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Lp EXTREMAL POLYNOMIALS.

RESULTS AND PERSPECTIVES

Yamina Laskri and Rachid Benzine

Communicated by E. Horozov

Abstract. Let α = β+ γ be a positive finite measure defined on the Borel
sets of C, with compact support, where β is a measure concentrated on a
closed Jordan curve or on an arc (a circle or a segment) and γ is a discrete
measure concentrated on an infinite number of points.
In this survey paper, we present a synthesis on the asymptotic behaviour
of orthogonal polynomials or Lp extremal polynomials associated to the
measure α. We analyze some open problems and discuss new ideas related
to their solving.

1. Introduction. Let α be a positive finite measure defined on the
Borel set B(C) of C, with compact support F . The Lp extremal polynomials
Tn,p,α associated to the measure α and the support F are defined as the solutions
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of extremal problems in the space Lp(F, α). Let mn,p(α) (n ∈ N, p > 0) denote
the extremal constants associated with α and F :

mn,p(α) = ‖Tn,p,α‖Lp(F,α)

= min

{
‖Qn‖Lp(F,α) : Qn = zn + an−1z

n−1 + · · · + a0,

a0, a1, . . . , an−1 ∈ C.

}(1)

Let us remark that in the case p = 2, the polynomials Tn,2,α coincide exactly with
the (monic) orthogonal polynomials, and satisfy the following relations

Tn,2,α(z) = zn + · · · ;
∫

F
Tn,2,α(z)Tm,2,α(z)dα(z) = 0; if n 6= m.(2)

Many schools have studied the properties of orthogonal polynomials or Lp extre-
mal polynomials, particularly:

a) Schools which are interested with the formal or algebraic case of
orthogonal polynomials or Lp extremal polynomials (recurrent properties, the
zeros distribution, formal resolution of differential equations, . . . ).

b) Schools which are interested on the analytic or functional case of
orthogonal polynomials or Lp extremal polynomials (representation of analytic
functions by series of polynomials, interpolation, continued fractions, Sturm-
Liouville operators, asymptotic behaviour, . . . ).

One of the fundamental problems of the orthogonal polynomials or Lp

extremal polynomials theory which can be classified in b) is the asymptotic
behaviour when n→ ∞. Among the present methods used to solve this problems,
we can cite those which are based on the deep study of extremal problems in
Hardy spaces of holomorphic functions. These methods have been initiated and
developed by the Soviet school (Smirnov [45, 46], Gueronimus [10, 11], Korovkine
[23], Souetine [47], . . . ), and the American one (Szegö [50, 51, 52, 53], Widom
[58], Nevai [37, 38], . . . ).

The study of the asymptotic behaviour of orthogonal or extremal polyno-
mials contribute to solve important problems in mathematics, especially:

(i) The convergence of Padé approximants or of continued fractions (F =
[−1,+1] ∪ {zk}, p = 2, see Gonchar [12]).

(ii) The spectral theory (F = [−1,+1] ∪ {zk}, p = 2, see Gueronimus [9],
Nikishin [39])

(iii) The distribution of zeros of orthogonal polynomials or Lp extremal
polynomials (F = Γ = {z : |z| = 1}, p ≥ 1; F = Γ ∪ {zk}, p = 2, see [28]).
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(iv) The representation theory of analytic functions by series of polyno-
mials (F = Γ or F = E, E being a rectifiable Jordan curve, see Szegö [51], [53],
Smirnov [45].)

In this survey paper, we consider a measure α of the following form:
α = β + γ, where β is concentrated on a rectifiable Jordan curve E (or on the
unit circle Γ) and γ is a discrete measure concentrated on an infinite number of
points which lay at the exterior of E. We establish a synthesis on the asymptotic
behaviour of orthogonal polynomials or Lp extremal polynomials associated to
the measure α. Some recent results will be exposed in this work. We analyze
some open problems and we discuss new ideas related to their solving.

2. Synthesis of the studied cases. Many mathematicians have
studied the problem of the asymptotic behaviour of orthogonal polynomials or of
Lp extremal polynomials, for instance: Stieltjes [48, 49], Darboux [6], Fejer [8],
Szegö [50, 51, 52, 53], Smirnov [45, 46], Krein [25], Korovkine [23], Nevai [37, 38],
Van Assche [55, 56], Marcellan [2, 3], Kaliaguine [14, 15], . . . .

In this section we present a synthesis of all cases of interest already studied
depending on different measures α and their different supports F .

2.1. Orthogonal polynomials (p = 2).
(I) F = Γ, where Γ is the unit circle, α is a measure of the following form:

α is concentrated on Γ, is absolutely continuous with respect to the measure |dξ|
on the arc, and also satisfies the Szegö condition. This case was studied by Szegö
[52, 53] in 1921 and the asymptotic formula he obtained is:

Ln(z) ≈ zn

Dρ

(
1
z

) ; |z| > 1,

where Dρ is the Szegö function and will be defined later on. The case of α not
absolutely continuous has been studied by Kolmogoroff [24], Krein [25] and by
Gueronimus [11].

(II) F = [−1,+1], α is absolutely continuous with respect to the Lebesgue
measure on F (which is dα = ρ(x)dx, 0 ≤ ρ ∈ L1(F, dx)), α satisfying the Szegö
condition. This case was studied by Szegö [52, 53] in 1921.

Other mathematicians as Mehler [35], Heine [13], Darboux [6], Stieljes
[48, 49], Fejer [8], Perron [41, 42], Adamov [1] and Mehler [35] studied the
same problem before Szegö, but for the particular cases of classical orthogonal
polynomials (Legendre, Chebychev, Jacobi, Laguerre, Hermite).
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(III) F = E, where E is a rectifiable Jordan curve, α is absolutely
continuous with respect to the measure |dξ| on the arc (i.e. dα = ρ(ξ)|dξ|,
0 ≤ ρ ∈ L1(E, |dξ|)). This case was studied by Szegö [52, 53] in 1921.

The same problem in the case where E is analytic and ρ ≡ 1 was studied
by Smirnov [46] (1928), Korovkine [23] (1941), Gueronimus [10] (1952), Souetine
[47] (1966). They considered other classes of measures α and curves E.

(IV) F =
n⋃

i=1
Ei, where Ei is a curve or an arc, α is absolutely continuous

on Ei. This case was studied by H. Widom [58] (1968).

(V) F = Γ ∪ {zk}l
k=1, where Γ is the unit circle, zk ∈ Ext(Γ), α is a

measure of the form α = β + γ where β is concentrated on Γ and γ is a discrete

measure with the masses Ak at the points zk, i.e. γ =
l∑

k=1

Akδzk
(δzk

is the Dirac

measure at the point zk). This case was studied by Li and Pan [28] (1994).

(VI) F = E′ ∪ {zk}l
k=1, where E′ is a rectifiable arc, α is a measure of

the form: α = β + γ = β +
l∑

k=1

Akδzk, β is concentrated on E ′ and is absolutely

continuous with respect to the measure |dξ| on the arc and also satisfies the
Szegö condition; γ is a discrete measure with the masses Ak at the points zk, i.e.

γ =
l∑

k=1

Akδzk
. This case was studied by Gonchar [12] (1975) for the case E ′ =

[−1,+1], who applied its result to prove the convergence of Padé approximants
for some classes of meromorphic functions. Kaliaguine [18] (1995) studied the
case of arc.

(VII) F = [−1,+1] ∪ {zk}∞k=1, α = β + γ, β being concentrated on
[−1,+1], γ being a discrete measure with the masses Ak at the points zk, i.e.

γ =
∞∑

k=1

Akδzk
. This case was studied by Peherstorfer and Yuditskii [40] in 2001.

(VIII) F = E ∪{zk}l
k=1, where E is a rectifiable Jordan curve belonging

to the Gueronimus class, zk ∈ Ext(E), α is a measure of the form: α = β +
l∑

k=1

Akδzk
, β being concentrated on E and being of the Szegö type. This case was

studied by Kaliaguine and Benzine [14] in 1989.
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(IX) F = E∪{zk}∞k=1, where E is a rectifiable Jordan curve belonging to

the Gueronimus class, zk ∈ Ext(E), α is a measure of the form: α = β+
∞∑

k=1

Akδzk
,

∞∑
k=1

Ak < +∞, β being concentrated on E and being of the Szegö type. The

masses {Ak}∞k=1 and the points {zk}∞k=1 satisfy some conditions. This case was
studied by Benzine [4] in 1997.

(X) F = E′ ∪ {zk}∞k=1, where E′ is a rectifiable arc, zk ∈ Ext(E), α is

a measure of the form: α = β +
∞∑

k=1

Akδzk
,

∞∑
k=1

Ak < +∞; β being concentrated

on E′ and being of the Szegö type. The masses {Ak}∞k=1 and the points {zk}∞k=1

satisfy some conditions. This case was studied by Khaldi and Benzine [20] (2001).

(XI) F = Γ ∪ {zk}∞k=1, where Γ is the unit circle, zk ∈ Ext(Γ), α is a

measure of the form: α = β +
∞∑

k=1

Akδzk
,

∞∑
k=1

Ak < +∞; β being concentrated

on Γ and being of the Szegö type. The masses {Ak}∞k=1 and the points {zk}∞k=1

verify only the natural condition:
∞∑

k=1

(1 − |zk|) < ∞. This condition insures the

convergence of the Blaschke product: B(z) =
∞∏

k=1

zk − z

1 − zkz

|zk|2
zk

. This case was

studied by Khaldi and Benzine [19] in 2004.

2.2. Lp extremal polynomials (p > 0). In this section we present
successive results concerning the asymptotic behaviour of Lp extremal polyno-
mials depending on a considered measure and its support.

(I) F = [−1,+1] and dα(x) = ρ(x)dx, where ρ represents a non-negative,
integrable on F weight function. The following cases of asymptotic behaviour of
Lp extremal polynomials have been solved:

# The case of p = ∞ and ρ(x) ≡ 1 which leads to the classical Chebyschev
polynomials [54].

# The case of ρ(x) = t(x)/
√

1 − x2 where log t(x) represents a Riemann
integrable function for which Bernstein [5] found the power asymptotics of the
extremal constants mn,p(α).

# The case of 1/ρ(x) ∈ Lr([−1,+1]), ∀r > 1. This important generaliza-
tion was studied by Lubinsky and Saff [31].

(II) 0 < p < ∞, F is a closed rectifiable Jordan curve satisfying some
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condition of smoothness. The absolutely continuous part of α satisfies the Szegö
condition. This problem was studied by Gueronimus [10] in 1952.

(III) 0 < p < ∞, F = ∪`
k=1Ek, where Ek are smooth closed Jordan

curves. This case has been studied by Widom [58].

(IV) 0 < p < ∞, F = E ∪ {zk}l
k=1, where E is a closed rectifiable

Jordan curve with some smoothness condition, zk ∈ Ext(E), α = β + γ, where
β is concentrated on E and of the Szegö type, and γ is a discrete measure with
masses Ak at the points zk. This problem generalizes the Gueronimus problem
(II) where only the case of a curve was considered. It was solved in 1993 by
Kaliaguine [15].

(V) p ≥ 1, F = E ∪{zk}∞k=1, where E is a closed rectifiable Jordan curve

with some smoothness condition, zk ∈ Ext(E), α = β +
∞∑

k=1

Akδzk
, where β is

concentrated on E and β is of the Szegö type and γ is a discrete measure with
masses Ak at the points zk. This problem generalizes the Kaliaguine problem
(IV) where only the case of a finite number of points was considered. It was
solved by Laskri and Benzine [26] (see also [21]).

(VI) 0 < p <∞, F = Γ∪{zk}∞k=1, where Γ is the unit circle, zk ∈ Ext(Γ),

the measure α = β+
∞∑

k=1

Akδzk
,

∞∑
k=1

Ak < +∞, where β is concentrated on Γ and

is of the Szegö type. The masses {Ak}∞k=1 and the points {zk}∞k=1 satisfy the

conditions:
∞∑

k=1

(1 − |zk|) < ∞ and
mn,p(α)

mn,p(β)
≤

∞∏
k=1

|zk|, n > N0. This problem

generalizes the Khaldi and Benzine result [19], where the authors considered
only the case of orthogonal polynomials (p = 2). It was solved by Laskri and
Benzine [27].

3. Functional spaces used to solve the asymptotic behaviour

problems. One can find in the literature several technics to solve the problem
of the asymptotic behaviour of orthogonal or Lp extremal polynomials. The
technic that we use consists to generate and to study some sequences of extremal
problems in Hardy spaces. The limits of the optimal values associated to these
extremal problems give us, in general, the asymptotic formula of the Lp extremal
polynomials. These technics have been developed mainly by Gueronimus [10],
Widom [58], Kaliaguine and Benzine [14], Kaliaguine [15], Benzine [4].
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3.1. Hardy spaces inside or outside the unit disk. We denote by
∆ = {z ∈ C : |z| < 1} the interior of the unit disk and by G = {w ∈ C : |w| > 1}
the exterior of the unit disk.

We start with the usual Hp(∆) space, 1 ≤ p ≤ ∞. A function f(u) ∈
H(∆), analytic in ∆, belongs to the Hp(∆) if

‖f‖p
Hp(∆) = sup

∫ 2π

0
|f(reiθ)|pdθ <∞ (0 < r < 1).(3)

In this case, f has limit values on the unit circle (almost everywhere) and the
limit function is from the Lp class.

Changing the of variables by w =
1

u
, we can define the space Hp(G). A

function f(w) ∈ H(G) (analytic in G) is from Hp(G) space if g(u) = f

(
1

u

)
∈

Hp(∆).
Hp(G) is a Banach space. Each function f(w) from this space has limit

values on the unit circle (almost everywhere) and

‖f‖p
Hp(G) =

∫

|w|=1
|f(w)|p|dw|.(4)

For 0 < p < 1, Hp(∆) is not a normed space, but it is a metric space with the
distance

d(f, g) = ‖f − g‖p
Hp(∆) = sup

∫ 2π

0
|f(reiθ) − g(reiθ)|pdθ <∞ (0 < r < 1),(5)

and it is a complete space. Each function f(w) of Hp(G) has a decomposition

f = B(w)[h(w)]
2

p ,

where B(w) is the Blaschke product associated with zeros of f(w) and h(w) ∈
H2(G). The function |f(w)|p has limit values on the unit circle.

3.2. Conformal mapping. Let E be a Jordan closed curve, Ω = Ext(E),
G = {w ∈ C : |w| > 1}. Let w = Φ(z) be a function which maps Ω conformally on

G in such a manner that lim
z→∞

Φ(z)

z
> 0 and Φ(∞) = ∞. In fact this limit is equal

to
1

C(E)
, C(E) is the logarithmic capacity of E. Let Ψ : G → Ω be the inverse

function of Φ. The two functions Φ(z) and Ψ(w) have a continuous extension to
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E and on the unit circle, respectively (Caratheodory Theorem). Their derivatives
Φ′(z) and Ψ′(w) have no zeros in Ω and G and have limit values on E and on
the unit circle almost everywhere (with respect to the Lebesgue measure). The
functions Φ′(z) and Ψ′(w) are defined and integrable on E and on the unit circle.

This gives the possibility to define analytic functions (Φ′(z))
1

p and (Ψ′(w))
1

p for
all p : 0 < p <∞.

3.3. Szegö function. As previously we consider a measure of the follow-
ing type: α = β + γ, where β is concentrated on the curve E. Suppose that the
absolutely continuous part dβ = ρ(ξ)|dξ|, ξ ∈ E, of α, satisfies the following
Szegö condition: ∫

E
(log ρ(ξ))Phi′(ξ)| |dξ| > −∞.(6)

Then, one can construct the so-called Szegö function DE,ρ(z) associated with the
curve E and the weight function ρ(ξ) with the following properties:

(i) DE,ρ(z) is analytic in Ω, DE,ρ(z) 6= 0 in Ω, Dρ(∞) > 0;

(ii) DE,ρ(z) has limit values (almost everywhere on E) and

|DE,ρ(ξ)|−p|Φ′(ξ)| = ρ(ξ), ξ ∈ E (almost everywhere on E),

where DE,ρ(ξ) = lim
z→ξ

DE,ρ(z) (almost everywhere on E), explicitly DE,ρ(z) =

DG(Φ(z)) and

DG(w) = exp

{
− 1

2pπ

∫ 2π

0

w + eiθ

w − eiθ
log

ρ(ξ)

|Φ′(ξ)| |Φ
′(ξ)| |dξ|

}
(ξ = Ψ(eiθ)),(7)

3.4. Hp(Ω, ρ) space. An analytic function in Ω belongs to the H p(Ω, ρ)
space if

f(Ψ(w))

DE,ρ(Ψ(w))
∈ Hp(G).(8)

The spase Hp(Ω, ρ) (1 ≤ p <∞) is a Banach space. Each function f(z) belonging
to Hp(Ω, ρ) has limit values on E and

‖f‖p
Hp(Ω,ρ) =

∫

E
|f(ξ)|pρ(ξ)|dξ| = lim

R→1
R>1

1

R

∫

ER

|f(z)|p
|DE,ρ(z)|p

|Φ′(z)dz|,(9)

where ER = {z ∈ Ω : |Φ(z)| = R}.
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For 0 < p < 1, Hp(Ω, ρ) is as above, a metric space with the quasi-norm

‖f‖p
Hp(Ω,ρ) = sup

1

R

∫

ER

|f(z)|p
|DE,ρ(z)|p

Φ′(z)dz|

= lim
R→1
R>1

1

R

∫

ER

|f(z)|p
|DE,ρ(z)|p

|Φ′(z)dz|.
(10)

3.5. Extremal problems in HP (Ω, ρ) spaces, (0 < p < ∞). In
this section we present three extremal problems in HP (Ω, ρ) for 0 < p <∞ and
their solutions.

(I) Let F = E, where E is a closed rectifiable Jordan curve and Ω =
Ext(E). The optimal solution ϕ∗ of the following extremal problem

inf{‖ϕ‖p
Hp(Ω,ρ)

, ϕ ∈ Hp(Ω, ρ), ϕ(∞) = 1},(11)

is given by

ϕ∗(z) =
DE,ρ(z)

DE,ρ(∞)
,(12)

i.e., the infinimum (11) denoted µ(β) is reached for ϕ∗ : µ(β) = ‖ϕ∗‖p
HP (Ω,ρ)

.

(II) Let F = E∪{zk}l
k=1, zk ∈ Ω. The optimal solution ψ∗

l of the following
extremal problem

inf

{ ‖ϕ‖p
Hp(Ω,ρ), ϕ ∈ Hp(Ω, ρ), ϕ(∞) = 1,

ϕ(zk) = 0, k = 1, 2, . . . , `

}
,(13)

is given by

ψ∗
` =

DE,ρ(z)

DE,ρ(∞)
·
∏̀

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)
,(14)

i.e., the infinimum (13) denoted µ(αl) is reached for ψ∗
l : µ(αl) = ‖ψ∗

l ‖
p
HP (Ω,ρ)

.

The optimal values of the problems (11) and (13) are connected by

µ(α`) =

(
∏̀

k=1

|Φ(zk)|
)p

· µ(β).(15)

(III) Let F = E ∪ {zk}∞k=1, zk ∈ Ω. The optimal solution ψ∗ of the
following extremal problem

inf

{ ‖ϕ‖p
Hp(Ω,ρ), ϕ ∈ Hp(Ω, ρ), ϕ(∞) = 1,

ϕ(zk) = 0, k = 1, 2, . . .

}
,(16)
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is given by

ψ∗(z) = ϕ∗(z) ·B∞(z) =
DE,ρ(z)

DE,ρ(∞)
·

∞∏

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)
,(17)

i.e., the infi nimum (16) denoted µ(α) is reached for ψ∗ : µ(α) = ‖ψ∗‖p
HP (Ω,ρ)

.

The optimal values of the problems (11) and (16) are connected by

µ(α) =

(
∞∏

k=1

|Φ(zk)|
)p

· µ(β).(18)

4. Asymptotic behaviour of Lp extremal polynomials. Now,
we are in position to give in details different results mentioned in Section 2.2,
starting from the Gueronimus one [10] from 1952 until the latest one obtained in
2005. We start with some definitions needed.

Let us consider a rectifiable Jordan curve belonging to the Gueronimus
class G [10] defined as follows:

Definition 1. For a closed Jordan curve, the Faber polynomials Fn(z)
are defined by means of the following decomposition:

Φn(z) = Fn(z) + λn(z),

where

λn(z) = O(1/z), z → ∞.

One says that a curve E belongs to the class G, (notation E ∈ G) if

λn → 0 uniformly on E.

In [10] and [23], one can find examples of families of curves belonging to
the class G. For instance, such families are the analytic curves or the smooth
curves and some others curves.

In what follows, we consider measures α (or α`) of the following type: α
(α`) is concentrated on the set E ∪ {zk}∞k=1 (or E ∪ {zk}`

k=1), zk ∈ Ω :

α = β + γ (or α` = β + γ`),(19)
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where β is concentrated on E and is absolutely continuous with respect to the
Lebesgue measure |dξ|, i.e.,

dβ(ξ) = ρ(ξ)|dξ|, ρ : E → R+ and

∫

E
ρ(ξ)dξ < +∞,(20)

γ (or γ`) is a discrete measure with the masses Ak at the points zk ∈ Ext(E),
i.e.,

γ =

∞∑

k=1

Akδzk
( or γ` =

∑̀

k=1

Akδzk
), Ak > 0, and

∞∑

k=1

Ak <∞,(21)

where each δzk
is the Dirac measure at the point zk.

As it has been mentioned in the introduction, we associate to the measures
β, α` and α the extremal constants mn,p(β), mn,p(α`), mn,p(α) and the Lp

extremal polynomials Tn,p,β(z), Tn,p,α`
(z), Tn,p,α(z) as follows:

mn,p(β) = ‖Tn,p,β‖Lp(β) = min{‖Qn(z)‖Lp(β), Qn(z) = zn + · · ·},(22)

mn,p(α`) = ‖Tn,p,α`
‖Lp(α`) = min{‖Qn(z)‖Lp(α`), Qn(z) = zn + · · ·},(23)

mn,p(α) = ‖Tn,p,α‖Lp(α) = min{‖Qn(z)‖Lp(α), Qn(z) = zn + · · ·},(24)

with

‖g‖p
Lp(α) =

∫

E
|g(ξ)|pρ(ξ)|dξ| +

∞∑

k=1

Ak|g(zk)|p.(25)

4.1. Case 0 < p < ∞ and where the measure is supported by a
curve.

Theorem 1 (1952, Gueronimus [10]). Let E be a closed rectifiable Jordan
curve belonging to the Gueronimus class G. Suppose that ρ(ξ) (dβ(ξ) = ρ(ξ)|dξ|)
satisfies the Szegö condition

∫

E
(log ρ(ξ))|Φ′(ξ)||dξ| > −∞,

then

(i) lim
n→∞

mn,p(β)

C(E)n
= µ(β)

1

p ,

(ii) lim
n→∞

∥∥∥∥
Tn,p,β(z)

C(E)n.Φn(z)
− DE,ρ(z)

DE,ρ(∞)

∥∥∥∥
Hp(Ω,ρ)

= 0,
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(iii) Tn,p,β(z) = C(E)n · Φn(z)
DE,ρ(z)

DE,ρ(∞)
[1 + εn(z)],

εn(z) → 0 uniformly on the compact sets of Ω.

4.2. Case p = 2 and where the measure is supported by a curve
plus a finite number of points.

Theorem 2 (1989, Kaliaguine and Benzine [14]). Let E be a closed
rectifiable Jordan curve belonging to the Gueronimus class G. Suppose that ρ(ξ)
(dβ(ξ) = ρ(ξ)|dξ|) satisfies the Szegö condition

∫

E
(log ρ(ξ))|Φ′(ξ)| |dξ| > −∞,

then

(i) lim
n→∞

mn,2(α`)

C(E)n
= µ(α`)

1

2 ,

(ii) lim
n→∞

∥∥∥∥∥
Tn,2,αl

(z)

C(E)n.Φn(z)
− DE,ρ(z)

DE,ρ(∞)
·
∏̀

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)

∥∥∥∥∥
Hp(Ω,ρ)

= 0,

(iii) Tn,2,αl
(z) = C(E)n ·Φn(z)

DE,ρ(z)

DE,ρ(∞)
·
∏̀

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)
[1+εn(z)],

εn(z) → 0 uniformly on the compact sets of Ω.

4.3. Case 0 < p < ∞ and where the measure is supported by a
curve plus a finite number of points.

Theorem 3. (1993, Kaliaguine [15]). Let E be a closed rectifiable Jordan
curve belonging to the Gueronimus class G. Suppose that ρ(ξ) (dβ(ξ) = ρ(ξ)|dξ|)
satisfies the Szegö condition

∫

E
(log ρ(ξ))|Φ′(ξ)| |dξ| > −∞,

then

(i) lim
n→∞

mn,p(α`)

C(E)n
= µ(α`)

1

p ,

(ii) lim
n→∞

∥∥∥∥∥
Tn,p,αl

(z)

C(E)n.Φn(z)
− DE,ρ(z)

DE,ρ(∞)
·
∏̀

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)

∥∥∥∥∥
Hp(Ω,ρ)

= 0,
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(iii) Tn,p,αl
(z) = C(E)n ·Φn(z)

DE,ρ(z)

DE,ρ(∞)
·
∏̀

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)
[1+εn(z)],

εn(z) → 0 uniformly on the compact sets of Ω.

4.4. Case p = 2 and where the measure is supported by a curve
plus an infinite number of points.

Theorem 4 (1997, Benzine [4]). Let E be a closed rectifiable Jordan
curve belonging to the Gueronimus class G. Suppose that ρ(ξ) (dβ(ξ) = ρ(ξ)|dξ|)
satisfies the Szegö condition

∫

E
(log ρ(ξ))|Φ′(ξ)| |dξ| > −∞,

γ =
∞∑

k=1

Akδzk
is such that

(
∞∑

k=1

|Φ(zk)| − 1

)
<∞,(26)

and
mn,2(α)

mn,2(β)
≤
(

∞∏

k=1

|Φ(zk)|
)
,(27)

then

(i) lim
n→∞

mn,2(α)

C(E)n
= µ(α)

1

2 ,

(ii) lim
n→∞

∥∥∥∥∥
Tn,2,α(z)

C(E)n.Φn(z)
− DE,ρ(z)

DE,ρ(∞)
·

∞∏

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)

∥∥∥∥∥
Hp(Ω,ρ)

= 0,

(iii) Tn,2,α(z) = C(E)n ·Φn(z)
DE,ρ(z)

DE,ρ(∞)
·
∞∏

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)
[1+εn(z)],

εn(z) → 0 uniformly on the compact sets of Ω.

Remark. In Benzine [4], we have found the condition

∫
E |Tn,2(ξ, α)|2.ρ(ξ)|dξ|
∞∑

k=1

Ak|Tn,2(zk, α)|2
≥ 1
(

∞∏
k=1

|Φ(zk)|
)2

− 1

,
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but we have not found the condition (27), due to a calculation mistake.

4.5. Case p = 2 and where the measure obeys weaker conditions
and is supported by a curve plus an infinite number of points.

Theorem 5. (2000, Khaldi and Benzine [18]). Let E be a closed
rectifiable Jordan curve belonging to the Gueronimus class G. Suppose that ρ(ξ)
(dβ(ξ) = ρ(ξ)|dξ|) satisfies the Szegö condition

∫

E
(log ρ(ξ))|Φ′(ξ)| |dξ| > −∞,

γ =
∞∑

k=1

Akδzk
is such that

(
∞∑

k=1

|Φ(zk)| − 1

)
<∞,

and

mn,2(α`)

mn,2(β)
≤
(
∏̀

k=1

|Φ(zk)|
)
,(28)

then

(i) lim
n→∞

mn,2(α)

C(E)n
= µ(α)

1

2 ,

(ii) lim
n→∞

∥∥∥∥∥
Tn,2,α(z)

C(E)n.Φn(z)
− DE,ρ(z)

DE,ρ(∞)
·

∞∏

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)

∥∥∥∥∥
Hp(Ω,ρ)

= 0,

(iii) Tn,2,α(z) = C(E)n ·Φn(z)
DE,ρ(z)

DE,ρ(∞)
·
∞∏

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)
[1+εn(z)],

εn(z) → 0 uniformly on the compact sets of Ω.

Remark. The condition (28) is weaker than the condition (27) and
allows to find the sets of the points {zk} and masses {Ak} satisfying (28) and
(27).
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4.6. Case p = 2 and where the measure is supported by a circle
plus an infnite number of points.

Theorem 6 (2004, Khaldi and Benzine [19]). Let Γ denote the unit
circle. Suppose that ρ(ξ) (dβ(ξ) = ρ(ξ)|dξ|) satisfies the Szegö condition

∫

Γ
(log ρ(ξ))|dξ| > −∞,

and γ =
∞∑

k=1

Akδzk
is such that

(
∞∑

k=1

|zk| − 1

)
<∞,

then

(i) lim
n→∞

mn,2(α) = µ(α)
1

2 ,

(ii) lim
n→∞

∥∥∥∥∥
Tn,2,α(z)

zn
− DG,ρ(z)

DG,ρ(∞)
.

∞∏

k=1

z − zk
zzk − 1

· |zk|
2

zk

∥∥∥∥∥
Hp(G,ρ)

= 0,

(iii) Tn,2,α(z) = zn · DG,ρ(z)

DG,ρ(∞)
·

∞∏

k=1

z − zk
zzk − 1

· |zk|
2

zk
[1 + εn(z)],

εn(z) → 0 uniformly on the compact sets of G.

4.7. Case 0 < p < ∞ and where the measure is supported by a
curve plus an infinite number of points.

Theorem 7 (2004, Laskri and Benzine [26]) and (2004, Khaldi [21]).
Let E be a closed rectifiable Jordan curve belonging to the Gueronimus class G.
Suppose that ρ(ξ) (dβ(ξ) = ρ(ξ)|dξ|) satisfies the Szegö condition

∫

E
(log ρ(ξ))|Φ′(ξ)| |dξ| > −∞,

γ =
∞∑

k=1

Akδzk
is such that

(
∞∑

k=1

|Φ(zk)| − 1

)
<∞,
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and

n > N0 :
mn,p(α)

mn,p(β)
≤
(

∞∏

k=1

|Φ(zk)|
)
, (Laskri and Benzine)(29)

or

∀n, ∀` :
mn,p(α`)

mn,p(β)
≤
(
∏̀

k=1

|Φ(zk)|
)
, (Khaldi),

then

(i) lim
n→∞

mn,p(α)

C(E)n
= µ(α)

1

p ,

(ii) lim
n→∞

∥∥∥∥∥
Tn,p,α(z)

C(E)n.Φn(z)
− DE,ρ(z)

DE,ρ(∞)
·

∞∏

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)

∥∥∥∥∥
Hp(Ω,ρ)

= 0,

(iii) Tn,p,α(z) = C(E)n ·Φn(z)
DE,ρ(z)

DE,ρ(∞)
·
∞∏

k=1

Φ(z) − Φ(zk)

Φ(z)Φ(zk) − 1
· |Φ(zk)|2

Φ(zk)
[1+εn(z)],

εn(z) → 0 uniformly on the compact sets of Ω.

4.8. Case 0 < p < ∞ and where the measure is supported by
the circle plus an infinite number of points. Before giving Theorem 8, we
define the class of measures L.

Definition 2. Let α = β + γ. We say that the measure α belongs to the
class L (notation α ∈ L) if the absolute part β (β(ξ) = ρ(ξ)|dξ|) and the discrete

part γ

(
γ =

∞∑
k=1

Akδzk

)
of α satisfy

∫

Γ
(log ρ(ξ))|dξ| > −∞,

(
∞∑

k=1

|zk| − 1

)
<∞,(30)

and

n > N0 :
mn,p(α)

mn,p(β)
≤
(

∞∏

k=1

|zk|
)
,(31)
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The condition (30) guarantees the convergence of the Blaschke product
B∞(z) associated with the points {zk}∞k=1,

B∞(z) =
∞∏

k=1

z − zk
z.zk − 1

· |zk|
2

zk
.

If the condition (31) is satisfied, we have

lim sup
n→∞

mn,p(α) ≤ (µ(α))1/p.(32)

More detailed discussion of the condition (32) is presented in the following
section. Recently with this condition Laskri and Benzine have obtained the
following result:

Theorem 8 (2004, Laskri and Benzine [7]). Let Γ be the unit circle and
α ∈ L, then

(i) lim
n→∞

mn,p(α) = (µ(α))1/p,

(ii) lim
n→∞

∥∥∥∥∥
Tn,p,α(z)

zn
− DG,ρ(z)

DG,ρ(∞)
·

∞∏

k=1

z − zk
z.zk − 1

· |zk|
2

zk

∥∥∥∥∥
Hp(G,ρ)

= 0,

(iii) Tn,p,α(z) = zn

[
DG,ρ(z)

DG,ρ(∞)
·

∞∏

k=1

z − zk
z.zk − 1

· |zk|
2

zk
+ εn(z)

]
,

εn(z) → 0, uniformly on the compact sets of G.

5. Basic ideas used in the proofs and difficulties of the

generalization of the finite set case to the infinite one and also

p = 2 to 0 < p < ∞.

5.1. Technics of proofs. The main step of the proofs of Theorems 1–8
consists in proving the asymptotic formulas of the extremal constants mn,p(β),
mn,2(α`), mn,p(α`), mn,2(α) and mn,p(α).

We must carrefully follow the behaviour of these constants in the H p(Ω, ρ)
space to obtain finally their asymptotical form. For instance in the proof of the
Theorem 1, since

mn,p(β)

C(E)n
=

∥∥∥∥
Tn,p,β

C(E)n.Φn(z)

∥∥∥∥
Hp(Ω,ρ)

,(33)
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and

µ(β)
1

p =

∥∥∥∥
DE,ρ(z)

DE,ρ(∞)

∥∥∥∥
Hp(Ω,ρ)

,

then (i) implies

∥∥∥∥
Tn,p(z, β)

C(E)n.Φn(z)

∥∥∥∥
Hp(Ω,ρ)

→
∥∥∥∥
DE,ρ(z)

DE,ρ(∞)

∥∥∥∥
Hp(Ω,ρ)

.(34)

It is relatively easy to establish the proofs of Theorems 1–8 from (i) to (ii). In
the case p = 2 the proof is based on the applcation of the parallelogram rule.
The case p 6= 2 is more difficult. For 1 ≤ p < ∞ it is based on the applcation
of the Clarkson inequality. Different cases of 0 < p < 1 where proved as follows:
the case of a curve was solved by Gueronimus [10] using the Keldysh lemma [17],
the case of a curve plus a finite set of points was solved by Kaliaguine [15, p. 235,
Lemma 2.1] with help of the extension of the Keldysh lemma, the case of a circle
plus an infinite set of points was solved recently by Bello Hernandez, Marcellan
and Minguez [2, p. 430, Theorem 2] by using a new extension of the Keldysh
lemma. A similar lemma can be also extented to solve the case of a curve (or a
circle) with an infinite set of points.

It is easy to proove Theorems 1–8 from (ii) to (iii). The proofs are based
on a direct application of the following

Lemma 1 [15]. If f(z) ∈ Hp(Ω, ρ) (or Hp(G, ρ)) and K ⊂ Ω (or K ⊂ G),
K is compact, then there exists a constant C(K) (C(K) depending only on K)
such that:

sup
k

|f(z| ≤ C(K)‖f‖Hp(Ω,ρ) (or sup
k

|f(z)| ≤ C(K)‖f‖Hp(G,ρ)).

Return to the asymptotic behaviour of extremal constants. The
study of the asymptotic behaviour of extremal constants mn,p(β), mn,2(α`),
mn,p(α`), mn,2(α), and mn,p(α) is fundamental for the research of the asymptotic
formula of Lp extremal polynomials Tn,p,β, Tn,2,α`

, Tn,p,α`
, Tn,2,α, Tn,p,α. To

establish asymptotic formulas of extremal constants, we always proceed by pro-
ving two inequalities. For example, in the case of mn,p(α), we prove the following
inequalities

lim sup
n→∞

mn,p(α)

(C(E))n
≤ (µ(α))1/p,(35)
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and

(µ(α))1/p ≤ lim inf
n→∞

mn,p(α)

(C(E))n
.(36)

The finite case
# In Theorem 2 (p = 2, curve plus a finite number of points), it is

difficult to obtain the formula (36).
# In Theorem 3 (0 < p <∞, curve plus a finite number of points), the

proof is identical to the case p = 2.

The infinite case
# In Theorems 4, 5, 6 (p = 2, curve or circle plus a finite number of

points), it is difficult to obtain the formula (35).
# In Theorem 7 (0 < p <∞, curve plus an infinite number of points),

it is also difficult to obtain the formula (35). We cannot proceed as in the case
p = 2, because this technic ([19]) uses the orthogonality, which is not satisfied in
the case p 6= 2.

However, we can use a new technic due to Peherstorfer and Yuditskii
([40]). To prove the asymptotic formula for the orthogonal polynomials, they
use a measure concentrated on a segment plus an infinite number of points.
These authors prove a similar formula to (35) by using the extremal properties
of orthogonal polynomials.We think that with some modifications, this technic
is available for establishing formula (35) in the case of Lp extremal polynomials.
We will just give a sketch.

Peherstorfer and Yuditskii introduced the functions Dε, Fε,η and the

polynomials Pn,ε,η as approximations, in a certain sense of D,
1

Dε
and Tn,2,α

respectively. Without details, one can describe these functions as follows (see
[40, p. 3217] for more precisions).

|Dε| is a smooth function such that |Dε| ≥ 1 and
∫

Γ

∣∣|D|2 − |Dε|2
∣∣ |dξ| < ε (ε > 0).(37)

For η > 0, |Fε,η| is a smooth function which coincides with
1

|Dε|
on Γ \ (Ẽs ∪

Ẽ+ ∪ Ẽ−) and equals to η on Es \ (Ẽ+ ∪ Ẽ−). Furthermore |Fε,η| coincides with

|ξ ± 1|2, for ξ ∈ E±. Es, Ẽs, E±, Ẽ∓ ⊂ Γ satisfy

E± =
{
ξ ∈ Γ : |ξ ± 1|2 ≤ η

2

}
,
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Ẽ∓ =
{
ξ ∈ Γ : |ξ ± 1|2 ≤ η

}
,

|Es| =

∫

Es

|dξ| ≤ η,

|Ẽs| =

∫
�

Es

|dξ| ≤ 2η.

Fε,η possess the fundamental properties (see [40], formula (2.13))

Fε,η =
1

D(0)
+ o(1) =

1

Dρ(∞)
+ o(1), η → 0, ε→ 0.(38)

As in [40], we consider the polynomials Pn,ε,η, defined as follows:

Pn,ε,η(ξ) = ξ−nQn,ε,η(ξ) + ξnQn,ε,η(1/ξ),(39)

where
Qn,ε,η(ξ) = q0,ε,η + · · · + qn,ε,ηξ

n,

and
(BFε,η)(ξ) = Qn,ε,η(ξ) + ξn+1gn,ε,η(ξ), gn,ε,η(ξ) ∈ H∞,(40)

B(z) is the classical Blaschke product

B(z) =

∞∏

k=1

z − z̃k

z.z̃k − 1
· |z̃k|

2

z̃k
, z̃k =

1

zk
, z ∈ U.(41)

Conjecture 0. We will conjecture that it is possible to obtain (following
a similar method as in [40, p. 3217])

‖Pn,ε,η‖Lp(α,F ) ≤ 1 + Cε+ o(1), n→ ∞, C is a constant.(42)

If the formula (42) is true, then it implies the formula (32). Indeed, if we notice
that

Pn,ε,η(z) = (B.Fε,η)(0).z
n + · · · ,

by using
mn,p(α) = ‖Tn,p,α‖Lp(α,F ) = inf

Qn∈Pn,1

‖Qn‖Lp(α,F ),

we get, with the help of (42)

mn,p(α) ≤
∥∥∥∥

1

(B.Fε,η)(0)
Pn,ε,η

∥∥∥∥
Lp(α,F )

=
1

(B.Fε,η)(0)
‖Pn,ε,η‖Lp(α,F )

≤ 1 + Cε+ o(1)

(B.Fε,η)(0)
.
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Finally, by using

µ(α) =

(
∞∏

k=1

|zk|
)p

· µ(β),(43)

with

µ(β) = ‖ϕ∗‖p
Hp(G,ρ) =

∥∥∥∥
Dρ(∞)

Dρ

∥∥∥∥
p

Hp(G,ρ)

= [Dρ(∞)]p = [D(0)]p,(44)

we obtain

lim sup
n→∞

mn,p(α) ≤ Dρ(∞)

B(0)
= Dρ(∞).

∞∏

k=1

|zk| = [µ(β)]
1

p

[
∞∏

k=1

|zk|
]

= (µ(α))1/p.

To illustrate this section, we give the proof of Theorem 8 (see also [27]
for more details). Before this, let us recall the lemma which we use many times
in Hardy spaces Hp(Ω, ρ) (or Hp(G, ρ)).

Lemma 2 [15]. Let {fn} be a sequence of functions in Hp(G, ρ) and

(i) fn → f uniformly on the compact sets of G,

(ii) ‖fn‖p
Hp(G,ρ) ≤M (const ),

then
f ∈ Hp(G, ρ) and ‖f‖p

Hp(G,ρ) ≤ lim inf
n→∞

‖fn‖p
Hp(G,ρ).(45)

P r o o f o f Th e o r em 8.
P r o o f o f (i). Since p > 0 and α ∈ L, then

lim sup
n→∞

mn,p(α) ≤ (µ(α))1/p.(46)

It remains to prove that

(µ(α))1/p ≤ lim inf
n→∞

mn,p(α).(47)

We will present two proofs of the above inequality.

F i r s t p r o o f o f (47). The extremal properties of Tn,p,α(z) and
Tn,p,α`

(z) imply

mn,p(α) = ‖Tn,p,α‖Lp(α,F ) ≥ ‖Tn,p,α‖Lp(α`,F`)(48)
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≥ ‖Tn,p,α`
‖Lp(α`,F`) = mn,p(α`).

By (48) we get
mn,p(α) ≥ mn,p(α`), ∀p > 0, ∀`.(49)

Combining (49) with Theorem 2.2 of [15], we obtain

lim inf
n→∞

(mn,p(α)) ≥ (µ(α`))
1/p, ∀p > 0, ∀`.(50)

Now, by using the fact that

µ(α`) = µ(β) ·
(
∏̀

k=1

|zk|
)p

,

(see [15, formula (1.9)]), and letting l → ∞, we have

lim inf
n→∞

(mn,p(α)) ≥ µ(β)1/p ·
(

∞∏

k=1

|zk|
)

= (µ(α))1/p.(51)

S e c o n d p r o o f o f (47). By putting

φ∗n,p = Tn,p,α(z)/zn,(52)

and by using (46), we get

‖φ∗n,p‖Hp(G,ρ) ≤M = const .(53)

Let M∗ = lim infn→∞ ‖φ∗n,p‖p
Hp(G,ρ). We have

M∗ = lim
n→∞,n∈N1

‖φ∗n,p‖p
Hp(G,ρ).(54)

This result and Lemma 1 imply that {φ∗
n,p, n ∈ N1} is a normal family in

G. Then we can find a function ψ(z) which is the uniform limit (on the compact
subsets of G) of some subsequences {φ∗

n,p, n ∈ N2} of {φ∗n,p, n ∈ N1}.

From Lemma 2: ψ ∈ Hp(G, ρ) and

‖ψ‖p
Hp(G,ρ) ≤ lim inf

n→∞
‖φ∗n,p‖p

Hp(G,ρ).(55)

On the other hand, ψ(∞) = 1 and ψ(zk) = 0, k = 1, 2, . . .. Finally, with (55) we
get

µ(α) ≤ ‖ψ‖p
Hp(G,ρ) ≤ lim inf

n→∞
‖φ∗n,p‖p

Hp(G,ρ) ≤ lim inf
n→∞

(mn,p(α))p.(56)
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Consequently (46) and (56) imply

(µ(α))1/p ≤ lim inf
n→∞

mn,p(α) ≤ lim inf
n→∞

mn,p(α) ≤ (µ(α))1/p,

then (i) of Theorem 8 follows.

P r o o f o f (ii). The function

Ψn =
1

2
(φ∗n,p + ψ∗),

where
‖ψ∗‖p

Hp(G,ρ) = µ(α),

tends to the following limits

Ψn(∞) = 1 and lim
n→∞

Ψn(zk) = 0, k = 1, 2, . . .

As in (i), we have

lim inf
n→∞

‖Ψn‖p
Hp(G,ρ) ≥ µ(α).(57)

Finally, (ii) follows from the Clarkson inequality and an extension of the Keldysh
lemma.
For 1 ≤ p ≤ 2 :

[∫

Γ

∣∣∣∣
1

2
(φ∗n,p + ψ∗)

∣∣∣∣
p

ρ(ξ)|dξ|
]1/p−1

+

[∫

Γ

∣∣∣∣
1

2
(φ∗n,p − ψ∗)

∣∣∣∣
p

ρ(ξ)|dξ|
]1/p−1

≤
[
1

2

∫

Γ
|φ∗n,p|pρ(ξ)|dξ| +

1

2

∫

Γ
|ψ∗|pρ(ξ)|dξ|

]1/p−1

.

For 2 ≤ p <∞:

∫

Γ

∣∣∣∣
1

2
(φ∗n,p + ψ∗)

∣∣∣∣
p

ρ(ξ)|dξ| +
∫

Γ

∣∣∣∣
1

2
(φ∗n,p − ψ∗)

∣∣∣∣
p

ρ(ξ)|dξ|

≤ 1

2

∫

Γ
|φ∗n,p|pρ(ξ)|dξ| +

1

2

∫

Γ
|ψ∗|pρ(ξ)|dξ|.

For 0 < p < 1: We use the extension of the Keldysh lemma due to Bello
Hernandez, Marcellan and Minguez ([2], Theorem 2, p. 430) in the case of unit
circle plus an infinite number of points. If we adapt this result to our case, we
obtain the following version of the Keldysh lemma.
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Lemma 3. Let {zk}∞k=1 be a set of points in G, α = β + γ where α ∈ L
and {fn} ⊂ Hp(G, ρ), 0 < p <∞. Let

f̃n =
fn

ϕ∗
,where ϕ∗(z) =

Dρ(∞)

Dρ(z)
.

If
(a) lim

n→∞
f̃n(∞) = 1,

(b) lim
n→∞

f̃n(zk) = 0, k = 1, 2, . . . ;

(c)
∞∑

k=1

(|zk| − 1) < +∞,

(d) lim
n→∞

‖fn‖Hp(G,ρ) = Dρ(∞)
∞∏

k=1

|zk|,

then

lim
n→∞

∥∥∥∥∥fn −
∞∏

k=1

z − zk
z.zk − 1

· |zk|
2

zk
.ϕ∗

∥∥∥∥∥
Hp(G,ρ)

= lim
n→∞

‖fn − (B∞.ϕ
∗)‖Hp(G,ρ) = 0.

We get (ii) of Theorem 8 in the case 0 < p < 1, by applying Lemma 3 to
the sequence {fn = φ∗n,p} ⊂ Hp(G, ρ).

We have
φ∗n,p(∞) = 1 and ϕ∗(∞) = 1.

Hence (a) follows. On the other hand, (b) is a consequence of the fact that
ϕ∗(zk) 6= 0 and

lim
n→∞

φ∗n,p(zk) = 0, k = 1, 2, . . . .

(c) is exactly the condition (30). We obtain (d) by considering (43), (44) and the
fact that

lim
n→∞

‖φ∗n,p‖Hp(G,ρ) = lim
n→∞

mn,p(α) = (µ(α))1/p.

Then (ii) of Theorem 8 is proved.

P r o o f o f (iii). It is clear that the formulas of type (ii) combined with
Lemma 1 give the asymptotic formulas of orthogonal polynomials or Lp extremal
polynomials. Indeed, applying Lemma 1 for the functions

εn(z) =
Tn,p,α(z)

zn
− ψ∗(z),(58)
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then for all compact K ⊂ G, we get

sup
z∈K

|εn(z)| ≤ C(K)‖εn‖p
Hp|(G,ρ) →n→∞ 0.

This completes the proof of (iii).

5.3. Open problems and conjectures. In this section, we present
some open problems, conjectures and ideas for their solving in question.

Open problem 1. Consider the asymptotic behaviour of Lp extremal
polynomials associated with a measure concentrated on a closed rectifiable Jordan
curve E. Gueronimus [10] established the asymptotic formula of Lp extremal
polynomials for a class G of curves (see Definition 1 and Theorem 1). The
question is: Can we get the same result for a larger class than Gueronimus class
G. We denote by BM the class of curves for which we have

lim
n→∞

mn,p(β)

C(E)n
= µ(β)

1

p ,

and by BH the set of all the rectifiable Jordan curve. We have

G ⊂ BM ⊂ BH.

Can we obtain at the limit
BM = BH?

Conjecture 1. G  BM  BH (i.e., G ⊂ BM and G 6= BM; BM ⊂ BH
and BM 6= BH).

One obtains the following result:

Theorem 1 (bis). Let E be a closed curve belonging to the class BM
and 0 < p <∞. Then

1) lim
n→∞

∥∥∥∥
Tn,p,β(z)

C(E)n.Φn(z)
− DE,ρ(z)

DE,ρ(∞)

∥∥∥∥
Hp(Ω,ρ)

= 0,

2) Tn,p,β(z) = C(E)n · Φn(z)
DE,ρ(z)

DE,ρ(∞)
[1 + εn(z)],

εn(z) → 0, uniformly on the compact sets of Ω.
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P r o o f o f Th e o r e m 1 (b i s). E ∈ BM, then for 0 < p <∞ we have

lim
n→∞

mn,p(β)

C(E)n
= µ(β)

1

p .

The proofs of 2) and 3) are exactly identic to the proofs of (ii) and (iii) of Theorem
1 (see [10] for more details). Then the main problem of Conjecture 1 is to prove
that G 6= BM, BM 6= BH and to characterize BM. �

Open problem 2. Study of the asymptotic behaviour of Lp extremal
polynomials associated with the measures α of the following form: α = β + γ =
βa + βs + γ, βa and βs is the absolutely continuous and singular part respectively
of β, β is concentrated on E or Γ, γ is a discrete measure concentrated on an
infinite of points zk belonging to the exterior of E or of Γ.

Theorem 8 is a particular case of this problem. It corresponds to the case
βs = 0.

Before giving Conjecture 2, let us recall the definition of the Szegö function
which corresponds to the measure α = β + γ = βa + βs + γ.

We suppose that the absolutely continuous part βa of the measure β
satisfies the following Szegö condition:

∫

E
(log β′

a(ξ))|Φ′(ξ)||dξ| > −∞.(59)

This allows us to construct, as in the absolutely continuous case, DE,β′

a

which is called the Szegö function, associated with the curve E and β and
possesses the following properties:

a) DE,β′

a
is analytic in Ω, DE,β′

a
6= 0 in Ω and DE,β′

a
> 0,

b) DE,ρ has a limit value almost everywhere on E and

|Φ′(ξ)|
|DE,β′

a
|p = |β′a(ξ)|, (almost everywhere on E).(60)

Definition 3. If the measure α = β + γ = βa + βs + γ is such that βa

verifies the condition (59) and its discrete part verifies

(
∞∑

k=1

|zk| − 1

)
<∞,
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then we say that α ∈ BA.

We are in position to present Conjecture 2.

Theorem 8 (bis) (Conjecture 2). Let Γ be the unit circle and α =
βa + βs + γ, such that α ∈ BA, and DΓ,β′

a
the Szegö function associated with the

circle Γ and the measure β, then

(i) lim
n→∞

mn,p(α) = (µ(α))1/p,

(ii) lim
n→∞

∥∥∥∥∥
Tn,p,α(z)

zn
− DΓ,β′

a
(z)

DΓ,β′

a
(∞)

·
∞∏

k=1

z − zk
z.zk − 1

· |zk|
2

zk

∥∥∥∥∥
Hp(G,ρ)

= 0,

(iii) Tn,p,α(z) = zn

[
DΓ,β′

a
(z)

DΓ,β′

a
(∞)

·
∞∏

k=1

z − zk
z.zk − 1

· |zk|
2

zk
+ εn(z)

]
,

εn(z) → 0, uniformly on the compact sets of G.

I d e a o n t h e p r o o f o f Th e o r e m 8 (b i s). (i) As in the absolutely
continuous case (Theorem 8), for the proof of (i) we start establishing two
inequalities:

lim sup
n→∞

mn,p(α)

(C(E))n
≤ (µ(α))1/p,(61)

and

(µ(α))1/p ≤ lim inf
n→∞

mn,p(α).(62)

To prove (61) and as in the absolutely continuous case, we can follow closely the
proof of Perherstofer and Yuditskii [40]. These authors use measures of the form
α = β + γ = βa + βs + γ, β is concentrated on a segment and γ is a discrete
measure concentrated on an infinite number of points outside the segment. It is
more difficult to prove the formula (62).

(ii) If (i) can be established, it will be not difficult to prove (ii) because
in this case we can use the extension of the Keldych Lemma (see [2]). This
extension has been established in the case of the general measure α of the form:
α = β + γ = βa + βs + γ, where β is concentrated on the unit circle and γ is a
discrete measure concentrated on an infinite number of points outside the circle
and 0 < p <∞.

Open problem 3. Study of the asymptotic behaviour of Lp extremal
polynomials (0 < p < ∞) associated to the measures of the following form α =
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β+γ, where β is concentrated on the arc (segment), and is absolutely continuous
or not, and γ is a discrete measure concentrated on an infinite number of points
{zk}∞k=1.

This is a difficult problem. It has been only solved for the particular case
p = 2 for a finite number of points and an absolutely continuous measure by
Kaliaguine [16].
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ért. 27 (1909) 1–33 (in Hungarian).

[9] J.S. Geronimo, K. M. Case. Scattering theory and polynomials
orthogonal on the real line. Trans. Amer. Math. Soc. 258 (1980), 467–494,
MR 82:c:81138.



Lp extremal polynomials 127

[10] Ya. L. Gueronimus. On some extremal problems in the space Lp
σ. Mat.

Sb. (N.S.) 31(73) (1952), 3–26 (in Russian).

[11] Ya. L. Gueronimus. Polynomials Orthogonal on a Circle and Interval.
Fizmatgiz, Moscow, 1958 (in Russian); (English translation: International
Series of Monographs on Pure and Applied Mathematics, 18, Oxford-
London-New York-Paris: Pergamon Press, 1961, 218 p.).

[12] A. A. Gonchar. On convergence of Padé approximants for some classes of
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