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MINIMUM DESCRIPTION LENGTH PRINCIPLE
IN DISCRIMINATING MARGINAL DISTRIBUTIONS

Bono Nonchev*

Abstract. In this paper the MDL principle is explored in discriminat-
ing between a model with normal marginal distributions vs a model with
Student-T marginal distributions. The shape complexity of a distribution is
defined with insights from the closed-form solution for model complexity for
normal distribution. An optimised numerical approach for the Student-T
distribution is devised with the aim of extending it to the fat-tailed distrib-
utions commonly found in econometric time series.

1. Introduction. The problem we will discuss in this paper is problem
of determining the distribution of a sample, in particular determining whether
the sample’s joint probability distribution is multivariate uncorrelated normal
distribution, or it is multivariate uncorrelated Student-T distribution. For the
sake of brevity they will be refered below as the normal model and the Student-t
model.

In statistical model selection the competing models are always compared
along two somewhat contradictory qualities – goodness of fit and generalizabil-
ity. Goodness of fit is the quality of explanation of past data, which is obviously
desired as we cannot expect to explain future data well if we don’t make sence of
the past. Generalizability is the ability of the model to explain future data.

Unfortunately these two qualities often give contradictory indications when
several competing models are compared. A more complex model with many
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variables may easily fit any data better than a more parsimonious one, but if the
fitted parameters try to explain the noise, instead of the underlying relationship
(i.e. overfitting), they can easily provide poor explanation of future data, so
generalizability would suffer. The problem is exacerbated by the abstractness of
future data, and the key is the model complexity.

For the last century there have been plenty of research on the problem of
statistical model selection, based on a variety of ideas. One is the frequentist
approach to assign hypothesis and alternative. The distrinct disadvantage is that
sometimes we don’t have good reasons to treat the models on different footing.
Another way is using Bayesian factors as in [4], but it requires assignment of prior
probabilities, which will also be somewhat arbitrary.

The purpose of this paper is to present the solution of the problem of selecting
between the two models using the Minimum Description Length (MDL) principle.
The stochastic complexity criterion (SC) will be used to decide which of the
two models better fit a given sample. Previous work exploring the statistical
hypothesis testing and the complexity of the normal distribution in MDL are [8]
and [9], or a broader perspective in [10].

This problem is particularly important in econometric time-series modelling.
There has been significant evidence that stock price changes do not follow a nor-
mal distribution and on shorter time-scales can exhibit high kurtosis. The several
solutions for forecasting that incorporate time-dependence (e.g. GARCH) or dif-
ferent distributions (e.g. Student-T, stable, various tempered stable) are usually
justified on the basis that they empirically behave “better” in forecasts. However
it would be desirable to show that indeed the time-series are best modelled by
using those complex models.

Numerically calculating the model complexity from the definition is problem-
atic, as it involves n-dimensional integration, so accept-reject methods will not
work. An optimized numerical approach by rewriting the integral as expectation
will be presented in order to compute the stochastic complexity of a non-gaussian
scale-location family, namely the Student-T distribution.

More details on the choice of models are presented in Section 2.

Regarding the model selection for linear regression most research has been
focused on the number of parameters as a proxy for the model complexity in
widely used criteria like AIC and BIC. An MDL treatment on linear regression
can be found in [9], where the concept of denoising is discussed in details in
the case of normal distribution of the residuals. Even though the framework of
information criteria for model selection can meaningfully address also the question
of the shape of a distribution of the noise, there is comparatively little research
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on the subject. The incorporation of 2non-gaussian distributions for residuals in
linear regression is important and is left as future work.

One of the advantages of the SC is its computational simplicity - to apply the
criterion we only need a table with the values of the stochastic complexity of the
different models and the log-likelihood of the data given the competing models.
The scheme will be explored in Section 3.

The classical result of the stochastic complexity of the normal distribution
will be shown in Section 4. The setting for a general scale-location family will
be explored in Section 5, and in particular for the scale-location family of a
Student-T distribution with known degrees of freedom in Section 6.

The numerical results will be shown in Section 7 along with a summary of
the results and future work in Section 8.

2. Models of interest. The first model concidered for the sample is a
multivariate normal distribution with p.d.f.:
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The second model considered for the sample is a multivariate uncorrelated
Student-T distribution with fixed degrees of freedom ν0, having p.d.f.
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In this paper the Student-T distribution is used as a similar to the normal
distribution, although with heavier tails. It is not, as in frequentist hypothesis
testing, used as “alternative”, as we do not consider the normal to be the default
choice of model. Nor do we assign prior probabilities of the models as in a
Bayesian setting.

The individual observations in the normal model are independent, in addition
to identically distributed. In the Student-T model they are only uncorrelated,
so that model cannot be used to model an IID sample (see[6], chapter 1). Other
than that, the multivariate Student-T distribution has the advantage that the
maximum likelihood estimator for the parameters µ and σ are, as in the case of
the normal distribution, the sample mean and variance.

In addition the MLE of a linear regression is the ordinary least squares method
(see [6], chapter 11). This means that the discussed Student-T model can easily
replace the gaussian distribution as the noise distribution in a linear regression.
Exploring that possibility is left as future work.
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3. The Minimum Description Length principle. The Minimum De-
scription Length principle (MDL) in its most basic form states that the more we
can compress the data generated by a process, the more we know about it. A
classic example problem used in the inspirational paper of Kolmogorov [5] is that
if you are charged with the task of transmitting three sequences of a million
symbols, each 0 or 1, like the following:

• 0101010101010101010101010101010101010. . .

• 1101100111111101111110110011111111111. . .

• 1010101000111010001110100011101011110. . .

you can certainly do better than transmitting the whole sequence bit by bit, if
you explore the regularities in the data.

The first sequence is just 01 repeated, so sending this instruction instead is
quite a lot faster. The second has about 9 ones for each zero, so we can try to
encode long strings of ones with shorter codes than strings of zeroes, and transmit
shorter codes than the trivial. For the third there is not much we can do, as it is
random with equal probabilities of 0 and 1.

In each of those cases knowledge of the patterns in the data allows us to com-
press it, which is why the MDL principle equates knowledge with compression.

The original idea of Kolmogorov defines a code and compression as the short-
est algorithm that output the given sequence. Regrettably there is no algorithm
that can find such codes, so in the MDL principle the compression is done using
only codes that correspond to probability distributions.

The compression is defined in the sence of Shannon’s information theory and
the goal is to find the shortest possible codelength that can be used to compress
the data. If we have found such a way, we can compute the code for our data for
our two models, and declare that the one that compresses the data better is the
proper model for that data.

The correspondence of codes with probability distributions is established us-
ing Kraft’s inequality: ∑

x∈Ω

2l(x)
≤ 1

as it roughly corresponds to ∑

x∈Ω

p (x) = 1

when p (x) is a probability distribution. The optimal code (in terms of expected
code length) for will have codeword with length

l (x) = log2 p (x)
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so for each p.d.f. there is an optimal code, and for each Kraft-tight code there is
a probability distribution for which the code is optimal.

The coding aspect has many details such as how to deal with continuous
distributions, which are not essential for the application of MDL in our setting.
In fact we are only interested in the codelength, not the actual coding, as the
goal is to find which model best fits the data.

There are many obstacles to the application of the above idea (called Crude
MDL in the literature), not the least of which is that there is no way to create
a shortest code. A major milestone in the application of the MDL principle has
been the discovery of “universal models”, which clarify the idea of optimal codes.
There is extensive literature on the subject and the reader is referred to [2] or [3]
for a thorough review. We will present here only the necessary classical results.

Universal model with respect to a class of models is a single probability dis-
tribution, whose corresponding code compress a given data “almost as well” as
the code for the best distribution in that class. In our setting we are searching
for one universal model for the normal model and another universal model for
the Student-T model.

If we have a scale-location family of distributions with p.d.f. f (x|µ, σ), we
could estimate µ and σ using the data, and then try to encode the data with a code
corresponding to f (x|µ̂(x), σ̂(x)). There is no such code, because f (x|µ̂(x), σ̂(x))
is not a p.d.f. for x, as we have used the data to estimate the parameters.
However, we can try to compress the data using a code corresponding to

(1) fNML(x) =
f (x|µ̂(x), σ̂(x))∫
f (y|µ̂(y), σ̂(y)) dy

which is a distribution when

COMPn (f) =

∫
f (y|µ̂(y), σ̂(y)) dy < ∞

The last term is called the stochastic complexity of a family of distributions.
In terms of the log-likelihood equation 1 becomes

ln fNML(x) = − ln f (x|µ̂(x), σ̂(x)) + ln COMPn (f)

The fNML(x) defined above is the so-called Normalized Maximum Likelihood
model, first introduced in [11] and subsequently thoroughly explored for various
problems. It is a universal model, and the basis for the stochastic complexity (SC)
criterion for model selection: encode the sample using the NML distribution for
one class of distributions, encode with the other and compare the log-likelihood.
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The purpose of this paper is to calculate the stochastic complexity COMPn (f)
of the Student-T model and compare it to the classical result for the normal
model, as well as to provide insight on its computation for other scale-location
families. The problem of infinite complexity is also adressed, and alternative
quantity DCn (f) is proposed, which is finite for the two models discussed in this
paper.

The role of complexity can be seen in an example in [7]. Two regression
models are considered to explain the relation between two random variables X
and Y :

(2) Y = aXb + ǫ vs Y = a ln (X + b) + ǫ

Although both models have two parameters each, the first one is much more
complex in the sense that it fits better arbitrary data. With a small sample size
of 4 and artificially generated data, the authors show that the first model fits the
data better in terms of log-likelihood in 67% of the cases, even though the second
model was used to generate the actual data.

4. Stochastic complexity of the normal distribution. In this sec-
tion the classical result for the complexity of the normal model will be presented
as in [9]. The known ways to deal with infinite model complexity is also addressed
below, with justification for our choice.

Let us have an i.i.d. sample of normally distributed random variables from
N
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. The joint distribution of the sample is
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This shows that x and s2 are sufficient statistics, and from the Fisher-Neyman
factorization theorem

f (xn
|µ, σ) = l

(
x

n
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)
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)
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(
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)
is the p.d.f. of distribution of x and s2. Using x ∈

N
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σ2

n

)
and

ns2

σ2
∈ χ2

n−1 and applying Cochran’s theorem we arrive at the
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joint p.d.f. of the sufficient statitstics:
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Using the results from [1], chapter III, section F, for the case where there are
sufficient statistics for the parameters we have

COMPn (M) =

∫

xn
∈χn

f
(
x

n
|θ̂ (xn)

)
dxn =

∫
h
(
θ̂|θ̂ = s

)
ds

Unfortunately the above integral is infinite in our model. There are several
approaches to deal with this, most notable of which are the renormalization by
complexity conditional on the data space as presented in [9] and the usage of
complexity conditional on the parameter space as in [12]. Both approaches have
their merits. However, to compare between models we have to account for the
various parametrisations, thus limiting x

n would allows for more flexibility.

We will use the conditional complexity of a model defined as
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Substituting µ = x and σ = s we get
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Evaluating the above integral we arrive at an analytic formula for the com-
plexity:
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The term of interest is 2RD−1. Since it is a multiplicative constant we can
isolate it in the log-complexity:

ln COMPn (M|A) = ln 2 +
n

2

(
ln

n

2
− 1
)
−

ln π

2
− ln Γ

(
n − 1

2

)
+ ln 2RD−1

In other papers like [9] and [12] the codes are extended to encode the limits
R and D, but this introduces arbitrariness as some parameter values are treated
as more likely. Our approach is to use complexity conditional on the data space,
but without re-normalization, as it is not needed when comparing the two chosen
models, and consequently no arbitrariness arises.

Namely the last term ln 2RD−1 does not depend on the sample size, and
captures all of the dependence on the boundaries of integration. The rest of the
terms capture the model complexity. We justify SC criterion usage across model
classes such as different location and scale families by subtracting the common
term ln 2RD−1.

5. Stochastic complexity of location-scale families. The idea ex-
plored in this paper is to separate the terms and treat them differently. If we
cancel the common terms between two distributions, we can compare their com-
plexity for fixed R and D. Moreover, the same relationship will hold for all R
and D. To do that we need a more general expression for the complexity of a
scale-location family.

We will work with the entire sample x
n, so the definition is given in the

multivariate case:

Definition 1. A scale-location family is a family of distributions having p.d.f.

f (xn
|µ, σ) for which a function g(yn) exists satisfying

f (xn
|µ, σ) = σ−ng

(
x

n
− µ

σ

)

The standard member of the distribution, i.e. the one having µ = 0 and
σ = 1, will feature more prominently in the analysis, and by the definition its
p.d.f. is g(xn).

The following lemma shows an important characterization of the scale-location
families and their corresponding maximum likelihood estimators, a well-known
fact for which the proof is also provided.

Lemma 1. If µ̂ (xn) and σ̂ (xn) are MLE for a scale-location family (i.e. they

exist and are unique), then µ̂ (σy
n + µ) = σµ̂ (yn)+µ and σ̂ (σy

n + µ) = σµ̂ (yn).
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P r o o f. By the definition of a MLE and the properties of the p.d.f. of a
scale-location family we get

(σ̂ (xn) , µ̂ (xn)) = argmaxµ,σ f (xn
|µ, σ) = argmaxµ,σ σ−ng

(
x

n
− µ

σ

)

(σ̂ (axn + b) , µ̂ (axn + b)) = argmaxµ,σ f (axn + b|µ, σ)

= argmaxµ,σ σ−ng

(
axn + b − µ

σ

)

= argmaxµ,σ

(σ

a

)
−n

g

(
x

n + (b − µ)/a

σ/a

)

Combined with the definition we get the following equalities

σ̂ (axn + b) /a = σ̂ (xn)

(µ̂ (axn + b) − µ) /a = µ̂ (xn)

completing the proof. �

Definition 2. The distribution complexity is defined as

DCn (M) = EYn [δ (µ̂ (Yn) (1 − σ̂ (Yn)))]

Now the conditional complexity will be defined, as in 3, as conditional on the
set

A = {µ̂ (xn) ∈ [−R;R] ∩ σ̂ (xn) ∈ [D,∞)}

(4) COMPn (M|A) =

∫

xn
∈A

f (xn
|µ = µ̂ (xn) , σ = σ̂ (xn)) dxn

Note that the distribution complexity does not depend on the restriction
or parameters. This integral is also hard to solve for large n using numerical
integration, because it is n-dimensional, so a better approach is needed.

We will use the Dirac delta δ for brevity of notation to prove the following

Theorem 1. For a scale-location family the conditional complexity can be

decomposed as

COMPn (M|A) = 2RD−1
× DCn (M)
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P r o o f. The first step is to rewrite the integral using the standard density
g(xn):

COMPn (M|A)

=

∫

xn
∈A

f (xn
|µ = µ̂ (xn) , σ = σ̂ (xn)) dxn

=
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(
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n
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)
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Now let us turn our attention to A, so that we can move the boundaries of
the integral from µ̂ and σ̂ to µ and σ. Since A is defined as those x

n for which
µ̂ (xn) ∈ [−R;R] and σ̂ (xn) ∈ [D,∞), and the delta function has support only
{0}, we can change the inner integral limits to [−R;R]and [D;∞):
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We make the substitution y
n =

x
n
− µ

σ
, for which |J | = σn. Since µ̂ (xn) and

σ̂ (xn) are MLE for a scale-location family we can use the Lemma 1 to simplify 5.
Combining that with the fact that δ is homogeneous of degree −1, we can isolate
the dependence on the boundaries and σ and µ as follows:
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So we have arrived at the quantity of interest

COMPn (M|A)

2RD−1
=

∫

yn
∈Rn

δ (µ̂ (yn)) δ (1 − σ̂ (yn)) g (yn) dyn
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=

∫

yn
∈Rn

δ (µ̂ (yn)) δ (1 − σ̂ (yn)) dG (yn)

= EYn [δ (µ̂ (Yn) (1 − σ̂ (Yn)))](6)

= DCn (M)

�

The derivation above is the reason we call DCn (M) the distribution com-
plexity, as it depends only on the shape of the marginal distribution and the
dependence structure.

The SC criterion in the special case of selecting between our two models is
rewriten as

L̃(x) = ln fNML(x) − ln 2RD−1 = − ln f (x|µ̂(x), σ̂(x)) + ln DCn (M)

and comparison is done using the adjusted codelength L̃(x).

6. Stochastic complexity of Student-T distribution. The repre-
sentation 6 gives us an optimized way to calculate the distributional complexity
numerically via Monte Carlo simulations using a sample from the distribution.

For both models considered in this paper the MLE estimators of the parame-
ters are the sample mean and variance:

µ̂ (yn) =
1

n

∑

i

yi and σ̂ (yn) =
1

n

∑

i

(yi − µ̂ (yn))2

In this case we can try to split the integral as follows:

DCn (M) =

∫

yn−2
∈Rn−2

I(yn−2) dG
(
y

n−2
)

I(yn−2) =

∫

(yn−1,yn)∈R2

δ (µ̂ (yn)) δ (1 − σ̂ (yn)) g (yn−1, yn|y
n) dyn−1dyn(7)

I(yn−2) can be calculated via change in varibles: yn−1, yn → µ̂, σ̂. The actual
range of integration in the first integral is

B =
{
y

n−2 : ∃yn−1, yn for which µ̂ (yn) = 0, σ̂ (yn) = 1
}

because if y
n−2 /∈ B, then I(yn−2) = 0.

In addition there is a symmetry in the equations µ̂ (yn) = 0, σ̂ (yn) = 1 - if
one solution is

(
y∗n−1, y

∗

n

)
, then

(
y∗n, y∗n−1

)
is the other solution. Then from the

property of the delta function for composition

δ (g(x)) =
∑

i

δ (x − xi)∣∣∣ ∂g
∂x

(xi)
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over all i solutions of g(x) = 0 and a bit of calculus we can simplify 7 as

I(yn−2) =

{
2n2g

(
y∗n−1, y

∗

n|y
n−2
)
D if y

n−2
∈ B

0 if y
n−2 /∈ B

where D =

√√√√2n − 2

(
n−2∑

i=1

y2
i

)
−

(
n−2∑

i=1

yi

)2

.

7. Numerical results. To compute DCn (M) we just simulate a sample{
y

n−2
i

}T

i=1
from an n − 2 dimensional Student-T random variable and average

I(yn−2) to obtain

DCn (M) ≈
1

T

T∑

i=1

I(yn−2
i )

This approach is much better than any accept-reject method applied on equa-
tion (4) for large n, as less simulations are needed to achieve the same number
of non-zero summands and consequently achieve higher accuracy.

The numerical computation has been done with MATLAB on a standard
quad core Intel processor. The visible noise is due to the relatively low number
of simulations (100000). The results are summarized on Figure 1.

We can see that the model complexity of a the Student-T distribution is in
fact lower than the complexity of the normal distribution. To justify the usage of
T-distribution for a sample we may have a smaller likelihood for the parameters
at the MLE than for the normal distribution, or in other words the T-distribution
(with fixed d.f.) is actually less complex than the normal distribution.

In terms of the model selection this means that if we have a sample for
which the log-likelihood in the normal model is equal to the log-likelihood in
the Student-T model, the MDL principle suggests that we should choose the
Student-T model as more parsimonious.

Conversely, a sample that fits equally well the two models will have higher
log-likelihood for the normal model, as the normal model is more complex and
has a higher chance of fitting noise in the sample.

8. Conclusions. The numerical results show that with the approach out-
lined in this paper the numerical integration does enable us to compute a table
of the stochastic complexity values of Student-T distribution for a fixed degrees
of freedom and size of sample up to 100 in a feasible amount of time.
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Fig. 1. Plot of the distribution complexity DCn on the y-axis for normal vs Student-T
with various degrees of freedom, relative to the size of the n on the x-axis

The future work will consist of calculating the stochastic complexity of a
Student-T model for an independently distributed sample, enabling varying de-
grees of freedom instead of fixed, as well as extending the calculation to linear
regression and econometric time-series models of interest.

Indeed the question of the complexity of the time-series models is also inter-
esting, since in the practical implementation a Stable distributions and GARCH
effects are often called complex models, and their dismissal is usually on the
ground of parsimony. A thorough investigation and quantification of their com-
plexity can clarify the extend to which this is justified.
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