentiles Value Percentage of cancer
10th percentile: 1.3977 74.36
9th percentile: 1.3868 74.29
8th percentile: 1.3824 70.97
7th percentile: 1.3656 70.37
6th percentile: 1.3504 78.26
5th percentile: 1.3139 73.68
4th percentile: 1.3072 86.67
3rd percentile: 1.2750 90.91
2nd percentile: 1.2486 85.71
1st percentile: 1.1791 100.00

Table 2. Upper percentiles of empirical distribution

Upper percentiles Value Percentage of cancer
90th percentile: 1.7598 10.00
91st percentile: 1.7744 8.33
92nd percentile: 1.7802 9.38
93rd percentile: 1.7897 10.71
94th percentile: 1.7934 12.50
95th percentile: 1.7982 15.00
96th percentile: 1.8135 6.25
97th percentile: 1.8173 8.33
98th percentile: 1.8294 0.00
99th percentile: 1.8424 0.00

2.2. Discriminating between tissues based on order statistic. To-
gether with rank statistics, order statistics are among the most fundamental
tools in non-parametric statistics and inference. For order statistic data is sorted
ascending. Then important cases are sample percentiles. When using probability
theory to analyze order statistic these percentiles from a continuous distribution
are important. We have fitted empirical cumulative distribution function to the
data via percentages in Excel. For Weibull distribution certain percentiles are
used. Results of discrimination between masthophatic and cancer tissues are
plotted in Tables 1–4.

In both cases the percentage of cancer is high in lower percentiles and low in
higher percentiles. By employing a generic results observed in cancer research (see
e.g. [1]), we may conclude that in our study for images with fractal dimension of
1.75 and higher, the risk of is higher than for images with fractal dimension 1.39
and lower. By the cancer risk we mean the quantitative assessment (by means



200 Milan Stehĺık, Fabian Wartner, Mária Minárová

Table 3. Lower percentiles of Weibull distribution

Lower percentiles Value Percentage of cancer
10th percentile: 1.3987 75.00
9th percentile: 1.3875 74.29
8th percentile: 1.3750 72.41
7th percentile: 1.3611 76.00
6th percentile: 1.3454 77.27
5th percentile: 1.3271 73.68
4th percentile: 1.3051 84.62
3rd percentile: 1.2775 90.91
2nd percentile: 1.2397 100.00
1st percentile: 1.1780 100.00

Table 4. Upper percentiles of Weibull distribution

Upper percentiles Value Percentage of cancer
90th percentile: 1.7524 13.04
91st percentile: 1.7581 11.63
92nd percentile: 1.7643 8.11
93rd percentile: 1.7709 8.33
94th percentile: 1.7783 8.57
95th percentile: 1.7864 10.34
96th percentile: 1.7958 13.04
97th percentile: 1.8071 5.88
98th percentile: 1.8216 0.00
99th percentile: 1.8435 0.00

of fractal dimension analysis) of the degree of abnormality and aggressiveness of
cancer tumors obtained through biopsy. The fractal dimension is an objective and
reproducible measure of the complexity of the tissue architecture of the biopsy
specimen. The higher the number, the more abnormal the tissue is.

3. On simulation of carpets. In this section we introduce the Hausdorff
measure calculation both on fractals with random choice and on real tissues. First
we gauge the Sierpinski gasket with edge division r = 2, i.e. compression ratio
=1/2 with the random choice loaded. The diameter stipulation of such a kind
of set R within the text is based on the genetic algorithm. Considering a metric
as the Euclidean distance between two points of a set R, we have well defined
diameter of the set.

It is easy to see that the diameter of Sierpinski gasket without random choice,
see Figure 4, is equal to the length of the source triangle.
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Fig. 4. Sierpinski gasket; the 5th ramification with 121 triangles

3.1. What is a genetic algorithm. The genetic algorithm, which is a self
adaptive and global optimizing probability search algorithm and is inspired by
evolution, was introduced and investigated by John Holland in [3] and by some
of his students.

Let us denote Fi the Sierpinski gasket of the i -th ramification, F0 being an
equilateral triangle in the Euclidean plane with the edge length l = 1.

It is clear that F0 ⊃ F1 ⊃ F2 ⊃ . . . ⊃ Fn ⊃ . . . Moreover, the nonempty set
∩Fi is the Sierpinski carpet of the Hausdorff dimension log 3/ log 2 ≈ 1.58496.

Fig. 5. Numbering of triangles within the ramification (counterclockwise); left)
numbering of triangles in the first ramification, right) in the second ramification

The particular numbers are allocated to the triangles in the counterclockwise
within the ramification, see Figure 5. Encoding and decoding of the position
within the gasket of arbitrary ramification level is done by using so called position
mappings. S1, S2, S3, pointing to the position of the smaller gasket triangle within
the greater one (of the previous iteration) can be written as follows:

S1(x, y) = (x, y), S2(x, y) = (x, y) + (l/2, 0), S3(x, y) = (x, y) + (l/4, l
√

3/4).
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So the mapping S1 points to the lower left triangle, the mapping S2 points
to the lower right triangle, and the mapping S3, points to the upper triangle of
the particular ramification. Accordingly, the position chain of the small triangle
in the gasket is given by the mapping composition, i.e. the triangle No. 8 on
the right part of Figure 5 can be reached by the S3 ◦ S2, triangle No. 4 by the
S2 ◦ S1, triangle No. 5 by the S2 ◦ S2, etc. The number of the mappings in the
composition is equal to the ramification iteration.

Encoding/decoding: Finally, every small triangle of the m-th ramification
either is or is not chosen in each random choice. This fact is represented by
assigning 1 for chosen and 0 for non-chosen triangle (see Figure 7 for example
of a tissue in 0-1 representation). Consequently, the entire code of the gasket
evolved to the m-th ramification level consists of 3m digits = 3m zeros or ones,
belonging to the each related triangle. We denoted such a set by R. After the
decoding procedure the diameter of R is calculated by using the formula

H(R) = min
R∈F R

m

diamR/µ(R),

where FR
m is a set having elements R of the gaskets of m-th ramification with a

random choice applied, µ(R) is the density of the R gasket (numbers of ones and
numbers of all digits ratio).

Table 5. Hausdorff measures and diameters for the Sierpinski gasket (2nd–13rd
ramification) with random choices of probability p

r. CPU[s] HM, p=1/2 d(U), p=1/2 HM, p=3/4 d(U), p=3/4 HM, p=7/8 d(U), p=7/8

2 0.8593 0.80925 0.875 0.80925 0.875 0.80925 0.875

3 0.9218 0.90277 0.9375 0.81906 0.881671 0.90277 0.9375

4 1.1406 0.90515 0.939061 0.88994 0.905151 0.95093 0.96875

5 1.4531 0.95151 0.969128 0.95313 0.903363 0.92673 0.953125

6 2.9063 0.93043 0.955523 0.91531 0.9457 0.93880 0.960938

7 7.9687 0.96922 0.980469 0.96344 0.976773 0.95701 0.972656

8 25.406 0.9846 0.990257 0.96631 0.978609 0.972429 0.982515

9 83.515 0.98767 0.9922 0.98018 0.98745 0.96928 0.980505

10 265.51 0.98457 0.990235 0.97842 0.986328 0.98 0.987334

11 862.75 0.98380 0.989747 0.98766 0.992195 0.98958 0.99341

12 3269.2 0.99440 0.99646 0.99749 0.998415 0.98822 0.992554

13 37145 0.995458 0.997132 0.996231 0.996231 0.98939 0.993291

There were 3m+1 measurements, i.e., 3m+1 random choices done on the each
ramification from 1 to 13 for the sake of gaining appropriate amount of data, ad-
ditional parameter p for probability of the 1 occurrence within the random choice
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was involved to make the model more complex. The results for HM Hausdorff
measure together with related CPU time values are completed in Table 5.

Remark. CPU time increases rapidly with the level of ramification. The
computation on level 13 lasts about 10 hours.

3.2. Hausdorff measure calculation on the tissue. On Figure 6 there
are ten mammary tissues in black & white color representation. The black regions
represent holes; the white ones are the surroundings. The task is to count the

Fig. 6. Mastopatic tissue picture of which the Hausdorff measure is estimated

Fig. 7. Picture of a tissue is represented by zeros and ones
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Table 6. Haudorff measure of mastopatic tissues

Pic. No. No. of holes diam(R) (R) HM HM rescaled
1 12 192.005 6.584006E-02 2916.24 5.71811
2 33 359.878 0.233745 1539.62 3.01886
3 16 227.741 8.260284E-02 2757.06 5.40600
4 11 363.501 0.129592 2804.96 5.49991
5 — — — — —
6 11 158.597 6.919646E-02 2291.98 4.49408
7 19 198.479 0.147832 1342.60 2.63256
8 13 510.202 0.203264 2510.04 4.92166
9 2 512.884 5.026913E-02 10202.80 20.00540
10 29 515.248 0.263345 1956.55 3.83638

Table 7. Haudorff measure of mastopatic tissues

Pic. No. No. of holes diam(R) (R) HM HM rescaled
1 103 217.975 0.360938 603.912 1.18414
2 94 187.579 0.335586 558.960 1.09600
3 63 220.565 0.267209 825.441 1.61851
4 62 265.006 0.210911 1256.48 2.46369
5 78 145 0.266090 544.928 1.06849
6 61 174.201 0.265483 656.168 1.28660
7 59 132.608 0.275898 480.643 0.942438
8 65 101.237 0.256071 395.349 0.775194
9 30 143.684 0.179466 800.620 1.56984
10 58 231.925 0.382088 606.993 1.19018

number and stipulate the diameter of the holes in tissue on the each slice. The
diameter is given as the maximal distance between arbitrary two points of one
hole. All holes on each image are measured in this way.

The density µ(R) of mastopatic tissue, as mentioned before, is the ratio of
the black color to the whole picture (see Table 6). By the same procedure, the
mammary tissue is treated, see Figure 8 and Table 7.

4. Conclusions and discussion. In the present paper we empirically
model distribution of box-counting dimension from histological images of mam-
mary tissues. We have shown that Weibull distribution provides reasonable fit.
Moreover, discrimination between mammary cancer and masthopaty can be based
on box-counting dimension percentiles, which justifies previous works in specific
cancers (see e.g. [1] among others). In the second part of the paper we illustrate
theoretical and practical issues in generation of Sierpinski gaskets and Hausdorff
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Fig. 8. Mamary tissue slices

measure calculations. Several open problems remains, e.g. what is the opti-
mal way of computing non-Euclidean dimension for tissue? Furthermore, what
is conceptual relation between mathematical model of non-Euclidean dimension
and tissue growth?

5. Appendix.
5.1. ImageJ. To obtain box-counting dimension of binary images ImageJ is

a useful program. ImageJ was developed at the National Institute of Health in
the USA. ImageJ is a Java-based image processing program. It is public domain
and designed with an open architecture which is expandable via Java plugins
and recordable macros. The plugin FracLac is for Fractal Analysis. Within this
plugin the option Standard Box Count is for estimating box-counting dimension.
It is important to define background of binary images, because this procedure
calculates dimension by examine white pixel in binary image, so the background
is defined as black in this case. After these settings one picture or a folder to
compute more pictures automatically can be selected. As a result you get box-
counting dimension of binary images.
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