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ABSTRACT. A new measure of noncompactness on Banach spaces is defined
from the Hausdorff measure of noncompactness, giving a quantitative version
of a classical result by R. S. Phillips. From the main result, classical results
are obtained now as corollaries and we have an application to interpolation
theory of Banach spaces.

Introduction. The notion of measure of noncompactness was introdu-
ced by K. Kuratowski and, with a convenient but equivalent modification, by F.
Hausdorff. Subsequently it was used in numerous branches of functional analysis
and theory of differential and integral equations. In this note we introduce a new
measure of noncompactness to obtain a quantitative version of a classical result
by R. S. Phillips [5, Thm. 3.7] (see also Dunford-Schwartz [4, Lemma IV.5.4, p.
259] and Brooks-Dinculeanu [3, Thm. 1]). We shall also give an application to
interpolation spaces.
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1. Hausdorff measures of noncompactnes. Given a Banach space
X, the closed unitary ball in X is denoted by Ux. The Haudorff measure of
noncompactness of a bounded subset B C X is defined by

Xx(B) = inf{e > 0 : there exists a finite set F' in X such that B C F + Uy }.

For properties of X see [1].

2. A Phillips-like estimate. We shall state a quantitative version,
but sligthly more general, of Brooks-Dinculeanu’s Theorem 1 [3].
If (X,), n € Nis a sequence of Banach spaces, for 1 < p < oo, we denote

o0
XP — P@Xm
n=1

by

the Banach space of all sequences (z,,) in H X, such that

n=1
1/p
()] xp = [le%llpn] < 0.
Given a sequence (x,) in XP, let us set Py(z,) = (z1,...,7,0,0,...) and

71((2n)) = x1, the projection on the k**-component.

Theorem 2.1. For a bounded subset B C P, | X,, we set
v(B) = lim sup |:Sllp |1 Pg () — (z0)]|xr + X(Pk(B))
k—oo |xeB
Then, if X is the Hausdorff measure of noncompactness in XP, we have
X(B) < v(B) <2 X(B),

for all bounded subset B in XP.
Proof. For each bounded subset B C X? and n € N, we have

B C (Id— P,)B + P,B.

Since the Hausdorff measure of noncompactness is subadditive, taking in account
the inequality
X((P, — Id)B) < sup || Pz — ||,
zeB
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we get

X(B) < X((P.— Id)B)+ X(P,B)

sup || Ppz — z|| + X(P,B),
B

e

<
<

for all n € N. Therefore, X(B) < v(B).

Conversely, since operators P, are uniformly bounded, let us define M :=
limsup,, o || Pnl|- Then, since ||P,|| =1 (|| Pyz|| < ||z| for all z and || P,x| = ||z||
for x = (x1,...,2,,0,0,...)), it follows M = 1.

Given a bounded fixed subset B in X, let r = X(B) and, for ¢ > 0
arbitrary, let r. := r 4+ e. Thus, there is a finite set By in X such that

B C By +rUxpr.
And, since By is finite, there exist N € N such that
1(Fr = Id)zo|| <e,

for all n > N and xg € Byg. Now, let x an arbitrary element in B and xy € By
chosen such that ||z — xo|| < r.. Since

[P — Id)x|| = [|(Pn — Id)xo|| < |[(Pn — Id)(z — xo)|| < 1.7,

it holds
(P = Id)z|| < [|(Pn — Id)aol + 7,

and, for all x € B and n > N, we have
|Prx —z|| <e4re =1+ 2e.
Therefore, taking € — 0 one has

limsup sup || P,z — z|| < X(B).
B

n—oo e
Finally, since X(P\B) < ||P,|| X(B) < M X(B) < X(B) we get
v(B) < X(B) + X(B) = 2X(B),

and the proof is complete. 0O

From the result of the Theorem 2.1 we can prove the measure v has all
the properties of X, therefore v is a measure of noncompactness too. And albeit v
is a measure equivalent to X, from v we get the new results which follows below.
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The next result is necessary to get our main application.

Lemma 2.2. For a bounded subset B C XP =P | X,, we have

Xx, (mn(B)) < X(B).

Proof. We start verifying that m,(Ux») = Ux,,. Let x = ()32, € Ux»,

then
1/p

oo
lellxe = | D laslls, | <1
j=1

Thus, we have [|zj|lx;, < [|z|lxr < 1 for all j. Since x, = m,(z) we obtain
mn(x) € Uy, and finally 7,(Uxr) C Ux,. Now, given z € Uy, , we define a
sequence T = (mj);?‘;l by x; =0, if j # n, and z; = 2, if j = n. Then z € X?
and ||z||x» = ||z||x,, <1, which implies z € Ux» and m,(x) = z. Therefore, given
z € X,, there exists x € XP with m,(z) = z, what means Uy, C 7,(Uxr) and
the assertion follows.

Now, given ¢ > X(B), there exist balls By,...,By € XP which B; =
B(z;,€), such that

M
B C U B(zj,¢).

i=1

Thus,

M M

Tn(B) C (U B(mi,5)> C U Tn(B(z4,€)).

i=1 i=1

Now, since
Tn(B(xi,€)) = mp(x;) + emp(Uxr) = mp(z;) + eUx,,,

for each i, we see that there exist elements y1,...,yys such that

M
m(B) C | {wi +Ux,)}-
=1

Therefore, Xx, (m,(B)) < € and the result follows. O
Corollary 2.3. A set K C XP =P 7, X, is relatively compact, if and
only if:

A) Z |zm|l, — 0, k — oo, uniformly for z € K.
m>k
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B) the set K(m) = {xy = mn(x) ; © € K} is relatively compact in the
norm of Xy, for each m € N.

Proof. If K C X? is relatively compact, we have X(K) = 0 and, by
Theorem 2.1, we obtain

y(K) = limsup |sup | Pe(za) — (22)]x + X(PL(K))| = 0.

k—oo zeB

From Lemma 2.2, we have for each n
Xx, (T (K)) = Xix, (7 (Pn (K))) < X(Po(K)) < [Pl £(xr,x0) X(K),

thus, A) and B) follow. O

In particular, if X is a fixed Banach space and X,, = X, for each n € N,
we have

oo
x? =rPx, = .
n=1
Thus, we obtain from Corollary 2.3 a result stated by Brooks-Dinculeanu [1,
Thm. 1].
Corollary 2.4. A set K C EI)’(, 1 < p < o0, is relatively compact, if and
only if:
A) Z |lxm||P — 0, k& — oo, uniformly for x € K.
m>k
B) for each m € N, the set K(m) = {xn;x € K} is relatively compact
in the norm of X.

3. An application to interpolation spaces. Given a Banach space
E and a number « > 0, we set o E for the space E equipped with the norm

|- Nae =all- &
Let (Ey, E1) be a Banach couple and 0 < 6 < 1 (see [2] for the definitions
on interpolation theory of Banach spaces). For each n € Z we set

Xy =2""Ey+2 “"E,.

For 1 < p < oo, the K-interpolation space (Ey, E1)g p i can be identified with the

subspace of all constant sequences in p@nerﬁ- Then, for each n € N, setting
I,, for the segment in Z from —n to n and IS = Z\ I,,, we see that the functional

vy(B) = limsup[sup[ 3 [2 MK (25, 2)]'/7 + X (P, (B))]

n—oo 2€B p e
n
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can be estimate in (Eo, E1)gp k-

As a consequence of the main theorem, we have the following compactness
criterion for bounded sets in interpolation spaces, which goes back to J. Peetre.

Theorem 3.2 (J.Peetre). Let (Ey, E1)gp i be an interpolation space with
0<6<1landl <p<oo. Then, a bounded subset B in (Eq, E1)gp i is relatively
compact if and only if

A) limsup Z [27R K (28, 2)]P = 0, uniformly in x € B,

T kers,
and
B) the subset B is relatively compact in Eg + Ej.

Indeed, vy(B) can be estimate by the Hausdorff measure of noncompact-
ness X(B). Further, if B is precompact in Eg + F) is also precompact in X? =
2—9nE0 + 2—(0—1)nE1 )
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