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Abstract: Memorising large amounts of unstructured information and vocabulary is required
when studying foreign language, law, biology and medicine. Distributed over time review
sessions benefit the long-term retention more than massed practice when studying such
material. Flashcard learning using spaced repetition is one implementation of the distributed
technique. This paper proposes a Bayesian bandit algorithm which tries to maximise the
number of presented flashcards that the user is going to guess wrong in a study session. The
suggested model is implemented in a mobile application.
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1. Introduction

Researchers have been trying to improve learning and retention since 19th
century. One of the first to conduct experiments of human memory was Hermann
Ebbinghaus [1]. His studies proposed methods for studying memory. He also
discovered the spacing principle which suggests that having sleep periods between
study sessions improve performance compared to contiguous sessions.
Furthermore, the more often the learner encounters a piece of information the less
often he needs to refresh it to keep it in memory.

Spaced repetition is a learning technique, which exploits the spacing principle.
The learner is subjected to reviews of previously learned material in increasing
intervals. One simple implementation of the spacing principle is Leitner's system [2].
It uses flashcards and has been incorporated in many spaced repetition software
(SRS) programs. A flashcard is a card with information on either or both sides used
during study sessions. The Leitner System can be presented as a box of flashcards
with labeled compartments (e.g. 1 to 5). A flashcard is placed in the first
compartment if it is still new. Those cards will be repeated every day. The second
compartment contains flashcards that the learner knows relatively well. The cards
change compartments when the learner knows them better. Every compartment has
different repetition interval. In case of wrong answer the learner puts the flashcard in
previous compartment.

One common problem in SRS is deciding when the user should study. A model
based on Adaptive Character of Thought - Rational (ACT-R) was proposed to solve
this problem (see [3] for background). This extended ACT-R model focuses on
using set of equations that describe the strength of a memory chunk as a function of
practice. Another problem is deciding which flashcard should be presented to a user
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at specific time for optimal learning performance. It is believed that repetition should
enhance future performance, e.g. see [4]. This paper focuses on the first problem
using a multi-armed bandit (MAB) modeling approach.

Since only one flashcard can be presented to the user at a time, the decision
problem is sequential. Using only flashcards that the learner knows will not yield
learning of all available information. Furthermore, the probability of getting a wrong
answer for a flashcard that the user has not seen is unknown. Thus, a exploration/
exploitation trade-off exists. This paper uses the MAB problem setting to model the
decision of picking which flashcard to show next. The payoff after each round is
binary - the learner either knows the answer or he doesn't. This setting can be
modeled using the Binomial Bandit (see [6]) which assumes that the payoffs of each
arm are independent Bernoulli random variables with success probabilities
(64,...,0y), where k is the number of arms. The goal of the model is to maximise
the number of flashcards shown to which the user gives wrong answer for a given
study session.

1.1. The multi-armed bandit problem

In a MAB problem, a player is presented with a sequence of slot machines.
Each machine offers random reward from a distribution specific to that machine. In
each round the player chooses from a set of alternatives ("arms") based on past
history and receives the payoff associated with his decision. The goal is to maximize
the total payoff of the chosen arms. This setting is often used to model situations
where exploration/exploitation trade-off exists.

1.2. Bayesian strategy (Thompson sampling) for the MAB problem

Multiple strategies for finding approximate solution to the MAB problem exist [7].
Some of the most widely implemented are Upper Confidence Bounds (UCB) and e-
greedy. The Bayesian strategy (also known as Thompson sampling) is a probability
matching strategy that is relatively easy to implement. The idea of the algorithm is to
randomly draw each arm according to its probability of being optimal. Despite its
simplicity this strategy achieves state-of-the-art results [8]. In the K-armed Bernoulli
bandit setting the reward for the i-th arm is a Bernoulli distribution with mean ;. It
is standard to model the mean reward of each arm using a Beta distribution since it
is the conjugate distribution of the binomial distribution e.g. see [8] for background.
The Beta distribution is defined on the interval [0, 1] and it is parametrized by two
positive shape parameters, denoted by a and 8 that control the shape of the
distribution. The parameters are chosen to reflect existing belief or information.

The total expected regret R is a popular performance measure for bandit
algorithms, defined for round T as:



T
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where 6 = max;_,,_,0; is the expected reward for the best arm. An asymptotic
lower bound was established for the algorithm (see [9])
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where p; is the reward probability of the i-th arm, p* = maxp; and D is the
Kullback-Leibler divergence. A total regret of 0 means that the algorithm is
achieving optimal performance, which is unlikely in practice. Good strategy's total
regret should flatten as it learns the optimal arm to pull. The maximum payoff one
can achieve at each round is by picking the arm with maximum probability of highest
payoff.

2. Methods

Bernoulli bandit with Bayesian strategy was implemented. The success S of a
single Bernoulli experiment was defined as showing a flashcard to which the learner
gave wrong answer. The failure F was defined as showing a flashcard to which
correct answer was given. The reward for a success outcome was set to 1 and that
of a failure to 0. The proposed model tried to maximise the number of successes at
each time step t based on previous t — 1 outcomes. The reward for flashcard i was
modeled as a Beta-distributed random variable 6;. Beta(1,1), which is uniform on
[0, 1], was chosen for prior distribution since no previous information about the
learner's knowledge for any flashcard was present.

At time t having observed C;(t) correct and N;(t) incorrect answers the
algortithm obtains the posterior distribution on 6;

Beta(1 + N;(t),1 + C;(t))

for flashcard i. The decision of which card to show next was made by choosing the
maximum 6; drawed from each posterior distribution.

A sample run of the algorithm on a single flashcard is presented on Figure 1.
The hidden probability for this example was set to & = 0.7 with a total of T = 15
rounds. The mean value of the posterior was 0.68 after completing all rounds.



The measure of total regret was used in order to quantify the performance of the
algorithm. The maximum payoff one can achieve at each round T is showing
flashcard i with maximum probability for success S.
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Figure 1. The upper-left figure shows the prior distribution of 6 before running the algorithm.
The bottom-right figure presents the posterior distribution for 6 after showing the flashcard 15
times

The core algorithm was implemented as a server component in the
programming language Python using the SciPy software library. The client was
developed for the mobile operating system iOS. The communication between the
components was performed via standard REST API.

3. Future work

Possible future developments include recommendations of specific study times,
showing flashcards from other users, different study modes and automatic
generation of concept maps.

Usage data from the mobile application will be collected from real users and
made available for additional analysis. The practical performance of the model
remains to be evaluated.



4. Conclusion

This paper proposed a model for creating flashcard software system using MAB
model with Bayesian strategy. A way to evaluate it's performance empirically was
provided. Two important simplifications has been made. Prior learner knowledge
and study session times were not considered in the model. The model has been
implemented in a mobile application for the iOS operating system.
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BENCOB MOJEN 3A OBYYEHME YPE3 ®JIALLKAPTH

Be+enuH Bbrikos

Pestome: 3anomHaHemo Ha eonsIMO KOMUYeCmeo HecmpykmypupaHa UHopMayus u
JIEeKCUKarnHU 3Ha4eHuss Ha Oymu € 3a0b/KUMEIHO Npu U3yyagaHe Ha YyXd e3uK, npaso,
6uonoeus u meduyuHa. PasnpedeneHu 6b8 8pememo npeanexdaHusi nodnomazam



0Bb/120CPOYHOMO 3aNOMHsIHE hoseye om Obsiau y4yebHU cecuu npu usyyagaHe Ha nodobeH
eud mamepuan. EOHo npunoxeHue Ha pasnpedeneHusm nodxo0 e 0byyeHuemo 4pe3s
¢nawkapmu ¢ pa3daneyeHu nosmopeHusi. To3u doknad npednaza Bayesian bandit
aneopumbM, Kolmo ce onumea Oa Makcumusupa 6pos npedcmaseHu cbnawkapmu Ha
koumo nompebumens we O0ade epeweH omeosop 8 edHa y4ebHa cecusi. [IpednoxeHusm
moden e peanusupaH 8 MOBUIHO NPUOXEHUE.



