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CONCERNING TRIVIAL M A X IM A L  ABELIAN SUBALGEBRAS OF B ( X )

W . 2ELAZKO

To the memory o f Y. A. Tagamlitzki

We call a complex or real Banach algebra trivial, if it is either a Banach 
space with trivial (zero) multiplication or it is the unitization of such an algebra. 
Thus a trivial algebra is always commutative and in the case of an algebra 
with unit element it is a local ring, i. e. it has exactly one maximal ideal equal 
to its radical. In this paper we prove that for any real or complex Banach 
space X  the algebra B { X )  of all its continuous endomorphisms has always a 
trivial maximal Abelian subalgebra and we give description of all such subal
gebras.

Let J  be a real or complex Banach space. For a non-void subset S  of 
В (X)  denote by S'  its'commutant, i. e. the. set

S'  =  { T t B ( X ) :  T A ≈ A T  for all A in S}.
It is a closed subalgebra of В (X)  containing its unity /, and in case when 
consists of mutually commuting operators v.we have

S '=  is a maximal Abelian subalgebra of В (X)  with Sastf}.
This implies that S' is a maximal Abelian subalgebra of B (X ), provided 

it is commutative. This simple lemark will be used in the proof of our theorem.
In the sequel we denote by A"*‘ the conjugate space of a Banach space X  

and by T* the conjugate operator of an element T  in B(X) .  We put also 
radc£/ for the radical of a commutative Banach algebra <$/. Thus in case of a 
trivial algebra with unit element we have <s/ =  rad ©  Д7, where К  is the 
field of scalars ( K ≈  С or K = R )  and Kl  is the one-dimensional subspace of stf 
spanned by the unit element I. .

Since for dim X ≤  l the whole algebra B ( X )  is commutative and trivial, we 
assume in our result that dim X > \ .  In this case we say that a closed linear 
subspace X 0 of X  is proper, of {O l+A'o +  A'. For an operator A in В (X)  denote 
by ker A its kernel and by im A its range, i. e. the sets ker Л = {л ;£  X :  Ллг =  0 } 
and im A== {Ax : л; £ A }.  Our result reads as follows

T h e o r e m .  Let X  be a real or complex Banach space with, dim X > 1
and let X 0 be a vroper closed linear subspace of X. Then the set
(1) { А ^ В ( Х ) :  im А а Л 0 and A^czker A}
ts a trivial Abelian subalgebra of B { X )  and its anitization is a trivial 
maximal Abelian subalgebra o f В (A).

Conversely, i f  is a trivial maximal Abelian subalgebra of B ( X ), then
its radical rads∕  is o f  the form (1)> where
(2) X 0=  ∩ {ker A : A (  rads/j.

P r o o f .  Denote by M  the set (1). Obviously, it is a trivial subalgebra of 
B (X ). Let T  be an operator in the commutant M'. For a functional ∕  in A *
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with A^cEiker f  and for an element 2 : in X 0 denote by A (/, z) the one-dimen
sional operator given by Л (/ , z) x ≈ f  (x) z, this operator is clearly in M  and 
so it commutes with T. Thus, for all x  in X , all z in X Q and all ∕  in X *  with 
A'oCiker ∕  we have

(3) '  f ( T x ) z ≈ f ( x ) T z .
Choosing /оф 0 with A”0ck er  / 0 and substituting for x  in (3) an element x 0 
in X  with /o(∙*o )=l we obtain

Tz =  arz
for all z in X 0, where aT is the scalar given by ar = f 0(7'x0). Put Tx — T-~arI. 
We have T x £ M ' and A 0 czker7\. We shall show that the operator 7\ is in M,
i. e. im 7\cz'X0. If not, then there is an element u0 in X  with Т1и0фХ0 and 
we can find an element A in M  with А Т хи0Ц±Ö (A can be chosen to be of 
the form A (/, z)). But jthis is impossible, since A T 1u0=  Т гАи0 and Л / / 0 6 A ”0 

czker 7\. Thus, Tx is in M  and so T  is in its unitization stf which is a com
mutative algebra and thus a maximal Abelian subalgebra of B( X )  since it 
equals M f.

Conversely, suppose that stf is a trivial maximal Abelian subalgebra of 
B( X )  and put M  =  rad For any two operators Tx and T2 in M  we have 
im7\c=:ker T2t and so im TxczX0, where X 0 is given by (2 ). Since X 0a ker T x 
and 7\ is an arbitrary element of M , it follows that M  is contained in the 
set (1). By the maximality of M  equals to this set, and so rads/ is of the 
form (1). The conclusion follows.

C o r o l l a r y  1. Any subset S’ of В (X )  consisting of mutually annihilating 
operators (i. e. T XT 2 =  0  for all Tt in S’, / = 1 , 2) is contained in some trivial 
maximal Abelian subalgebra of B(X) .  In particular, any trivial subalgebra of 
В (X)  is contained in a trivial maximal x^belian subalgebra of В (X).

Denote by (X 0) the trivial maximal Abelian subalgebra of В (X )  whose 
radical is ( 1 ). .

C o r o l l a r y  2. The algebra #0 (X0) is isomorphic as a Banach space to
the space B(X/X0, X 0) @  К , where B (U , V) denotes the Banach space of all
continuous linear operators from a Banach space U  to a Banach space V  and 
К  is the field of scalars (the one-dimensional Banach space).

E x a m p l e s .  Taking as X 0 any subspace of X  of codimension one, we 
obtain a trivial maximal Abelian subalgebra jrf (X 0) isomorphic as a Banach 
space to the space X . Its radical consists of one-dimensional operators of the 
form Л (/ 0, z), where / 0 is a fixed functional in X  with кег/ 0 =  Л"0 and z £ X 0. 
The isomorphism between s/(X0) and X  is given by

A(fo> z) +  M  +-* z+Xe 0 ,
where e0 is a fixed element in X  with /0(^0)=  1.

Similarly, taking as X 0 a linear subspace of A  of dimension one X 0 =  K x 0 

with x0£ X  and ||̂ Y0 ||=1 , we obtain an algebra (X0) isomorphic as a Banach 
space to the conjugate space X*. It consists of all operators of the form 
A [ f r  x0)-\-X/, where / 6  A '*  with * 0 £ker/ and X £ K∙ The Banach space isomor
phism between ^  (x0) and A ' * 4 is given by

A(f>

where / 0 is a fixed element in X * with f 0(x0) ≈ l .
In case when the space X  has a direct sum decomposition A  =  X 0 ©  X x, 

where X x is isomorphic to X {)9 then the algebra sif (X 0) is isomorphic as a 
Banach space to the space B (X 0). In particular when X ≈ H  — an infinite-
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dimensional Hilbert space, then H  can be orthogonally decomposed as H-—H0 
0 / ∙/j ,  where H 0 and Hx are isometrically isomorphic to H . In this case the 
algebra s i  ( H J  is isomorphic as a Banach space to the space B ( H ) .  It can be' 
proved that in this case the operators in s i  ( H 0) are of the following form. Let 
R  be a partial isometry on H, which maps f f t isometrically onto H 0 and maps 
H0 onto {0}. Then

s i ( H 0) =  { R A  +  A R :  A ( B ( H )  and /?Л/?=а(Л)Я},

where а (A)  is a scalar depending upon A.  It can be shown that if R A  + A R  
=  R A { +  A \R ,  then а(Л) =  аМ, )  and so it defines on (fi0) a functional ∕  
given by f ( R A  +  A R )  =  a (A ) .  It is a multiplicative linear functional on s i  ( H 0) 
and its kernel equals to rad∙s/(W0) (we have а ( R * ) =  1 and R * R + R R *  =  /).

If dim X =  /z<©o,then by Corollary 2 the possible dimensions of algebras
s i {X 0) are (n—k ) . k + 1, k = \ ,  2, . . . ,  n— 1, and so there are [-^~] non-iso-
tnorphic trivial maximal Abelian subalgebras of В (Ä), where [r] is the integral 
part of a number r. The largest possible dimension of s i(X 0) is in this case
[-4-J+I  and the smallest dimension is л. All these results in the case of finite
dimensional spaces are well known even for more general scalars (cf. [2, Chapt.
2, § 3]), however, in the case of real or complex scalars our reasoning seems 
to be shorter. In case when X  is a Hilbert space the maximal Abelian subal
gebras of В (A) which are local rings are known in the literature (cf. [1], or [3, 
p. 81, proposition 4.4]), however, the existence of such trivial algebras seems 
to be new and somewhat surprising. We finish this paper with some simple 
results on invariant subspaces for algebras s i  ( X 0). In the sequel we denote by 
lin (A) the family of all closed linear subspaces of a Banach space X ,  and for 
a subset 5  of В (X) we denote by lat(∙S) the set (it has a structure of a lattice) 
of all subspaces in lin ( X )  which are invariant with respect to all operators in
S. In case when S  consists of a single operator T  we simply write lat(r). 

P r o p o s i t i o n  1. Let X  be a Banach space with й\т X > \ .  Then
(4) lat (jrf(A0)) =  { Y £ lin (X) : either X 0<=Y, or Y c X 0),
where X n is a proper linear subspace of X.

P r o o f .  It is clear that all subspaces in the family (4) are invariant with 
respect to all operators in s i  (X ’0). On the other hand, if К is a closed linear 
subspace of X  which contains some element x0$ X 0 and does'not contain 
some element z 0(:X0, then it cannot be invariant with respect to all elements 
in sal (X0), since there always exists an operator of the form A( f ,  z 0) which 
sends л:0 to z 0. The conclusion follows.

A subalgebra sd of B[X)  is said to be reflexive (sf. [3]), if the condition 
lat(j^)c:lat(7’) implies T i s i .

P r o p o s i t i o n  2. Let H be a Hilbert space, dim H >  1, then no trivial 
maximal Abelian subalgebra of B(H)  is reflexive.

P r o o f .  For a closed proper linear subspace H 0 of H  denote by P  (H 0) 
the orthogonal projection of H  onto H 0. Clearly, we have lat ( s i ( H 0) )c : l a t (P (H o))  
and Р(Н 0)ф{Н0)- The conclusion follows.
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