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Abstract. Longitudinal data arise when we have repeated measures on
subjects over time. The correlated probit model is frequently used for or-
dered longitudinal data since it allows to seamlessly incorporate different
correlation structures. The estimation of the probit model parameters based
on direct maximization of the limited information maximum likelihood is a
numerically intensive procedure especially when we have repeated measures
on subjects. We propose an extension of the EM algorithm for obtaining
maximum likelihood estimates for one ordinal longitudinal outcome. The
algorithm is implemented in the free software environment for statistical
computing and graphics R. We use simulations to examine the performance
of the developed algorithm and apply the model to data from the Health
and Retirement Study (HRS). We apply a bootstrap approach for standard
error approximation. Advantages of the presented algorithm include the po-
tential of dealing with high-dimensional random effects and of extending the
algorithm to combinations of ordinal and continuous longitudinal outcomes.
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1. Introduction. Longitudinal surveys follow up subjects over time. Mod-

eling such data requires taking into account the correlation of measurements

within subject. There are three main classes of models for longitudinal data:

random effects models, transition models and marginal models. Marginal models

are used when we are primarily interested in inferences for the population mean

over time and the correlation structure is of secondary interest. Transition mod-

els are used when we are interested in modeling the response as a function of

preceding outcomes and covariates. Random effects models are used when we are

interested in inferences about individual change rather than average population

change over time. Diggle et al. [10] describe the theoretical details of modeling

longitudinal data while Weiss [29] provides a more applied overview.

Individuals often drop out of longitudinal studies. The mechanism of missing-

ness needs to be taken into account when we model an incomplete data set. While

marginal and transition models need to be extended when there are missing data,

random effects models deal seamlessly with missing at random observations, that

is, when the missingness depends only on observed outcomes and covariates. An-

other advantage of random effects models is that they simultaneously describe

the mean structure and the correlation structure of the data.

In many longitudinal studies the variable of interest is ordinal. For exam-

ple, in the Health and Retirement Study (HRS, http://hrsonline.isr.umich.edu/)

self-rated health is categorical with five levels: excellent (coded as 1), very good

(2), good (3), fair (4) and poor (5). The survey follows American citizens born

between years 1931 and 1941 and their spouses over 14 years. There are seven

waves of data collection at intervals of two years. At each interview the par-

ticipants provided information about their self-rated health and multiple other

variables. Our interest is in modeling how self-assessment of health varies over

time. We use the correlated probit model.

Probit models were first proposed by Gaddum [14] and Bliss [3, 4] for binary

data. Ashford and Sowden [2] introduced a multivariate extension of the probit

model based on an underlying multivariate normal distribution. Aitchison and

Silvey [1] proposed a probit model for ordinal data. Ochi and Prentice [27] first

introduced a correlated probit model but only for exchangeable binary data. Ex-

tensions of this model were proposed by Hedeker and Gibbons [15], Catalano [7],

Grilli and Rampichini [16], Gueorguieva and Sanacora [19] among others. The

correlated probit model has been extensively used because it is easy to interpret

and allows different correlation structures within subject. However, computa-

tional problems have always been a challenge and the issue of a general approach
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to parameter estimation is still open. Gueorguieva [17] has a detailed overview

on correlated probit models.

In the present article we consider a correlated probit model which is suitable

for ordinal longitudinal data. A special feature of the model is the assumption

of latent normal variables with thresholds that generate the observed ordinal

responses. The latent variables can be interpreted as unobserved continuous

measures that generate the observed responses. For example, in HRS we may

consider health to be an underlying continuous measure. We can not directly

observe it, rather we know only the level (categorical variable) at which the sub-

jects rate their health at a particular time point. Conceptually, the unobserved

continuous measure depends on measured covariates (both time-independent or

time-dependent) via fixed effects and unmeasured covariates via random effects.

The correlated probit model does not have closed form expression for the

likelihood function and hence approximations need to be used. There are sev-

eral methods of statistical inference based on numerical, stochastic or analytical

approximations. Most popular appear to be extensions of numerical approxima-

tions such as Gauss-Hermite quadrature [13] pp. 306−307 or addaptive Gaussian

Quadrature [22]. However, these approaches become too computationally inten-

sive and are not feasible for models with many random effects. Another approach

is based on analytical approximations (Breslow and Clayton [5], Wolfinger and

O’Connell [31]) but it has been shown to produce bias in the parameter esti-

mates especially for binary data or ordinal data with few categories. Stochastic

approximations appear most suitable for correlated probit models for longitudi-

nal data since the computational complexity does not increase exponentially with

the increase of number of random effects and they provide unbiased results as

the number of generated samples increases.

We consider a stochastic extension of the Expectation Maximization (EM)

algorithm [9] or more precisely of the Expectation Conditional Maximization

(ECM) algorithm [26]. Ruud [28] is the first to apply the EM algorithm for the

estimation of the parameters of probit models. Kawakatsu and Largey [20] ex-

tend Ruud’s work to a joint model of a single ordinal and multivariate normal

outcomes. Chan and Kuk [8] consider a correlated model for a clustered binary

variable and propose an ECM algorithm for parameter estimation. Gueorguieva

and Agresti [18] extend their approach to correlated binary and continuous out-

comes. Our algorithm extends the approach of Chan and Kuk [8] and Gueorguieva

and Agresti [18] to ordinal data by using the parameter transformation proposed

by Kawakatsu and Largey [20] for estimation of the threshold parameters.
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Since the EM algorithm does not provide direct estimates for the standard

errors of the parameters, we use bootstrap for standard error estimation. Boot-

strap methods were first introduced by Efron [11] and are resampling methods.

They are very useful when the theoretical distribution of a statistic of interest is

complicated or unknown. Bootstrap methods can be applied to a broad class of

problems (e.g. standard error estimation, hypothesis testing, confidence intervals

construction).

The paper is organized as follows. Section 2 defines the correlated probit

model and outlines the estimation of the parameters and of their standard errors.

Section 3 describes the simulation studies that were performed in order to examine

the performance of the algorithm. An application of the model to the HRS data

is included in Section 4. Section 5 contains concluding remarks and discussion

about possible extensions of the algorithm.

2. Correlated probit model for ordinal longitudinal data. Let y∗ij
denote the observed ordinal variable with m levels on the ith subject at time j.

We assume that there is a latent normal variable yij that generated the observed

variable. We consider the following random effects model:

yij = x′

ijβ + z′

ijbi + ǫij .(1)

The rule that relates the latent variable to the observed ordinal variable is:

y∗ij =





1, yij ≤ α1;

j, αj−1 < yij ≤ αj , j = 2, . . . ,m − 1;

m, yij > αm−1;

(2)

for some unknown thresholds α1, . . . , αm−1.

The vector of random effects is assumed to be normally distributed q-dimensional

and is denoted by bi ∼ N(0,Σ). The error term is normally distributed ǫij ∼

N(0, σ2) and is independent of the random effects.

The regression parameters for the fixed effects in model (1) are denoted by

the p-dimensional vector β. The vector of predictors for the fixed effects is xij

and the vector of predictors for the random effects is zij. The covariance matrix

Σ is a quadratic q × q positive semi-definite matrix.

From the observed data we can not estimate all of the unknown parameters,

so we impose the following identifiability restrictions: the first threshold α1 is set

to zero and the variance of the normal error term σ2 is set to 1. Other restrictions

and re-parameterizations are possible.
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The correlated model formulation is very appealing because the underlying

normal distribution allows for very rich correlation structure. Also, the model

has intuitive interpretation and can be easily extended to multiple ordinal and

continuous outcomes. Furthermore, estimating the parameters using maximum

likelihood allows the use of all results concerning maximum likelihood estimates.

Hence Wald, score and likelihood ratio tests can be used for hypothesis testing

and confidence interval construction. Likelihood ratio tests can also be used to

compare nested models while information criteria such as Akaike Information

Criterion or Schwartz-Bayesian Criterion can be used for model selection.

2.1. Maximum likelihood estimation via the EM algorithm. We ex-

tend the stochastic ECM algorithm of Chan and Kuk [8] to estimate the unknown

parameters in model (1). The first step is to re-parameterize the thresholds so

that they can be explicitly included in the complete data log-likelihood. For this

we use the approach of Kawakatsu and Largey [20]. We define the differences be-

tween consecutive thresholds with δi = αi−αi−1, i = 2, . . . ,m−1. We also define

δ1 = δm = 1 for completeness and future use. Then we consider a new variable

which is a linear transformation of the latent variable: yijnew
= (yij−αy∗

ij
−1)/δy∗

ij
.

For completeness we denote α0 = 0. For example, if y∗ij = u, u = 1, . . . ,m then

yijnew
= (yij − αu−1)/δu. Because the new variable is a linear transformation of

the latent variable then it is also normally distributed. However, conditional on

the observed categorical variable, it is a truncated normal variable. If we observe

the first level of y∗ the new variable is truncated at (−∞, 0], if y∗ is between the

first and the last level the new variable is truncated at (0, 1], and if we observe

the last level of y∗ the new variable is truncated at (0,∞).

2.1.1. Complete data log-likelihood. Complete data log-likelihood ln L

is:

ln L = ln f(b, ynew) =

n∑

i=1

ln f(bi)f(yinew |bi).

Apart from the constants the log likelihood has the following closed form:

ln L = −0.5
n∑

i=1

ln |Σ| − 0.5
n∑

i=1

b′

iΣ
−1bi +

+

n∑

i=1

ni∑

j=1

ln δy∗

ij
− 0.5

n∑

i=1

ni∑

j=1

[δy∗

ij
yijnew

− (x′

ijβ + z′

ijbi − αy∗

ij
−1)]

2.
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Thus we obtain closed form expressions for the estimators of the unknown pa-

rameters Γ = (β, Σ, δ2, . . . , δm−1) by setting the first derivatives of the complete

data log-likelihood to zero.

2.1.2. Closed form expressions for the estimators. The estimator for

the covariance matrix Σ of the random effects is:

Σ̂ =
1

n

n∑

i=0

bib
′

i.

Regression parameters for the fixed effects satisfy the following equation:

n∑

i=1

ni∑

j=1

xijx
′

ijβ =

n∑

i=1

ni∑

j=1

[δy∗

ij
yijnew

− z′

ijbi + αy∗

ij
−1)]xij.

It follows that the regression parameters β are a least squares solution of the

regression of ỹij on xij, where ỹij = δy∗

ij
yijnew

− z′

ijbi + αy∗

ij
−1.

The equations for δk, k = 2, . . . ,m − 1 are quadratic equations of the form

aδ2
k + bδk + c = 0 which always have real roots and the bigger root is always

positive. The constants a, b, c are as follows:

a =
∑

i,j

∑

y∗

ij
=k

(y2
ijnew

) + nk+1 + . . . + nm,

b = −

∑

i,j

∑

y∗

ij
=k

yijnew
(x′

ijβ + z′

ijbi − αk−1) +

∑

i,j

∑

y∗

ij
>k

(δy∗

ij
yijnew

− x′

ijβ − z′

ijbi + δ1 + . . . + δk−1 + δk+1 + . . . + δy∗

ij
−1),

c = −nk,

where nk is the number of observations categorical variable at k-th level.

All we need to do in order to update the parameter estimates at each step of

the algorithm is to find the conditional expectations in the closed form expressions

of the estimators. We will show that all of the conditional expectations depend

only on the first two moments of the truncated multivariate normal distribution.
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2.1.3. Conditional expectations. Let us introduce the following notation:

Xi =




x′

i1

x′

i2
...

x′

ini


 ,Zi =




z′

i1

z′

i2
...

z′

ini


 ,αi =




αy∗

i1
−1

αy∗

i2
−1

...
αy∗

ini
−1


 , δ−1

i =




1/δyi1

1/δyi2

...
1/δyini


 .

Then the joint distribution of yinew and bi is multivariate normal:

(
yinew

bi

)
∼ N

[(
(Xiβ − αi) ◦ δ

−1

i

0

)
,V

]
,

where Jni×qδ
−1

i is a ni × q matrix with columns δ
−1

i and ◦ is the Hadamard

(elementwise) product and

V =

(
(ZiΣZ′

i + Ini
) ◦ δ

−1

i δ
−1

′

i ZiΣ ◦ (Jni×qδ
−1

i )

ΣZ′

i ◦ (Jni×qδ
−1

i )
′

Σ

)
.

Let us denote ΣBi
= (ΣZ′

i ◦ (Jni×qδ
−1

i )
′
)[(ZiΣZ′

i + Ini
) ◦ δ

−1

i δ
−1′

i ]
−1.

Then the conditional distribution of bi given yinew is again normal:

bi|yinew ∼ N [ΣBi
(yinew − (Xiβ − αi) ◦ δ

−1

i ), Σ − ΣBi
(ZiΣ ◦ (Jni×qδ

−1

i ))] .

In the expressions for the estimators we have to find the following conditional

expectations: E(bi|y
∗

i ), E(bib
′

i|y
∗

i ), E(yijnew
bi|y

∗

i ). We will show that they de-

pend only on the first two moments of yinew |y∗

i .

The expectation of the random effects conditional on the observed variable

is:

E(bi|y
∗

i ) = E[E(bi|yinew )|y∗

i ]

= E[ΣBi
(yinew − (Xiβ − αi) ◦ δ

−1

i )|y∗

i ]

= ΣBi
[E(yinew |y∗

i ) − (Xiβ − αi) ◦ δ
−1

i ].

Let us denote Mi = yinew − (Xiβ − αi) ◦ δ
−1

i . For the estimator of the

covariance matrix of the random effects we need:

E(bib
′

i|y
∗

i ) = E[E(bib
′

i|yinew)|y∗

i ]

= E[V ar(bi|yinew ) + E(bi|yinew )E(b′

i|yinew)|y∗

i ]
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= Σ − ΣBi
(ZiΣ ◦ (Jni×qδ

−1

i )) + ΣBi
E[MiM

′

i|y
∗

i ]Σ′

Bi

= Σ − ΣBi
(ZiΣ ◦ (Jni×qδ

−1

i )) +

ΣBi
[V ar(yinew |y∗

i ) + E(yinew |y∗

i )E(y′

inew
|y∗

i )

−E(yinew |y∗

i )[(Xiβ − αi) ◦ δ
−1

i ]′

−[(Xiβ − αi) ◦ δ
−1

i ]E(y′

inew
|y∗

i )

+[(Xiβ − αi) ◦ δ
−1

i ][(Xiβ − αi) ◦ δ
−1

i ]′]Σ′

Bi
.

In the expression for the conditional expectation of b we need:

E(yijnew
bi|y

∗

i ) = E[E(yijnew
bi|yinew )|y∗

i ]

= E[yijnew
ΣBi

(yinew − (Xiβ − αi) ◦ δ
−1

i )|y∗

i ]

= ΣBi
E[yijnew

yinew − yijnew
(Xiβ − αi) ◦ δ

−1

i |y∗

i ]

= ΣBi
[Cov(yijnew

yinew |y∗

i ) + E(yijnew
|y∗

i )E(yinew |y∗

i )

−E(yijnew
|y∗

i )(Xiβ − αi) ◦ δ
−1

i ].

The conditional expectations above are available in closed forms [24] but their

calculation is computationally very intensive and proved to be inefficient espe-

cially when the dimension of the truncated multivariate distribution d is bigger

than 2. We describe a stochastic approximation of the conditional expectations

which has good practical properties. In order to find the above conditional expec-

tations which we showed to depend only on the first two moments of yinew |y∗

i

we use a Monte Carlo method. We generate values from the truncated nor-

mal distribution given observed data using Gibbs sampling with the help of the

rtmvnorm function in the R package tmvtnorm. The algorithm for the gener-

ation of random numbers is described in detail in [30]. We use the sample mean

and the sample variance of simulated values to approximate E(yinew |y∗

i ) and

V ar(yinew |y∗

i ). In mathematical notation this is expressed as:

Ê(yinew |y∗

i ) =
1

m

m∑

k=1

y
(k)

inew
,
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ˆV ar(yinew |y∗

i ) =
1

m − 1

m∑

k=1

(y
(k)

inew
− Ê(yinew |y∗

i ))(y
(k)

inew
− Ê(yinew |y∗

i ))
′,

where y
(k)

inew
is the k−th realisation of yinew |y∗

i in the generated sample of m

random numbers. Our experience shows that even for small m (e.g. 150 or 200)

we get adequate results.

2.1.4. (k +1)-st iteration of the ECM algorithm. The estimates of the

unknown parameters at the k + 1−st step of the proposed ECM algorithm are

updated as follows:

• The (k + 1)-st estimates of the regression parameters βk+1 are the least

square solution of the regression of E(ỹij|y
∗

i ; Γ
k) on xij.

• The (k + 1)-st estimate of δu, u = 2, . . . ,m − 1 is: δk+1
u =

(−E[b|y∗
; Γ

k]+

√
(E[b|y∗

; Γ
k]2 − 4E[a|y∗

; Γ
k]E[c|y∗

; Γ
k]))/2E[a|y∗

; Γ
k].

In the expression for the expectations of a, b, c we use the already updated

estimates βk+1, δk+1
i , i = 2, . . . , u − 1.

• The (k+1)-st estimate of the covariance matrix of random effects is Σ̂
k+1

=

1

n

n∑

i=0

E(bib
′

i|y
∗

i ; Γ
k).

In order to update the estimates we use the approximatations of the expec-

tations and the variances described in the previous section.

2.2. Standard error estimation. We use the bootstrap method for stan-

dard errors approximation described in [25] pp. 130 − 131. The steps are as

follows:

1. We fit model (1) to the observed data set consisting of n individuals using

the proposed EM algorithm and obtain the estimates of the unknown para-

meters denoted by Γ̂ = (β̂, Σ̂, δ̂). To generate a bootstrap sample first we

generate n random effects bb
k from N(0, Σ̂), k = 1, . . . , n. Next we simulate

normal values yb
k of dimension nk according to model (1) for every random

effect bb
k. We use the estimated thresholds via δ̂ to determine in which

interval the normal data yb
k, k = 1, . . . , n fall and thus using (2) determine

the level of the bootstrap categorical variable yb∗

k . The bootstrap sample

consists of the categorical variables yb∗

k , k = 1, . . . , n.
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2. We apply the EM algorithm to the bootstrap data yb∗

k , k = 1, . . . , n to get

estimates for the generated data set Γ
b.

3. We use Monte Carlo method to approximate the bootstrap covariance ma-

trix. That means that we repeate step 1 and step 2 B times and calculate

the covariance matrix of the B estimated parameters Γ
b, b = 1, . . . , B:

Cov(Γ̂) ≈
B∑

b=1

(Γb
− Γ̄)(Γb

− Γ̄)′

B − 1
,

where Γ̄ =
B∑

b=1

Γ
b/B.

3. Simulations. For the implementation of the algorithm we used the free

software environment for statistical computing and graphics R. The R code for

fitting the presented models is available from the authors.

We simulated values from the following random intercept model:

yij = β0 + β1xij + bi + ǫij,

where β0 = −0.5, β1 = 1, V ar(bi) = σ2 = 0.01, V ar(ǫij) = 1 with thresholds

α1 = 0, α2 = 1.5, α3 = 3, α4 = 4.

We simulated 100 samples for two different sample sizes (n = 100 and n =

500) with 5 repeated measures on each individual. For each approximation of the

standard errors we used 75 bootstrap samples which is within the recommended

range of 50 to 100 bootstrap replications (Efron and Tibshirani [12]). The results

are presented in Table 1.

Note that due to the re-parametrization we estimate the differences in thresh-

olds rather than the thresholds themselves. In both simulations the averages of

the estimated parameters are equal within two significant digits after the decimal

point to the parameter values from which the samples were generated. The only

exception is the estimate of the last threshold difference at the smaller sample

size setting but even this estimate is close to the true value. Thus we empirically

confirm the unbiasedness of the algorithm.

As expected the estimates get closer to the real values and the standard errors

get smaller when we increase the sample size. All of the estimates are statistically

significantly different from zero except the variance of the random intercept for
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Table 1. Table of estimates and standard errors of both simulation studies

real values β0 = −0.5 β1 = 1 σ2 = 0.01 δ2 = 1.5 δ3 = 1.5 δ4 = 1

Simulation 1: number of subjects = 500, ni = 5

mean of −0.503 1.001 0.010 1.50 1.50 0.997

estimates

stand. dev. 0.06 0.023 0.0006 0.053 0.052 0.036

of estimates

mean of 0.059 0.023 0.0006 0.052 0.049 0.040

bootstrap

stand. errors

Simulation 2: number of subjects = 100, ni = 5

mean of −0.498 1.007 0.011 1.512 1.498 1.009

estimates

stand. dev. 0.114 0.051 0.010 0.107 0.108 0.090

of estimates

mean of 0.138 0.052 0.012 0.122 0.112 0.094

bootstrap

stand. errors

the smaller sample size. This is not surprising since this variance is small and the

estimates at the smaller sample size are not as efficient as at the larger sample

size.

Finally, the approximate equality of the standard deviations of the estimates

and the bootstrap standard errors confirms that the algorithm is converging as

expected. However, larger simulation study that varies the parameter settings is

necessary to confirm the above observations.

4. Application of the model. We apply the proposed model to the HRS

data. The variable of main interest in the study (self-rated health) takes values

from excellent (1) to poor (5). Categories (2), (3) and (4) mean very good, good

and fair self-rated health respectively. We examine how self-rated health changes

over time. We fit the following probit model to the data:

Self rated health ij = β0 + β1Wave ij + bi + ǫij
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In the analysis we include 7550 individuals in the study who have complete

set of observations. The results are presented in Table 2:

Table 2. Table of estimates and standard errors of the model fitted to HRS data

β0 β1 σ2 δ2 δ3 δ4

estimates 1.23 0.12 2.15 1.58 1.50 1.42

standard errors 0.015 0.0026 0.049 0.011 0.011 0.017

Table 2 shows that all of the parameters in the model are statistically sig-

nificantly different from zero. The parameter of most interest is the regres-

sion coefficient β1. It is positive and the z-test statistic for this parameter is

z = 0.12/0.0026 = 46.15, p−value < 0.0001 and thus we conclude that self-rated

health deteriorates significantly over time. Further study including additional

covariates may reveal whether this change is associated with particular subject

characteristics.

We also note that the variance of the random intercept is significantly different

from 0. This implies that the between-subject variability of the self-reported

health measurements is large and that there is strong correlation between the

repeated measurements on a particular individual.

5. Conclusions. In this paper we considered a correlated probit model for

the analysis of repeatedly measured ordinal outcomes. We proposed an exten-

sion of the EM algorithm of Chan and Kuk [8] for obtaining maximum likelihood

estimates, implemented it in the free software environment for statistical com-

puting and graphics R and studied its performance using simulations. We also

illustrated the approach on self-reported health data from the Health and Re-

tirement Study (HRS). Our approach has advantages over alternative estimation

methods in that it can handle a large number of random effects, it can be easily

extended to any combination of binary, ordinal and continuous outcomes and it

provides unbiased estimates. It is also easily implemented in the open-source

software environment R. Using free software is a premise for wider usage and

quicker improvement of the code.

There are several possible directions in which the algorithm implementation

can be improved. There is a possible extention of the algorithm, called parameter

expanded ECM algorithm [21] that can accelerate the speed of convergence of the

algorithm. Rather than restrict some parameters (e.g. the variance of the error

term) for parameter identifiability up front, this extension allows estimation of

all parameters free of restrictions and at the last iteration calculates fully iden-
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tifiable functions of the parameter (e.g. the ratios of the regression parameters

and the squared root of the variance of the errors estimate). An example of

implementation of this algorithm can be found in Gueorguieva and Agresti [18].

It is also possible to improve the implementation of the algorithm by choos-

ing different R functions or improving the efficiency of the code. We already

applied one such optimization. Although there are functions for finding the first

two moments of the multivariate truncated normal distribution in the package

mvtnorm based on the work by Manjunath and Wilhelm [24] they are rather

slow. Generating random numbers using Gibbs sampling [6] and finding the first

two moments based on that sample proved to be quicker.

Standard error estimation is computationally very intensive. While the boot-

strap algorithm can always be applied, it is not efficient. Other approaches may

be possible. For example, one might consider the Louis’s approximation method

[23].

Further research is also needed to extend the algorithm to combinations of

ordinal and continuous longitudinal outcomes. Model selection and model diag-

nostics are also open areas of research.
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