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ABSTRACT. A convex arc in the plane is introduced as an oriented arc I'
satisfying the following condition: For any three of its points ¢! < ¢ < ¢? the
triangle c'c?¢? is counter-clockwise oriented. It is proved that each such arc
I' is a closed and connected subset of the boundary of the set &1 being the
convex hull of I". Tt is shown that the convex arcs are rectifyable and admit
a representation in the natural parameter by the Riemann-Stieltjes integral
with respect to an increasing, nonnegative and continuous from the right
function st. Further it is shown that the obtained representation relates to
the support function of the set ®p. Concerning the reverse question, namely
what can be said for the curves that admit such representation, it is shown
that they are exactly the curves that can be decomposed into finitely many
convex arcs. This result suggests the name piecewise convex curves. In
particular, the class of piecewise convex curves contains the convex curves
being boundary sets of convex figures, therefore the results from the paper
can be used as a tool for studying convex curves.
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1. Introduction. The convex sets and convex curves in two dimensions
are an important part of convex set theory. This paper is some contribution to this
topic. The notion of a convex arc is generalized to a piecewise convex curve. The
convex curves being boundaries of convex figures are particular cases of piecewise
convex curves. Hence, the presented here results can be useful in studying convex
curves.

A convex arc is defined as an oriented arc I' satisfying the condition:
For any three of its points ¢! < ¢ < ¢3 the triangle c'c?c?
oriented. It is proved that each convex arc I' is a closed and connected subset

is counter-clockwise

of the boundary of the set ®r being the convex hull of I" (see below Theorem
1, where it is also emphasized when I' reduces to a segment or degenerates to a
point). It is shown that the convex arcs are rectifyable and admit representation
in the natural parameter by the Riemann-Stieltjes integral with respect to an
increasing, nonnegative and continuous from the right function s : [6,,0,] — R.
It is well known [8] that such a function generates a measure on the interval
[0,,0p] and one can identify s with this measure.

The class of the considered curves is extended to all those, which admit
the proposed integral representation. It is shown that this class coincides with
the curves, which can be decomposed into finitely many convex arcs, and on this
base they are named piecewise convex curves. The convex curves are a particular
case of piecewise convex curves.

For a convex curve the measure generated by s™ occurs in principle in Vi-
tale [10]. (Vitale proves nonconstructively the existence of a measure in terms of
which the support function can be expressed. His measure could be the one gen-
erated by the considered in this paper functions s* and s~, or any intermediate
function.) The usefulness of such a measure when studying approximation of con-
vex sets has been shown by several authors, e. g. McClure, Vitale [7], Nedelcheva
[9], Ludwig [6], Ligun, Shumeiko [5].

Several advantages of the presented in the paper approach can be mentio-
ned. In opposite to Vitale a straightforward meaning of the obtained measure in
terms of lengths is given, which leads immediately to the equation of the curve in
the natural parameter. As a corollary an integral representation of the support
function of a piecewise convex curve is obtained. Actually, the main task of the
Vitale’s paper is to establish such a representation for the particular case of a
convex curve.

The proposed integral representation can be useful in investigation of
variety of problems concerning convex curves and piecewise convex curves. Our
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intention is to apply this tool to explain phenomena which occur in the approxi-
mation of convex curves by polygonal curves, some of them described in [2], [3]
and [12].

The structure of the paper is the following. Section 2 defines convex arcs
and investigating the equations in the natural parameter of convex arcs derives
their integral representations. Section 3 studying the curves, which admit an
integral representation of the obtained type, leads to the notion of a piecewise
convex curve. It is shown there that the integral representation characterizes the
piecewise convex curves and it is studied when a given integral representation
corresponds to a convex arc.

2. Convex arcs. All considerations in this paper concern the Euclidean
plane R2. The points in R? and their radius-vectors are identified with pairs of
reals. We make use of the transformations T+ : R? — R2 a = (aj,a2) —
Tta = (—ag,a1) and T~ : R? — R2 a = (aj,a3) — T~ a = (az,—ay) being
in fact rotations on right angle respectively in counter-clockwise and clockwise
directions. For any two points ¢!, ¢*> € R? we denote by cle? the segment with
initial point ¢! and final point c¢?>. We denote also by ey = (cos f,sin ) the unit
vector concluding with the z-axis an angle with measure 6.

We call an arc each set I' C R? homeomorphic to a compact interval
[, 3] C R. In this convention the points in R? are also arcs, since each point
is homeomorphic to a degenerate interval. Each homeomorphism A : [a, ] — T
determines an ordering relation called usually orientation on I' with the agreement
h(t1) < h(ta) if t; < to. We write also h(t1) < h(ts) if t; < to. The arc I" together
with a given orientation is called an oriented arc. It is well known that each
arc admits only two orientations. Further from the context will be clear when I
denotes an arc or oriented arc.

The points h(«) and h(3) do not depend on the concrete homeomorphism
h : o, 8] — T determining the orientation of the oriented arc I' and are called
correspondingly the initial and the final points of the oriented arc I'.

We call the oriented arc T a convex arc if for any three points ¢! =
(ci,é) €T, i=1,2, 3, such that ¢! < ¢ < c3, it holds
1 c% c%
(1) (A =|1 ¢ &|>0.

33
1 ¢ o
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The above determinant gives the doubled value of the oriented area of
the oriented triangle c'c?c?, hence it is nonnegative if this triangle is counter-
clockwise oriented. Roughly speaking, we call the oriented arc convex if it is
counter-clockwise curved.

The convention in analysis is that for a planar set with a boundary being a
simple closed curve usually an orientation is introduced leaving the set on the left
side, see e. g. the Green formula. Further in Theorem 1 it is shown that a convex
arc is a proper subset of a convex curve, that is of the boundary of a convex
figure. Once we agree that the convex arc should be an oriented arc, as far as the
orientation plays an important role in the sequel, for the sake of compatibility
with the natural orientation of the convex curves we should consider as natural
the counter-clockwise orientation. This explains the given definition of a convex
arc. Obviously, similar results can be obtained for arcs being clockwise curved.
The paper does not deal with this case.

Here there are some examples of convex arcs. Each point in R? is a convex
arc. The segment ab is a convex arc. The graph of a continuous convex function
of one variable defined on a compact interval (with orientation corresponding to
the increasing of the argument) is a convex arc.

For any two points ¢!, ¢ € R?, ¢! # ¢?, we introduce the notations:
Pac ={c €R?| (!, 2, c) = 0},
E;ECQ ={ceR?| (¢}, ¢c) >0},
E} . ={ceR?| (2, c) >0},
EL.={ce€ R? | (¢!, c?,e) <0},
E‘;CQ ={ceR?| (¢}, ¢c) <0}

Here p.i.2 is the straight line through the points ¢! and ¢?, and E;CZ, Et

cle2y

v

E7, 5, E; , are the half-planes that it determines.
C™C ccC

Since the determinant in (1) alternates its sign when permuting two of
its rows, we see that the value (c!,c?, ¢3) alternates its sign by a permutation of
any two of the points. Therefore condition (1) means that ¢? € E s for any
three points ¢! < ¢ < ¢ in I'. The property that I' is a convex arc means that

cel . for ¢! < ¢ < ¢? anchE;c2 forc<cl <corel < <e.

In this section we denote by I' a convex arc, and by a and b its initial and
final points. Given any two points ¢! < ¢? in T, then we put p.2 = {c € T |
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ct < ¢ < ?}. Since T'yi2 is the image of the restriction of the homeomorphism
determining I' on a compact interval, we see that I'.1.2 is a convex arc.

We will use the notion of a convex figure. Following [11] we call a convex
figure any convex compact set in the plane with nonempty interior.

Next we determine the structure of the convex arc I

Theorem 1. Let I’ be a convex arc with a and b being its initial and final
points. Then the following cases may occur:

a) If a = b, then T' degenerates to a point.
b) If a # b and (¢!, c?,c®) = 0 for any three points ¢' < 2 < ¢ of T, then
T" is the segment ab.

¢) If a # b and (c', %, ¢c3) > 0 for at least one triple of points ¢! < ¢® < ¢
of T, then T' U ba is the boundary of a convex figure.

Proof. a) If I' is a homeomorphic image of an interval with coinciding
images of its end points, then this interval degenerates to a point and also I'
degenerates to a point.

b) Since (a,b,c) = 0 for any ¢ € ', we get I' C pgp. Since I' is connected
and has a and b as an initial and final points, we get I' = ab.

c) At first we prove that T'U ab is a simple closed curve.

Obviously I' does not possess multiple points as a homeomorphic image
of an interval. It remains to show that I' does not intersect the relative interior
of ab.

Take the points ¢! < ¢ < ¢3, such that (c!,c?,¢3) > 0. Then for at least
one of the points ¢!, i = 1, 2, 3, it holds (a,ct,b) > 0. Otherwise we would have
¢ € pay, i = 1, 2, 3, whence (c!,c2,¢®) = 0, a contradiction. Thus, there exists
a point ¢ € T, such that (a,¢,b) > 0. Then I'oz C E ; and I'y, C E_,. Therefore
' =TeUTl'sg C E;UE, . Assume that there exists a point ¢* € I', such that
c* € ab and c* # a, c* # b. It follows ¢* = Aa + (1 — \)b for some 0 < A < 1. We

get from here after short transformations
(a,¢,c*) = (a,é, a+ (1 = A)b) = (1 — N)(a,c,b) >0

Therefore ¢* € E;% We can get in a similar way c* € E;I;, whence c* € E;% N Eé;
At the same time

¢ €T C EgUEy =R\ (BLNE)

a contradiction.
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Thus ba and T' do not possess common points different from a and b.
Therefore I' Uba is a simple closed curve, whence it is the boundary of a compact
set ®p. We have shown also that co{a, ¢, b} C ®p, which shows directly that ®p
has a nonempty interior.

We claim that O is a convex figure.

We will show that each straight line p passing through an arbitrary point
& from the interior of ®r intersects the boundary I' U ba in exactly two points,
whence it would follow that @ is a convex figure (compare with Yaglom, Boltyan-
ski [11], page 17, problem 5).

Let p be arbitrary straight line passing through the point ¢ from the
interior of ®p. Obviously, p intersects the boundary of ®r in at least two points.
At least one point lays on each of the two rays in which c? splits p, a consequence
of ®p bounded and ¥ in the interior of ®p. We will show that these intersecting
points are at most two, whence it would follow that their number is exactly two.

Let us note that p cannot intersect the boundary of ®r in a segment. To
prove this we observe that p intersects ab in at most one point. Otherwise ab C p
and because I' C E, and consequently &r C E_, it follows that p contains only
boundary points of ®r and therefore it cannot pass through the interior point
¥, a contradiction. If we assume that p N I' = @b, where @ < b, then from the
convexity of I' we would have ¢ € E;IS forall ceT,i. e. or C E;%. This means
that p contains only boundary points of ®p and therefore it cannot pass through

the interior point ¢, a contradiction.
We consider the cases:

10 Let P do not intersect ba. Assume that p intersects I' in at least three
points ¢! < ¢? < ¢3. We have the possibilities:

1%a. The point c? is between c' and ¢ on the line p. The segments cle?
and 23 have the same directions. Then there exists a point ¢* € I' for which
el < << and (¢, c2) > 0 (otherwise we would have that ¢'¢2 c T'Np,
that is I' N p contains a segment, which as it was shown is impossible). Therefore
ct e E;CQ = E{;(ﬁ and in consequence (c*,c?,¢®) < 0, a contradiction with the
convexity of T

19b. The point ¢ is between c' and c® on the line p. The segments
c1e3 and 2¢3 are with opp081te directions. Then there exists a point c¢* € T", for
which ¢! < ¢ <c < ¢ and (c2,¢*,¢%) > 0, in other words c* €E23:E;C3
Therefore (c!,c®, ¢*) > 0, which contradicts to the convexity of T
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1%¢. The point c* is between c® and c® on the line p. The segments clc2
and cle? are With opposite directions. Then there exists a point ¢* € I', such that
ct <t << and (¢!, c¢*, c?) > 0. This means c* € E, .= E;C3. Therefore

(ct, e, ¢*) > 0, which Contradlcts to the convexity of T.

We have shown, that the intersecting points of p with I' are exactly two
when p does not intersect ab.

20, Let p intersect ba. The intersecting point of p with ab is only one,
denote it by ¢ = p N ab. We will show, that p intersects I' in exactly one point.

Assume that there exist at least two mtersectmg points ¢! and ¢? of p
with T, for which ¢! < ¢2. Then either a € E 2 or be EchQ, since a and b are
in different half-planes W1th respect to p. Let a € Ej 2 (the cabe b e Ei 2 s
similar). Therefore (c!,c¢?,a) < 0. On the other hand a < ¢! < ¢? and from the
convexity of T it follows that (c!,c?,a) > 0, a contradiction.

From 1° and 2° it follows that p intersects the boundary of ® in exactly
two points. Therefore ®r is a convex figure. O

In the proof of Theorem 1 ¢) we introduced the set @ for which it holds
®r = coI'. We will use the same notation also in the cases a) and b). Then ®p
is a point in case a), a segment in case b), and a convex figure in case c¢). In
each case ®r is a compact convex set in the plane. Also in the sequel we use the
notation ®r for the convex hull of I'.

Recall that the boundary of a convex figure is usually called a convex
curve [11]. Therefore, Theorem 1 shows that each convex arc is either a point,
or a segment, or a connected and closed proper subset of the convex curve being
the boundary of ®r.

It is shown in [1] that each convex figure possesses a perimeter, that is
each convex curve is rectifyable. Consequently, each convex arc I' is rectifyable
and therefore it admits an equation in natural parameter

(2) I:r=f(s), 0<s<L,

where the natural parameter s is the length of the arc from the initial point a to
the current point. Here L is the length of I'. The function f is continuous. More-
over, it is well known that f is Lipschitz with constant 1. Since I' has no multiple
points, the function f is injective. Each continuous and injective mapping with
domain a compact set is a homeomorphism. Therefore (2) is a homeomorphic
representation of the arc I'. Further it can be shown that the passing from a
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parameter ¢ determining the convex arc I' to the natural parameter is realized
by an increasing function s = s(t). This shows that the natural parameter s
determines the same ordering on I' as the parameter ¢, that is property (1) holds
with respect to the ordering determined by the parameter s. Therefore (2) is a
representation of I' as a convex arc, which can be referred to as representation
by natural parameter.

Our main purpose is to describe the function f in (2) in terms of a pa-
rameter # being connected with the support function of ¢ in direction eg, which
is done in Theorem 2. The support functions are important tools when treating
problems concerning convex figures. The representation obtained in Theorem 2
could play similar role when studying convex arcs. In the next section we define
piecewise convex curves as a generalization of both the convex arcs and the con-
vex curves, and extend the representation from Theorem 2 to piecewise convex
curves. The study of piecewise convex curves and in particular of convex curves
can be based on the obtained representation.

We need first the following notations.

Let K be a convex set in R2. We call a support function of K the function
A:R—-R, A@)=sup{r-eg|reK}.

Here r - eg denotes the scalar product of the radius-vector r and the vector ey.

The straight line pg : 7 - g = A(6) is said to be a support line of K in
direction eg. We will consider py as an axis with orientation determined by the
vector TV ey being colinear to pg.

Suppose that [' is a convex arc with initial point a, final point b and
parametric representation in natural parameter given by (2). When a # b we
denote by v a real number, for which e, =T~ (a — b)/||/a — b||. Here || - || denotes
the Euclidean norm. When a = b, which according to Theorem 1 has place only
if I' degenerates to a point, we denote by v any real number.

Let 6 € [y,y + 2x] and py be the support line of ®r in direction ey. Let
& N py be the segment (possibly degenerated to a point) with end points r~(6)
and rT () where the direction from 7~ (6) to 7+ (0) coincides with the orientation
on pg.

We put

_ a, 0=, by rT(0), v<0<y+2m,
0(9)_{7'_(9), v <O <y+2m, 0(9)_{ b, 0 =~ + 2m.



Piecewise Convex Curves and Their Integral Representation 15

We determine the functions s=, s* : [y,7 + 27] — R by

where f is the function from the representation (2) of I" with natural parameter.
In fact s~ () gives the length of T'y.—(g) and s7(6) gives the length of T'c+(g).

For each pair of points ¢! < ¢? from I' we determine the number ¥ =

d(ct,?) € [y, v+ 27 by eg = T~ (¢ — ') /[|c* = .
Ifcel and a < ¢ < b we put

97 (c) = sup{0(ct,c) | ! €T, ¢! < ¢},

97 (c) = inf{d(c,c?) | 2 €T, c < ?}.

For ¢ = a we put 9~ (¢) = v and determine 97 (c) from the above equal-
ities, for ¢ = b we put 97 (¢c) = v + 27 and determine ¥~ (c) from the above
equalities.

In Theorem 1 below discusses the representation of convex arcs. As a
preparation we need the following lemma.

Lemma 1. Let T’ be a convex arc with initial point a and final point b. Let
d > 0 and [61, 03] be a subinterval of [y, v+ 27| such that 0 < 03 — 61 = 20 < 24.
Denote ¢ = ¢t (0;) for i =1, 2. The following estimations have place:
i

2
3 2 _ ) < st 0y) — st(0y) < =l
(3) | ¢® —ct| < sT(62) 8(1)_008%(92_91)

(4) \Hcﬂ—clu—(s*(f)z)—s*(el))rs(s+<e2>—s+<91>>( : —1).

cos o

(5) | g, — eq,|| < 2sins.

Proof. We prove (3). Denote the intersection point of the support lines
pe, and pg, with p. The chord c'c? has length not greater than the length of
the convex arc I' 1.2, which proves the left inequality. In turn the length of the
convex arc I',1,.2 is not greater than the length of the broken line clpUp 2, whose
sides ¢lp and p 2 constitute an angle 85 — 6;. The length of the broken line does
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not exceed the last term in (3). To prove this we put || c? —c!|| = ¢, |[p—c!| = a,
|lp — 2| = b. Obviously

(6) st(0y) —sT(01) < a+b.
We will show that
(7) a+b<

C

coso
In fact, from the law of sines for the triangle ¢'pc?, denoting by R the radius of
the circumscribed circle, and by « and 3 the angles respectively at the vertices
ct and %, we get G = 2Rsina, b = 2Rsin 3, é = 2Rsin(m — 20). Therefore (7) is
equivalent to the following inequality

sin(m —20)  sin20

sina + sin § < = = 2sino,
cos o cos o

which in turn is equivalent to

a+p a—p

2sin 5 cos < 2sino

and hence to the obvious inequality

This verifies (7). Now (6) and (7) imply the claimed inequality.
The proof of inequality (4) follows from

¢ = ¢l = (s¥(82) — s(81)) | = (sF(82) — sH(80) — |l — ¢!

1
—w%wwzw%ww< —Q
COS O

For the proof of (5) consider the rhomboid determined by eg, and ey, and
observe that the length d of one of its diagonals is

le? — ']

~ cos %(92 —61)

| eg, — ep, || = d2sino < 2sind. g

Theorem 2. Let I be a convex arc with initial point a and final point b.
We put 0, =~ and 0y = v+ 27. Now a = ¢ (6,) and s~ (0,) = 0.
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a) The following integral representation has place:

0
H(0) = o (60) + T s, (57 (80) — 5~ (0)) + /9 THeyds™ (M),
(8) 0 0
c (0)=c (0y) + / Ttexds™(\),
)

for all Oy € [04,0,) and 0 € [0y, 0] (the integrals are in the sense of Riemann-
Stieltjes.

b) The function f from the representation (2) in natural parameter is

given by
ch
(9) f(s) = S0 s ooy ’
c—(e)% + mmTS@w), s (0) < s < 5+(0).

¢) The support function A of ®r satisfies

AO)=ep-c (0)=ep-cT(0), 0,<0<0,.

Proof. a) We prove the first of the equalities (8). Let 0y < 01 < ... <
0, =0. Let ¢ =c*(0;),i=0,1,2, ..., n. This means

n
="+ Z " — M- Thegei-1 ey
i=1

(if for some 7 the points ¢i~! and ¢’ coincide, we put e9(ci—1,c8) = €yt (ci-1))-
Let 6 > 0 and denote by LI'cucv the length of the arc I'cuev. Choose a
partition {6;} such that 0 < 60; —6;_1 <24,i=0,1,2, ... ,n. Put

0
A=c"—(ct(0o) +/9 Ttexds™ (M)

n 0;
:Z(Hci—ci1HT+6§(CZ-_1,CZ-)—/ T+ ey dst ().

i—1 0;1
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The following estimations have place:

n

0;
’A‘ < Z ’ (S+(91) — S+(9i_1)) T+ 619(01'—1761') - /9 T+ € d8+()\) ‘
i=1 i—1

+ MMl =M = (57 (6:) — 57 (6i-1)) |
i=1

IN

n 0;
S [t e = T ealldst ()
i=170i-1
- 1
+(p.) —_ <t(p. -1
#3700~ 57 0-1) (0085 )

n 0.
¢ 1
S E /9 ) ||1—Y+ €p;, — T+ 691._1” d8+()\) + LFCOC" (E — 1)
=1 L

1
< Ll.0m (281n5+——1)—>0 for §—0.

cos o

Therefore A — 0 for max|0; — 6;—1| — 0, which proves the first equality
(8). The second equality is derived in a similar way. In the proof we have used
Lemma 1.

b) The claim follows easily from the following equalities valid by definition
57(0) =s(c7(0)) and sT(0) =s(ct(0)).

¢) The claimed equality has place, since both ¢*(6) and ¢~ () belong to
the support line pg. O

We conclude this section with two examples of convex arcs. They illust-
rate the passing from the parameter 6 to the natural parameter. The next section
also refers to these examples.

Example 1. Let Ky = co{(0, 1), (0, =1)}, K1 = {r e R? | |r| < 1}
and K = Ko+ K1, where the sum is understood as the Minkowski sum of conver
sets. Define the convexr arc I' to be the counter-clockwise oriented part of the
boundary of K from the point (1, 1) to the point (1, —1). We have a = (1, 1),
v=0, and s—, sT: [0, 27] — R are given by

— 0, 0<0<m, T 0, 0<0<m,
8(9)_{2+9, T <6<2rm, S(9>_{2+9, m<0<2rm.
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consequently the same convex arc I' will be obtained if in the definition of I"
instead of the given functions s~, s™ we apply their restrictions to a smaller
interval [6,, 0p] with any 6, € [0, 37/4) and 6, € (57/4, 2n]. While Theorem 2
was formulated with interval [0, 6,] with length 27, Example 2 shows that the
conclusions are valid sometimes with smaller intervals. Let us mention that in
Example 1 the interval [0, 27| cannot be diminished.

3. Piecewise convex curves. Formula (8) with 6y = 6, transforms
into

0
ct(@)=a+T ey, sT(0,) + / Tteyds™ (N,
(10) 0 ‘
c (0)=a +/ Ttexds™(\),

true for all @ € [0,,6;]. This can be considered as an integral representation
of the convex arc I', since in virtue of (9) once we have got the functions ¢~
and c¢', we can restore I'. Let us underline that the essential information in
(10) is the knowledge of the initial point a, the interval [0, 0] and the function
st [04,0,] — R, which is increasing, nonnegative, and continuous from the
right. The latter is seen from the next Theorem 3, where it is shown that the
function s~ can be expressed by s*. Pay attention there, that the knowledge of
only s~ is not enough to restore s*, for the value s (6;,) cannot be obtained by

S .

Let us underline that the Riemann-Stieltjes integral from a continuous
function with respect to an increasing function exists always [4]. The function
A — Ttey = (—sin A, cos \) is continuous. Therefore, the integrals in (10) exist
always.

Theorem 3. Let s™ : [0,,0,] — R be increasing, nonnegative, and
continuous from the right function and a € R2?. Determine the function s~ :
[0a, 0] — R from

0, 0=0,,

ehnel sT(01) =sT(0—0), 0,<60<06.
1—0

(11) s~ (0) =

Determine ¢t (0) and ¢ (0) from (10) for all 6 € [04,6y). Then it holds:
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Formula (8) with 8y = 0 gives

~(0) = (cos@,1+sinf), 0<6<m,
¢ | (cosf, —1+sinf), m<60<2m,

() = (cos@, 1+sinf), 0<6<m,
¢ | (cosf, —1+sinf), 7<60<2r.

Formula (9) gives for the representation (2) with natural parameter the function

(coss, 1 +sins), 0<s<m,
f(s) = (-1, m4+1-3s), T<s<m+2,
(cos(s —2), =1 +sin(s —2)), 7+2<s<21+2.

Example 2. Let K be the triangle K = {(z,y) | -1 <2 <0, —-1—2 <
y <1+ z}. Define the convezx arc T' to be the counter-clockwise oriented part of
the boundary of K from the point (0, 1) to the point (0, —1). We have a = (0, 1),
v=0, and s—, sT: [0, 27] — R are given by

0, 0<6<3rn/4, 0, 0<60<3r/4,
s (0) = V2, 3n/4<0<5m/4, sT(0)= V2, 3n/4<6<5T/4,
22, bm/4<6<2rm. 22,  bm/4<6<2rm.

Formula (8) gives

), 0<6<3r/4,
), 3m/4<60<b5m/4,
(0, —1), /4 <6 <2rm,
)
)
)

) 0<60<3n/4,
. 3n/4<6<5m/4,
, br/4 <6 <2r.

For the function f we get
{ (—S/\/i,l—S/\/i>, OSSSﬁy
(

Je)= —2+5/v2,1-5/V2), V2<s<2V2.

Concerning Example 2 we see that the functions s~ and s™ are constants
on the intervals [0, 37/4) and (57/4, 2r]. As a result the same function f and



