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Abstract. A convex arc in the plane is introduced as an oriented arc Γ
satisfying the following condition: For any three of its points c1 < c2 < c3 the
triangle c1c2c3 is counter-clockwise oriented. It is proved that each such arc
Γ is a closed and connected subset of the boundary of the set ΦΓ being the
convex hull of Γ. It is shown that the convex arcs are rectifyable and admit
a representation in the natural parameter by the Riemann-Stieltjes integral
with respect to an increasing, nonnegative and continuous from the right
function s+. Further it is shown that the obtained representation relates to
the support function of the set ΦΓ. Concerning the reverse question, namely
what can be said for the curves that admit such representation, it is shown
that they are exactly the curves that can be decomposed into finitely many
convex arcs. This result suggests the name piecewise convex curves. In
particular, the class of piecewise convex curves contains the convex curves
being boundary sets of convex figures, therefore the results from the paper
can be used as a tool for studying convex curves.
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1. Introduction. The convex sets and convex curves in two dimensions

are an important part of convex set theory. This paper is some contribution to this

topic. The notion of a convex arc is generalized to a piecewise convex curve. The

convex curves being boundaries of convex figures are particular cases of piecewise

convex curves. Hence, the presented here results can be useful in studying convex

curves.

A convex arc is defined as an oriented arc Γ satisfying the condition:

For any three of its points c1 < c2 < c3 the triangle c1c2c3 is counter-clockwise

oriented. It is proved that each convex arc Γ is a closed and connected subset

of the boundary of the set ΦΓ being the convex hull of Γ (see below Theorem

1, where it is also emphasized when Γ reduces to a segment or degenerates to a

point). It is shown that the convex arcs are rectifyable and admit representation

in the natural parameter by the Riemann-Stieltjes integral with respect to an

increasing, nonnegative and continuous from the right function s+ : [θa, θb] → R.

It is well known [8] that such a function generates a measure on the interval

[θa, θb] and one can identify s+ with this measure.

The class of the considered curves is extended to all those, which admit

the proposed integral representation. It is shown that this class coincides with

the curves, which can be decomposed into finitely many convex arcs, and on this

base they are named piecewise convex curves. The convex curves are a particular

case of piecewise convex curves.

For a convex curve the measure generated by s+ occurs in principle in Vi-

tale [10]. (Vitale proves nonconstructively the existence of a measure in terms of

which the support function can be expressed. His measure could be the one gen-

erated by the considered in this paper functions s+ and s−, or any intermediate

function.) The usefulness of such a measure when studying approximation of con-

vex sets has been shown by several authors, e. g. McClure, Vitale [7], Nedelcheva

[9], Ludwig [6], Ligun, Shumĕıko [5].

Several advantages of the presented in the paper approach can be mentio-

ned. In opposite to Vitale a straightforward meaning of the obtained measure in

terms of lengths is given, which leads immediately to the equation of the curve in

the natural parameter. As a corollary an integral representation of the support

function of a piecewise convex curve is obtained. Actually, the main task of the

Vitale’s paper is to establish such a representation for the particular case of a

convex curve.

The proposed integral representation can be useful in investigation of

variety of problems concerning convex curves and piecewise convex curves. Our
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intention is to apply this tool to explain phenomena which occur in the approxi-

mation of convex curves by polygonal curves, some of them described in [2], [3]

and [12].

The structure of the paper is the following. Section 2 defines convex arcs

and investigating the equations in the natural parameter of convex arcs derives

their integral representations. Section 3 studying the curves, which admit an

integral representation of the obtained type, leads to the notion of a piecewise

convex curve. It is shown there that the integral representation characterizes the

piecewise convex curves and it is studied when a given integral representation

corresponds to a convex arc.

2. Convex arcs. All considerations in this paper concern the Euclidean

plane R
2. The points in R

2 and their radius-vectors are identified with pairs of

reals. We make use of the transformations T + : R
2 → R

2, a = (a1, a2) 7→
T+a = (−a2, a1) and T− : R

2 → R
2, a = (a1, a2) 7→ T−a = (a2,−a1) being

in fact rotations on right angle respectively in counter-clockwise and clockwise

directions. For any two points c1, c2 ∈ R
2 we denote by c1c2 the segment with

initial point c1 and final point c2. We denote also by eθ = (cos θ, sin θ) the unit

vector concluding with the x-axis an angle with measure θ.

We call an arc each set Γ ⊂ R
2 homeomorphic to a compact interval

[α, β] ⊂ R. In this convention the points in R
2 are also arcs, since each point

is homeomorphic to a degenerate interval. Each homeomorphism h : [α, β] → Γ

determines an ordering relation called usually orientation on Γ with the agreement

h(t1) ≤ h(t2) if t1 ≤ t2. We write also h(t1) < h(t2) if t1 < t2. The arc Γ together

with a given orientation is called an oriented arc. It is well known that each

arc admits only two orientations. Further from the context will be clear when Γ

denotes an arc or oriented arc.

The points h(α) and h(β) do not depend on the concrete homeomorphism

h : [α, β] → Γ determining the orientation of the oriented arc Γ and are called

correspondingly the initial and the final points of the oriented arc Γ.

We call the oriented arc Γ a convex arc if for any three points ci =

(ci
1, c

i
2) ∈ Γ, i = 1, 2, 3, such that c1 < c2 < c3, it holds

(c1, c2, c3) :=

∣

∣

∣

∣

∣

∣

∣

∣

1 c1
1 c1

2

1 c2
1 c2

2

1 c3
1 c3

2

∣

∣

∣

∣

∣

∣

∣

∣

≥ 0 .(1)
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The above determinant gives the doubled value of the oriented area of

the oriented triangle c1c2c3, hence it is nonnegative if this triangle is counter-

clockwise oriented. Roughly speaking, we call the oriented arc convex if it is

counter-clockwise curved.

The convention in analysis is that for a planar set with a boundary being a

simple closed curve usually an orientation is introduced leaving the set on the left

side, see e. g. the Green formula. Further in Theorem 1 it is shown that a convex

arc is a proper subset of a convex curve, that is of the boundary of a convex

figure. Once we agree that the convex arc should be an oriented arc, as far as the

orientation plays an important role in the sequel, for the sake of compatibility

with the natural orientation of the convex curves we should consider as natural

the counter-clockwise orientation. This explains the given definition of a convex

arc. Obviously, similar results can be obtained for arcs being clockwise curved.

The paper does not deal with this case.

Here there are some examples of convex arcs. Each point in R
2 is a convex

arc. The segment ab is a convex arc. The graph of a continuous convex function

of one variable defined on a compact interval (with orientation corresponding to

the increasing of the argument) is a convex arc.

For any two points c1, c2 ∈ R
2, c1 6= c2, we introduce the notations:

pc1c2 = {c ∈ R
2 | (c1, c2, c) = 0} ,

E+
c1c2

= {c ∈ R
2 | (c1, c2, c) ≥ 0} ,

Ĕ+
c1c2

= {c ∈ R
2 | (c1, c2, c) > 0} ,

E−

c1c2
= {c ∈ R

2 | (c1, c2, c) ≤ 0} ,

Ĕ−

c1c2
= {c ∈ R

2 | (c1, c2, c) < 0}.

Here pc1c2 is the straight line through the points c1 and c2, and E+
c1c2

, Ĕ+
c1c2

,

E−

c1c2
, Ĕ−

c1c2
are the half-planes that it determines.

Since the determinant in (1) alternates its sign when permuting two of

its rows, we see that the value (c1, c2, c3) alternates its sign by a permutation of

any two of the points. Therefore condition (1) means that c2 ∈ E−

c1c3
for any

three points c1 < c2 < c3 in Γ. The property that Γ is a convex arc means that

c ∈ E−

c1c2
for c1 < c < c2 and c ∈ E+

c1c2
for c < c1 < c2 or c1 < c2 < c.

In this section we denote by Γ a convex arc, and by a and b its initial and

final points. Given any two points c1 < c2 in Γ, then we put Γc1c2 = {c ∈ Γ |
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c1 ≤ c ≤ c2}. Since Γc1c2 is the image of the restriction of the homeomorphism

determining Γ on a compact interval, we see that Γc1c2 is a convex arc.

We will use the notion of a convex figure. Following [11] we call a convex

figure any convex compact set in the plane with nonempty interior.

Next we determine the structure of the convex arc Γ.

Theorem 1. Let Γ be a convex arc with a and b being its initial and final

points. Then the following cases may occur:

a) If a = b, then Γ degenerates to a point.

b) If a 6= b and (c1, c2, c3) = 0 for any three points c1 < c2 < c3 of Γ, then

Γ is the segment ab.

c) If a 6= b and (c1, c2, c3) > 0 for at least one triple of points c1 < c2 < c3

of Γ, then Γ ∪ ba is the boundary of a convex figure.

P r o o f. a) If Γ is a homeomorphic image of an interval with coinciding

images of its end points, then this interval degenerates to a point and also Γ

degenerates to a point.

b) Since (a, b, c) = 0 for any c ∈ Γ, we get Γ ⊂ pab. Since Γ is connected

and has a and b as an initial and final points, we get Γ = ab.

c) At first we prove that Γ ∪ ab is a simple closed curve.

Obviously Γ does not possess multiple points as a homeomorphic image

of an interval. It remains to show that Γ does not intersect the relative interior

of ab.

Take the points c1 < c2 < c3, such that (c1, c2, c3) > 0. Then for at least

one of the points ci, i = 1, 2, 3, it holds (a, ci, b) > 0. Otherwise we would have

ci ∈ pab, i = 1, 2, 3, whence (c1, c2, c3) = 0, a contradiction. Thus, there exists

a point c̄ ∈ Γ, such that (a, c̄, b) > 0. Then Γac̄ ⊂ E−

ac̄ and Γc̄b ⊂ E−

c̄b. Therefore

Γ = Γac̄ ∪ Γc̄b ⊂ E−

ac̄ ∪ E−

c̄b . Assume that there exists a point c∗ ∈ Γ, such that

c∗ ∈ ab and c∗ 6= a, c∗ 6= b. It follows c∗ = λa + (1 − λ)b for some 0 < λ < 1. We

get from here after short transformations

(a, c̄, c∗) = (a, c̄, λa + (1 − λ)b) = (1 − λ)(a, c̄, b) > 0 .

Therefore c∗ ∈ Ĕ+
ac̄. We can get in a similar way c∗ ∈ Ĕ+

c̄b, whence c∗ ∈ Ĕ+
ac̄ ∩ Ĕ+

c̄b.

At the same time

c∗ ∈ Γ ⊂ E−

ac̄ ∪ E−

c̄b = R
2 \

(

Ĕ+
ac̄ ∩ Ĕ+

c̄b

)

,

a contradiction.
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Thus ba and Γ do not possess common points different from a and b.

Therefore Γ∪ ba is a simple closed curve, whence it is the boundary of a compact

set ΦΓ. We have shown also that co {a, c̄, b} ⊂ ΦΓ, which shows directly that ΦΓ

has a nonempty interior.

We claim that ΦΓ is a convex figure.

We will show that each straight line p passing through an arbitrary point

c0 from the interior of ΦΓ intersects the boundary Γ ∪ ba in exactly two points,

whence it would follow that ΦΓ is a convex figure (compare with Yaglom, Boltyan-

ski [11], page 17, problem 5).

Let p be arbitrary straight line passing through the point c0 from the

interior of ΦΓ. Obviously, p intersects the boundary of ΦΓ in at least two points.

At least one point lays on each of the two rays in which c0 splits p, a consequence

of ΦΓ bounded and c0 in the interior of ΦΓ. We will show that these intersecting

points are at most two, whence it would follow that their number is exactly two.

Let us note that p cannot intersect the boundary of ΦΓ in a segment. To

prove this we observe that p intersects ab in at most one point. Otherwise ab ⊂ p

and because Γ ⊂ E−

ab and consequently ΦΓ ⊂ E−

ab it follows that p contains only

boundary points of ΦΓ and therefore it cannot pass through the interior point

c0, a contradiction. If we assume that p ∩ Γ = āb̄, where ā < b̄, then from the

convexity of Γ we would have c ∈ E+
āb̄

for all c ∈ Γ, i. e. ΦΓ ⊂ E+
āb̄

. This means

that p contains only boundary points of ΦΓ and therefore it cannot pass through

the interior point c0, a contradiction.

We consider the cases:

10. Let p do not intersect ba. Assume that p intersects Γ in at least three

points c1 < c2 < c3. We have the possibilities:

10 a. The point c2 is between c1 and c3 on the line p. The segments c1c2

and c2c3 have the same directions. Then there exists a point c∗ ∈ Γ for which

c1 < c∗ < c2 < c3 and (c1, c∗, c2) > 0 (otherwise we would have that c1c2 ⊂ Γ∩ p,

that is Γ∩ p contains a segment, which as it was shown is impossible). Therefore

c∗ ∈ Ĕ−

c1c2
= Ĕ−

c2c3
and in consequence (c∗, c2, c3) < 0, a contradiction with the

convexity of Γ.

10 b. The point c3 is between c1 and c2 on the line p. The segments

c1c3 and c2c3 are with opposite directions. Then there exists a point c∗ ∈ Γ, for

which c1 < c2 < c∗ < c3 and (c2, c∗, c3) > 0, in other words c∗ ∈ Ĕ−

c2c3
= Ĕ+

c1c3
.

Therefore (c1, c3, c∗) > 0, which contradicts to the convexity of Γ.



Piecewise Convex Curves and Their Integral Representation 13

10 c. The point c1 is between c2 and c3 on the line p. The segments c1c2

and c1c3 are with opposite directions. Then there exists a point c∗ ∈ Γ, such that

c1 < c∗ < c2 < c3 and (c1, c∗, c2) > 0. This means c∗ ∈ Ĕ−

c1c2
= Ĕ+

c1c3
. Therefore

(c1, c3, c∗) > 0, which contradicts to the convexity of Γ.

We have shown, that the intersecting points of p with Γ are exactly two

when p does not intersect ab.

20. Let p intersect ba. The intersecting point of p with ab is only one,

denote it by c = p ∩ ab. We will show, that p intersects Γ in exactly one point.

Assume that there exist at least two intersecting points c1 and c2 of p

with Γ, for which c1 < c2. Then either a ∈ Ĕ−

c1c2
or b ∈ Ĕ−

c1c2
, since a and b are

in different half-planes with respect to p. Let a ∈ Ĕ−

c1c2
(the case b ∈ Ĕ−

c1c2
is

similar). Therefore (c1, c2, a) < 0. On the other hand a < c1 < c2 and from the

convexity of Γ it follows that (c1, c2, a) ≥ 0, a contradiction.

From 10 and 20 it follows that p intersects the boundary of ΦΓ in exactly

two points. Therefore ΦΓ is a convex figure. �

In the proof of Theorem 1 c) we introduced the set ΦΓ for which it holds

ΦΓ = co Γ. We will use the same notation also in the cases a) and b). Then ΦΓ

is a point in case a), a segment in case b), and a convex figure in case c). In

each case ΦΓ is a compact convex set in the plane. Also in the sequel we use the

notation ΦΓ for the convex hull of Γ.

Recall that the boundary of a convex figure is usually called a convex

curve [11]. Therefore, Theorem 1 shows that each convex arc is either a point,

or a segment, or a connected and closed proper subset of the convex curve being

the boundary of ΦΓ.

It is shown in [1] that each convex figure possesses a perimeter, that is

each convex curve is rectifyable. Consequently, each convex arc Γ is rectifyable

and therefore it admits an equation in natural parameter

Γ : r = f(s) , 0 ≤ s ≤ L ,(2)

where the natural parameter s is the length of the arc from the initial point a to

the current point. Here L is the length of Γ. The function f is continuous. More-

over, it is well known that f is Lipschitz with constant 1. Since Γ has no multiple

points, the function f is injective. Each continuous and injective mapping with

domain a compact set is a homeomorphism. Therefore (2) is a homeomorphic

representation of the arc Γ. Further it can be shown that the passing from a
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parameter t determining the convex arc Γ to the natural parameter is realized

by an increasing function s = s(t). This shows that the natural parameter s

determines the same ordering on Γ as the parameter t, that is property (1) holds

with respect to the ordering determined by the parameter s. Therefore (2) is a

representation of Γ as a convex arc, which can be referred to as representation

by natural parameter.

Our main purpose is to describe the function f in (2) in terms of a pa-

rameter θ being connected with the support function of ΦΓ in direction eθ, which

is done in Theorem 2. The support functions are important tools when treating

problems concerning convex figures. The representation obtained in Theorem 2

could play similar role when studying convex arcs. In the next section we define

piecewise convex curves as a generalization of both the convex arcs and the con-

vex curves, and extend the representation from Theorem 2 to piecewise convex

curves. The study of piecewise convex curves and in particular of convex curves

can be based on the obtained representation.

We need first the following notations.

Let K be a convex set in R
2. We call a support function of K the function

Λ : R → R , Λ(θ) = sup{r · eθ | r ∈ K} .

Here r · eθ denotes the scalar product of the radius-vector r and the vector eθ.

The straight line pθ : r · eθ = Λ(θ) is said to be a support line of K in

direction eθ. We will consider pθ as an axis with orientation determined by the

vector T +eθ being colinear to pθ.

Suppose that Γ is a convex arc with initial point a, final point b and

parametric representation in natural parameter given by (2). When a 6= b we

denote by γ a real number, for which eγ = T−(a− b)/‖a − b‖. Here ‖ · ‖ denotes

the Euclidean norm. When a = b, which according to Theorem 1 has place only

if Γ degenerates to a point, we denote by γ any real number.

Let θ ∈ [γ, γ + 2π] and pθ be the support line of ΦΓ in direction eθ. Let

ΦΓ ∩ pθ be the segment (possibly degenerated to a point) with end points r−(θ)

and r+(θ) where the direction from r−(θ) to r+(θ) coincides with the orientation

on pθ.

We put

c−(θ) =

{

a , θ = γ,
r−(θ) , γ < θ ≤ γ + 2π,

c+(θ) =

{

r+(θ) , γ ≤ θ < γ + 2π,
b , θ = γ + 2π.
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We determine the functions s−, s+ : [γ, γ + 2π] −→ R by

f(s−(θ)) = c−(θ), f(s+(θ)) = c+(θ),

where f is the function from the representation (2) of Γ with natural parameter.

In fact s−(θ) gives the length of Γac−(θ) and s+(θ) gives the length of Γac+(θ).

For each pair of points c1 < c2 from Γ we determine the number ϑ =

ϑ(c1, c2) ∈ [γ, γ + 2π] by eϑ = T−(c2 − c1)/‖c2 − c1‖.
If c ∈ Γ and a < c < b we put

ϑ−(c) = sup{ϑ(c1, c) | c1 ∈ Γ, c1 < c} ,

ϑ+(c) = inf{ϑ(c, c2) | c2 ∈ Γ, c < c2} .

For c = a we put ϑ−(c) = γ and determine ϑ+(c) from the above equal-

ities, for c = b we put ϑ+(c) = γ + 2π and determine ϑ−(c) from the above

equalities.

In Theorem 1 below discusses the representation of convex arcs. As a

preparation we need the following lemma.

Lemma 1. Let Γ be a convex arc with initial point a and final point b. Let

δ > 0 and [θ1, θ2] be a subinterval of [γ, γ +2π] such that 0 < θ2 − θ1 = 2σ ≤ 2δ.

Denote ci = c+(θi) for i = 1, 2. The following estimations have place:

‖ c2 − c1‖ ≤ s+(θ2) − s+(θ1) ≤
‖ c2 − c1‖

cos 1
2(θ2 − θ1)

.(3)

| ‖ c2 − c1‖ −
(

s+(θ2) − s+(θ1)
)

| ≤
(

s+(θ2) − s+(θ1)
)

(

1

cos δ
− 1

)

.(4)

‖ eθ2
− eθ1

‖ ≤ 2 sin δ .(5)

P r o o f. We prove (3). Denote the intersection point of the support lines

pθ1
and pθ2

with p. The chord c1c2 has length not greater than the length of

the convex arc Γc1c2 , which proves the left inequality. In turn the length of the

convex arc Γc1c2 is not greater than the length of the broken line c1p∪p c2, whose

sides c1p and p c2 constitute an angle θ2 − θ1. The length of the broken line does
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not exceed the last term in (3). To prove this we put ‖ c2 − c1‖ = ĉ, ‖p− c1‖ = â,

‖p − c2‖ = b̂. Obviously

s+(θ2) − s+(θ1) ≤ â + b̂.(6)

We will show that

â + b̂ ≤ ĉ

cosσ
.(7)

In fact, from the law of sines for the triangle c1p c2, denoting by R the radius of

the circumscribed circle, and by α and β the angles respectively at the vertices

c1 and c2, we get â = 2R sinα, b̂ = 2R sinβ, ĉ = 2R sin(π − 2σ). Therefore (7) is

equivalent to the following inequality

sinα + sinβ ≤ sin(π − 2σ)

cos σ
=

sin 2σ

cos σ
= 2 sinσ,

which in turn is equivalent to

2 sin
α + β

2
cos

α − β

2
≤ 2 sin σ

and hence to the obvious inequality

cos
α − β

2
≤ 1.

This verifies (7). Now (6) and (7) imply the claimed inequality.

The proof of inequality (4) follows from

|‖c2 − c1‖ −
(

s+(θ2) − s+(θ1)
)

| =
(

s+(θ2) − s+(θ1)
)

− ‖c2 − c1‖

≤ ‖c2 − c1‖
cos 1

2(θ2 − θ1)
− ‖c2 − c1‖ = ‖c2 − c1‖

(

1

cos σ
− 1

)

≤
(

s+(θ2) − s+(θ1)
)

(

1

cos δ
− 1

)

.

For the proof of (5) consider the rhomboid determined by eθ2
and eθ1

and

observe that the length d of one of its diagonals is

‖ eθ2
− eθ1

‖ = d2 sin σ ≤ 2 sin δ. �

Theorem 2. Let Γ be a convex arc with initial point a and final point b.

We put θa = γ and θb = γ + 2π. Now a = c−(θa) and s−(θa) = 0.
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a) The following integral representation has place:

c+(θ) = c−(θ0) + T+eθ0
(s+(θ0) − s−(θ0)) +

∫ θ

θ0

T+eλ ds+(λ) ,

c−(θ) = c−(θ0) +

∫ θ

θ0

T+eλ ds−(λ) ,

(8)

for all θ0 ∈ [θa, θb) and θ ∈ [θ0, θb] (the integrals are in the sense of Riemann-

Stieltjes.

b) The function f from the representation (2) in natural parameter is

given by

f(s) =















c−(θ) , s = s−(θ),
c+(θ) , s = s+(θ),

c−(θ)
s+(θ) − s

s+(θ) − s−(θ)
+ c+(θ)

s − s−(θ)

s+(θ) − s−(θ)
, s−(θ) < s < s+(θ).

(9)

c) The support function Λ of ΦΓ satisfies

Λ(θ) = eθ · c−(θ) = eθ · c+(θ) , θa ≤ θ ≤ θb .

P r o o f. a) We prove the first of the equalities (8). Let θ0 < θ1 < . . . <

θn = θ. Let ci = c+(θi), i = 0, 1, 2, . . . , n. This means

cn = c0 +
n

∑

i=1

‖ci − ci−1‖ · T+eϑ(ci−1,ci)

(if for some i the points ci−1 and ci coincide, we put eϑ(ci−1,ci) = eϑ+(ci−1)).

Let δ > 0 and denote by LΓcucv the length of the arc Γcucv . Choose a

partition {θi} such that 0 < θi − θi−1 ≤ 2δ, i = 0, 1, 2, . . . , n. Put

A = cn − (c+(θ0) +

∫ θ

θ0

T+eλ ds+(λ) )

=
n

∑

i=1

(‖ci − ci−1‖T+eϑ(ci−1,ci) −
∫ θi

θi−1

T+ eλ ds+(λ) ) .
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The following estimations have place:

|A| ≤
n

∑

i=1

|
(

s+(θi) − s+(θi−1)
)

T+ eϑ(ci−1,ci) −
∫ θi

θi−1

T+ eλ ds+(λ) |

+

n
∑

i=1

|‖ci − ci−1‖ −
(

s+(θi) − s+(θi−1)
)

|

≤
n

∑

i=1

∫ θi

θi−1

‖T+ eϑ(ci−1,ci) − T+ eλ‖ ds+(λ)

+

n
∑

i=1

(

s+(θi) − s+(θi−1)
)

(

1

cos δ
− 1

)

≤
n

∑

i=1

∫ θi

θi−1

‖T+ eθi
− T+ eθi−1

‖ ds+(λ) + LΓc0cn

(

1

cos δ
− 1

)

≤ LΓc0cn

(

2 sin δ +
1

cos δ
− 1

)

−→ 0 for δ → 0 .

Therefore A → 0 for max |θi − θi−1| → 0, which proves the first equality

(8). The second equality is derived in a similar way. In the proof we have used

Lemma 1.

b) The claim follows easily from the following equalities valid by definition

s−(θ) = s(c−(θ)) and s+(θ) = s(c+(θ)) .

c) The claimed equality has place, since both c+(θ) and c−(θ) belong to

the support line pθ. �

We conclude this section with two examples of convex arcs. They illust-

rate the passing from the parameter θ to the natural parameter. The next section

also refers to these examples.

Example 1. Let K0 = co {(0, 1), (0, −1)}, K1 = {r ∈ R
2 | ‖r‖ ≤ 1}

and K = K0 + K1, where the sum is understood as the Minkowski sum of convex

sets. Define the convex arc Γ to be the counter-clockwise oriented part of the

boundary of K from the point (1, 1) to the point (1, −1). We have a = (1, 1),

γ = 0, and s−, s+ : [0, 2π] → R are given by

s−(θ) =

{

θ , 0 ≤ θ ≤ π ,
2 + θ , π < θ ≤ 2π ,

s+(θ) =

{

θ , 0 ≤ θ < π ,
2 + θ , π ≤ θ ≤ 2π .
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consequently the same convex arc Γ will be obtained if in the definition of Γ

instead of the given functions s−, s+ we apply their restrictions to a smaller

interval [θa, θb] with any θa ∈ [0, 3π/4) and θb ∈ (5π/4, 2π]. While Theorem 2

was formulated with interval [θa, θb] with length 2π, Example 2 shows that the

conclusions are valid sometimes with smaller intervals. Let us mention that in

Example 1 the interval [0, 2π] cannot be diminished.

3. Piecewise convex curves. Formula (8) with θ0 = θa transforms

into

c+(θ) = a + T +eθa
s+(θa) +

∫ θ

θa

T+eλ ds+(λ) ,

c−(θ) = a +

∫ θ

θa

T+eλ ds−(λ) ,

(10)

true for all θ ∈ [θa, θb]. This can be considered as an integral representation

of the convex arc Γ, since in virtue of (9) once we have got the functions c−

and c+, we can restore Γ. Let us underline that the essential information in

(10) is the knowledge of the initial point a, the interval [θa, θb] and the function

s+ : [θa, θb] → R, which is increasing, nonnegative, and continuous from the

right. The latter is seen from the next Theorem 3, where it is shown that the

function s− can be expressed by s+. Pay attention there, that the knowledge of

only s− is not enough to restore s+, for the value s+(θb) cannot be obtained by

s−.

Let us underline that the Riemann-Stieltjes integral from a continuous

function with respect to an increasing function exists always [4]. The function

λ → T+eλ = (− sinλ, cos λ) is continuous. Therefore, the integrals in (10) exist

always.

Theorem 3. Let s+ : [θa, θb] → R be increasing, nonnegative, and

continuous from the right function and a ∈ R
2. Determine the function s− :

[θa, θb] → R from

s−(θ) =







0 , θ = θa ,

lim
θ1→θ−

s+(θ1) = s+(θ − 0) , θa < θ ≤ θb .
(11)

Determine c+(θ) and c−(θ) from (10) for all θ ∈ [θa, θb]. Then it holds:
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Formula (8) with θ0 = 0 gives

c−(θ) =

{

(cos θ, 1 + sin θ), 0 ≤ θ ≤ π ,
(cos θ, −1 + sin θ), π < θ ≤ 2π ,

c+(θ) =

{

(cos θ, 1 + sin θ), 0 ≤ θ < π ,
(cos θ, −1 + sin θ), π ≤ θ ≤ 2π .

Formula (9) gives for the representation (2) with natural parameter the function

f(s) =







(cos s, 1 + sin s), 0 ≤ s ≤ π ,
(−1, π + 1 − s), π ≤ s ≤ π + 2 ,

(cos(s − 2), −1 + sin(s − 2)), π + 2 ≤ s ≤ 2π + 2 .

Example 2. Let K be the triangle K = {(x, y) | −1 ≤ x ≤ 0, −1 − x ≤
y ≤ 1 + x}. Define the convex arc Γ to be the counter-clockwise oriented part of

the boundary of K from the point (0, 1) to the point (0, −1). We have a = (0, 1),

γ = 0, and s−, s+ : [0, 2π] → R are given by

s−(θ) =







0 , 0 ≤ θ ≤ 3π/4 ,√
2 , 3π/4 < θ ≤ 5π/4 ,

2
√

2 , 5π/4 < θ ≤ 2π .

s+(θ) =







0 , 0 ≤ θ < 3π/4 ,√
2 , 3π/4 ≤ θ < 5π/4 ,

2
√

2 , 5π/4 ≤ θ ≤ 2π .

Formula (8) gives

c−(θ) =







(0, 1), 0 ≤ θ ≤ 3π/4 ,
(−1, 0), 3π/4 < θ ≤ 5π/4 ,
(0, −1), 5π/4 < θ ≤ 2π ,

c+(θ) =







(0, 1), 0 ≤ θ < 3π/4 ,
(−1, 0), 3π/4 ≤ θ < 5π/4 ,
(0, −1), 5π/4 ≤ θ ≤ 2π .

For the function f we get

f(s) =

{

(−s/
√

2, 1 − s/
√

2) , 0 ≤ s ≤
√

2 ,

(−2 + s/
√

2, 1 − s/
√

2) ,
√

2 ≤ s ≤ 2
√

2 .

Concerning Example 2 we see that the functions s− and s+ are constants

on the intervals [0, 3π/4) and (5π/4, 2π]. As a result the same function f and


