Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
PLISKA
 STUDIA MATHEMATICA BULGARICA

ПЛИСКА

 БЪЛГАРСКИ МАТЕМАТИЧЕСКИ СТУДИИThe attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Pliska Studia Mathematica Bulgarica
visit the website of the journal http://www.math.bas.bg/~pliska/
or contact: Editorial Office
Pliska Studia Mathematica Bulgarica
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: pliska@math.bas.bg

ON THE PYTHAGOREAN THEOREM AND THE TRIANGLE INEQUALITY

G. BALEY PRICE

1. Introduction. The Pythagorean proposition states that

$$
\begin{equation*}
\left(P_{0} P_{1}\right)^{2}+\left(P_{0} P_{2}\right)^{2}=\left(P_{1} P_{2}\right)^{2} \tag{1}
\end{equation*}
$$

if and only if the vectors $P_{0} P_{1}$ and $P_{0} P_{2}$ are orthogonal. If $P_{0} P_{1}, \ldots, P_{0} P_{3}$ are orthogonal, then the areas of the faces of $P_{1} P_{1} P_{2} P_{3}$ satisfy the following equation:

$$
\begin{equation*}
\left(P_{0} P_{1} P_{2}\right)^{2}+\left(P_{0} P_{1} P_{3}\right)^{2}+\left(P_{0} P_{2} P_{3}\right)^{2}=\left(P_{1} P_{2} P_{3}\right)^{2} ; \tag{2}
\end{equation*}
$$

however, examples show that (2) may hold even if $P_{0} P_{1}, \ldots, P_{0} P_{3}$ are not mutually orthogonal. The triangle inequality states that $\left(P_{1} P_{2}\right) \leqq\left(P_{0} P_{1}\right)+\left(P_{0} P_{2}\right)$, and that the equality holds, if and only if P_{0} is a point in the segment $P_{1} P_{2}$.Similarly,

$$
\begin{equation*}
\left(P_{1} P_{2} P_{3}\right) \leqq\left(P_{0} P_{1} P_{2}\right)+\left(P_{0} P_{1} P_{3}\right)+\left(P_{0} P_{2} P_{3}\right) \tag{3}
\end{equation*}
$$

and the equality holds, if and only if P_{0} is a point in the triangle $P_{1} P_{2} P_{3}$. There are generalizations of all these results for the m-simplex in R^{n}, and this note uses known theorems, especially theorems on determinants, to establish them.
2. The 3 -simplex. Let $P_{k}:\left(x_{k}^{1}, \ldots, x_{k}^{n}\right), k=0,1, \ldots, 3$, be points in R^{n}, and let v_{k}, with components $\left(x_{k}^{1}-x_{0}^{1}, \ldots, x_{k}^{n}-x_{0}^{n}\right)$, be the vectors from P_{0} to P_{1}, P_{2}, P_{3} Let $\left(v_{i}, v_{j}\right)$ denote the inner product of v_{i} and v_{j}, and let ($P_{1} P_{2} P_{8}$) denote the area of the face $P_{1}, P_{2} P_{3}$ of $P_{0} \ldots P_{3}$.

Theorem 1. If $P_{0} \ldots P_{3}$ is the simplex just described, then

$$
\begin{align*}
& \left.\left.\left(P_{1} P_{2} P_{3}\right)^{2}=\frac{1}{(2!)^{2}}\left[\left|\begin{array}{cc}
\left(v_{2},\right. & \left.v_{2}\right)\left(v_{2},\right. \\
\left(v_{3}\right) \\
\left(v_{3},\right. & \left.v_{2}\right)\left(v_{3},\right. \\
v_{3}
\end{array}\right|+\left|\begin{array}{ll}
\left(v_{1},\right. & \left.v_{1}\right)\left(v_{1},\right. \\
\left(v_{3}\right) \\
\left(v_{3},\right. & \left.v_{1}\right)\left(v_{3},\right. \\
v_{3}
\end{array}\right|+\left\lvert\, \begin{array}{ll}
\left(v_{1},\right. & \left.v_{1}\right)\left(v_{1},\right. \\
\left(v_{2}\right) \\
\left(v_{2},\right. & \left.v_{1}\right)\left(v_{2},\right. \\
v_{2}
\end{array}\right.\right) \right\rvert\,\right] \tag{4}\\
& \left.+\frac{2}{(2!)^{2}}\left[(-1)^{1+2} \left\lvert\, \begin{array}{l}
\left(v_{2}, v_{1}\right)\left(v_{2}, v_{3}\right) \\
\left(v_{3}, v_{1}\right)\left(v_{3}, v_{3}\right.
\end{array}\right.\right)\left|+(-1)^{1+3}\right| \begin{array}{l}
\left(v_{2}, v_{1}\right)\left(v_{2}, v_{2}\right) \\
\left(v_{3}, v_{1}\right)\left(v_{3}, v_{2}\right.
\end{array} \right\rvert\, \\
& \left.+(-1)^{2+3}\left|\begin{array}{l}
\left(v_{1}, v_{1}\right)\left(v_{1}, v_{2}\right. \\
\left(v_{3}, v_{1}\right)\left(v_{3}, v_{2}\right.
\end{array}\right|\right] .
\end{align*}
$$

Proof. The proof will be given first for a simplex P_{0}, \ldots, P_{3} in R^{3}. The methods are completely general, however, and they can be used to prove the theorem in R^{n}. Let the points be $P_{k}:\left(x_{k}, y_{k}, z_{k}\right), k=0,1,2,3$. Then [1, p. 167, 171]

$$
\left(P_{1} P_{2} P_{3}\right)^{2}=\frac{1}{(2!)^{2}}\left[\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \tag{5}\\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|^{2}+\left|\begin{array}{lll}
x_{1} & z_{1} & 1 \\
x_{2} & z_{2} & 1 \\
x_{3} & z_{3} & 1
\end{array}\right|^{2}+\left|\begin{array}{lll}
y_{1} & z_{1} & 1 \\
y_{2} & z_{2} & 1 \\
y_{3} & z_{3} & 1
\end{array}\right|^{2}\right] .
$$

PLISKA Studia mathematica bulgarica, Vol. 11, 1991, p. 62-70.

By an elementary property of determinants,

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \tag{6}\\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=\left|\begin{array}{lll}
x_{1}-x_{0} & y_{1}-y_{0} & 1 \\
x_{2}-x_{0} & y_{2}-y_{0} & 1 \\
x_{3}-x_{0} & y_{3}-y_{0} & 1
\end{array}\right| .
$$

Expand the determinant on the right in (6) by minors of elements in the third column. Similar transformations of the other two determinants in (5) show that

$$
\begin{gather*}
\left(P_{1} P_{2} P_{3}\right)^{2}=\frac{1}{(21)}\left[\left\{\left|\begin{array}{ll}
x_{2}-x_{0} & y_{2}-y_{0} \\
x_{3}-x_{0} & y_{3}-y_{0}
\end{array}\right|-\left|\begin{array}{ll}
x_{1}-x_{0} & y_{1}-y_{0} \\
x_{3}-x_{0} & y_{3}-y_{0}
\end{array}\right|\right.\right. \tag{7}\\
\left.+\left|\begin{array}{ll}
x_{1}-x_{0} & y_{1}-y_{0} \\
x_{2}-x_{0} & y_{2}-y_{0}
\end{array}\right|\right\}^{2}+\left\{\left|\begin{array}{ll}
x_{2}-x_{0} & z_{3}-z_{0} \\
x_{3}-x_{0} & z_{3}-z_{0}
\end{array}\right|-\left|\begin{array}{ll}
x_{1}-x_{0} & z_{1}-z_{0} \\
x_{3}-x_{0} & z_{3}-z_{0}
\end{array}\right|\right. \\
\left.+\left|\begin{array}{ll}
x_{1}-x_{0} & z_{1}-z_{0} \\
x_{2}-x_{0} & z_{2}-z_{0}
\end{array}\right|\right\}^{2}+\left\{\left|\begin{array}{ll}
y_{2}-y_{0} & z_{2}-z_{0} \\
y_{3}-y_{0} & z_{3}-z_{0}
\end{array}\right|\right. \\
\left.\left.-\left|\begin{array}{ll}
y_{1}-y_{0} & z_{1}-z_{0} \\
y_{3}-y_{0} & z_{3}-z_{0}
\end{array}\right|+\left|\begin{array}{ll}
y_{1}-y_{0} & z_{1}-z_{0} \\
y_{2}-y_{0} & z_{2}-z_{0}
\end{array}\right|\right\}^{2}\right] .
\end{gather*}
$$

Square the expressions as indicated in (7) and collect the results in six braces. There are three similar expressions, the first of which is

$$
\frac{1}{(2!)^{2}}\left\{\left|\begin{array}{ll}
x_{2}-x_{0} & y_{2}-y_{0} \tag{8}\\
x_{3}-x_{0} & y_{3}-y_{0}
\end{array}\right|^{2}+\left|\begin{array}{ll}
x_{2}-x_{0} & z_{2}-z_{0} \\
x_{3}-x_{0} & z_{3}-z_{0}
\end{array}\right|^{2}+\left|\begin{array}{ll}
y_{2}-y_{0} & z_{2}-z_{0} \\
y_{3}-y_{0} & z_{3}-z_{0}
\end{array}\right|^{2}\right\} .
$$

There are three other similar expressions, the first of which is

$$
\begin{gather*}
\frac{2(-1)^{1+2}}{(2!)^{2}}\left\{\left|\begin{array}{ll}
x_{2}-x_{0} & y_{2}-y_{0} \\
x_{3}-x_{0} & y_{3}-y_{0}
\end{array}\right|\left|\begin{array}{ll}
x_{1}-x_{0} & y_{1}-y_{0} \\
x_{3}-x_{0} & y_{3}-y_{0}
\end{array}\right|\right. \tag{9}\\
\left.+\left|\begin{array}{ll}
x_{2}-x_{0} & z_{2}-z_{0} \\
x_{8}-x_{0} & z_{3}-z_{0}
\end{array}\right|\left|\begin{array}{ll}
x_{1}-x_{0}^{\prime} & z_{1}-z_{0} \\
x_{3}-x_{0} & z_{8}-z_{0}
\end{array}\right|+\left|\begin{array}{ll}
y_{2}-y_{0} & z_{2}-z_{0} \\
y_{3}-y_{0} & z_{3}-z_{0}
\end{array}\right|\left|\begin{array}{ll}
y_{1}-y_{0} & z_{1}-z_{0} \\
y_{3}-y_{0} & z_{3}-z_{0}
\end{array}\right|\right\} .
\end{gather*}
$$

Use the Binet-Cauchy multiplication theorem for determinants [1, pp. 589-591] to write (8) in the following form:

$$
\frac{1}{(2!)^{2}}\left|\begin{array}{ccc}
\left(v_{2},\right. & \left.v_{2}\right) & \left(v_{2},\right. \tag{10}\\
\left(v_{3}\right) \\
\left(v_{3},\right. & \left.v_{2}\right) & \left(v_{3},\right. \\
\left.v_{3}\right)
\end{array}\right| .
$$

There are similar determinants for the two expressions similar to (8). Use the Binet-Cauchy multiplication theorem for determinants again to represent (9) as follows

$$
\frac{2(-1)^{1+2}+}{(2!)^{2}}\left|\begin{array}{cc}
\left(v_{2},\right. & \left.v_{1}\right) \tag{11}\\
\left(v_{3},\right. & \left.v_{3}\right) \\
\left(v_{3},\right. & \left.v_{1}\right) \\
\left(v_{3},\right. & v_{3}
\end{array}\right| .
$$

There are similar determinants for the two expressions similar to (9). Equation (7) and the results indicated in (10) and (11) show that (4) is true, and the proof of Theorem 1 is complete for $P_{0} P_{1} P_{2} P_{3}$ in R^{3}.

The formula in (4) does not contain the dimension of the space in which $P_{0}, P_{1}, P_{2}, P_{3}$ are located. A review of the proof of the formula shows that it is valid in the form (4), if $P_{0} P_{1} P_{2} P_{3}$ is in R^{n}.

Corollary 1. If v_{1}, v_{2}, v_{3} in Theorem 1 are mutually orthogonal vectors, then

$$
\begin{equation*}
\left(P_{1} P_{2} P_{3}\right)^{2}=\left(P_{0} P_{1} P_{2}\right)^{2}+\left(P_{0} P_{1} P_{3}\right)^{2}+\left(P_{0} P_{2} P_{3}\right)^{2} \tag{12}
\end{equation*}
$$

Proof. If v_{1}, v_{2}, v_{3} are mutually orthogonal, then

$$
\begin{equation*}
\left(v_{1}, v_{2}\right)=0,\left(v_{1}, v_{3}\right)=0,\left(v_{2}, v_{3}\right)=0 . \tag{13}
\end{equation*}
$$

Then, the last three determinants on the right in (4) are each equal to zero because each contains a row of zeros. Also [1, p. 167],

$$
\left.\left(P_{0} P_{2} P_{3}\right)^{2}=\frac{1}{(2!)^{2}} \left\lvert\, \begin{array}{lll}
\left(v_{2},\right. & \left.v_{2}\right) & \left(v_{2},\right. \tag{14}\\
\left(v_{3},\right. & v_{2}
\end{array}\right.\right) \quad\left(v_{3}, v_{3}\right) \mid,
$$

and the second and third determinants on the right in (4) have similar interpretations. Thus, if v_{1}, v_{2}, v_{3} are mutually orthogonal, (4) is equivalent to (12).
3. The m-simplex in R^{n}. The methods employed in Section 2 can be extended without change to treat a m-simplex in R^{n}. Let $P_{k}:\left(x_{k}^{1}, \ldots, x_{k}^{n}\right)$, $k=0,1, \ldots, m$, be the vertices of a simplex $P_{0} P_{1} \ldots P_{m}$ in R^{n}, and let v_{k} be the vector whose components are ($x_{k}^{1}-x_{0}^{1}, \ldots, x_{k}^{n}-x_{0}^{n}$).

Theorem 2. If v_{1}, \ldots, v_{m} are the vectors related to the simplex $P_{0} P_{1} \ldots, P_{m}$ as just described, the volume $\left(P_{1} \ldots P_{m}\right)$ of $P_{1} \ldots P_{m}$ is given by the following formula

$$
\begin{gather*}
\left(P_{1} \ldots P_{m}\right)^{2}=\frac{1}{[(m-1)!]^{2}} \tag{15}\\
\sum_{i=1}^{n} \operatorname{det}\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array} \left\lvert\,\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{l} \\
\cdots \\
v_{m}
\end{array}\right]^{\mathrm{T}}\right.\right. \\
\quad+\frac{2}{[(m-1)!]^{2}} \sum(-1)^{i+j} \operatorname{det}\left|\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right|\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{j} \\
\cdots \\
v_{m}
\end{array}\right]^{\mathrm{T}}
\end{gather*}
$$

An explanation of the notation in (15) is necessary. The superscript T denotes the transpose of the matrix on which it is placed. A circumflex over a symbol means that the symbol is omitted from the sequence in which it occurs. The second summation in (15) is extended over all i, j such that $1 \leqq i<j \leqq m$. Finally,

Proof of Theorem 2. The volume $\left(P_{1} \ldots P_{m}\right)$ is given by the following formula [1, Exercise 20.6, p. 171]

$$
\left(P_{1} \ldots P_{m}\right)^{\mathbf{2}}=\frac{1}{[(m-1)!]^{2}} \Sigma\left|\begin{array}{cccc}
x_{1}^{i}{ }_{1} & \cdots & x_{1}^{i}{ }^{m-1} & 1 \tag{17}\\
\cdots & \cdots & \cdots & \cdots \\
x_{m}^{i} & \cdots & x_{i}^{i}{ }_{m-1} & 1
\end{array}\right|^{\mathbf{2}} .
$$

The summation in (17) extends over all sets $\left\{i_{1}, \ldots, i_{m-1}\right\}$ such that $1 \leqq i_{1}<i_{2}$ $\ldots<i_{m-1} \leqq n$. Multiply the last column of the determinant in (17) by $x_{0}^{i}{ }^{1}$ and substract it from the first column: multiply the last column by $x_{0}^{i_{2}}$ and subtract it from the second column; and so forth. Then expand each determinant by minors of elements in the last column. By using the Binet-Cauchy multiplication theorem for determinants as in Section 2, the resulting expression can be transformed into the formula in (15).

The formula in (15), in the special case in which $m=2$, is the Law of Cosines in trigonometry.
4. The Pythagorean theorem. Let $P_{0} P_{1} P_{2}$ be a triangle in R^{n}. The Pythagorean proposition states that

$$
\begin{equation*}
\left(P_{1} P_{2}\right)^{2}=\left(P_{0} P_{1}\right)^{2}+\left(P_{0} P_{2}\right)^{2} \tag{18}
\end{equation*}
$$

if and only if the vectors $P_{0} P_{1}$ and $P_{0} P_{2}$ are orthogonal. The next theorem contains this theorem and its (partial) generalization for simplexes $P_{0} P_{1} \ldots P_{m}$ with $m>2$.

Theorem 3. Let $P_{0} P_{1}, \ldots, P_{m}, m \geqq 2$, be the simplex in Section 3. If v_{1}, \ldots, v_{m} are mutually orthogonal, then

$$
\begin{equation*}
\left(P_{1} \ldots P_{m}\right)^{2}=\sum_{i=1}^{m}\left(P_{0} P_{1} \ldots \widehat{P}_{i} \ldots P_{m}\right)^{2} \tag{19}
\end{equation*}
$$

If $m=2$, then (19) holds only if v_{1} and v_{2} are orthogonal; but if $m>2$, then (19) holds in many cases in which $v_{1}, \ldots v_{m}$ are not mutually orthogonal.

Proof. The statement in (19) will be proved by showing that each determinant in the second summation in (15) is sero, if v_{1}, \ldots, v_{m} are mutually orthogonal. Since $1 \leqq i<j \leqq m$, then (16) shows that

$$
\operatorname{det}\left[\begin{array}{c}
v_{1} \tag{20}\\
\cdots \\
\hat{v}_{i} \\
\cdots \\
v_{j} \\
\ldots \\
v_{m_{-}-} \\
\cdots \\
\cdots \\
v_{i} \\
\cdots \\
\hat{v}_{j} \\
v_{m}
\end{array}\right]_{-}
$$

contains the row

$$
\begin{equation*}
\left(v_{j}, v_{1}\right), \ldots,\left(v_{j}, v_{i}\right), \ldots,\left(v_{j}, \widehat{v}_{j}\right), \ldots,\left(v_{j}, v_{m}\right) . \tag{21}
\end{equation*}
$$

If v_{1}, \ldots, v_{m} are mutually orthogonal, then this row consists entirely of zeros and (20) equals zero. Thus, (19) is true, if v_{1}, \ldots, v_{m} are mutually orthogonal.

If $m=2$, the second summation in (15) contains the single term $\left(v_{1}, v_{2}\right)$. Thus, (19) holds for $m=2$, if and only if v_{1} and v_{2} are orthogonal.

The proof of Theorem 3 will now be completed by constructing an example so show that, if $m>2$, then (19) may be true even if v_{1}, \ldots, v_{m} are not mutually orthogonal. Let P_{0}, \ldots, P_{3} be the following points:

$$
\begin{equation*}
P_{0}:(0,0,0), P_{1}:(1,0,0), P_{2}:(0,1,0), P_{3}:(x, y, z) \tag{22}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
x y-x-y=0 \tag{23}
\end{equation*}
$$

Then

$$
\begin{equation*}
v_{1}=(1,0,0), v_{2}=(0,1,0), v_{3}=(x, y, z) \tag{24}
\end{equation*}
$$

and a straightforward calculation shows that the second summation in (15) is

$$
-\operatorname{det}\left[\begin{array}{l}
v_{2} \tag{25}\\
v_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{3}
\end{array}\right]^{\mathrm{T}}+\operatorname{det}\left[\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]^{\mathrm{T}}-\operatorname{det}\left[\begin{array}{l}
v_{1} \\
v_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]^{\mathrm{T}}=x y-x-y=0 .
$$

The equation in (23) is satisfied, if $x=0$ and $y=0$, and in this case v_{1}, v_{2}, v_{3} are mutually orthogonal. In all other cases, v_{3} is not orthogonal to v_{1} and v_{2}; nevertheless, the relation (19) holds for $P_{0} P_{1} \ldots P_{3}$.
5. The triangle inequality. The following lemma is needed in the proof of the general case of the triangle inequality.

Lemma 1. Let $P_{0} P_{1} \ldots P_{m}$ be the simplex in Section 3. Then
(26)

$$
\begin{aligned}
& \text { abs. val. }\left\{\operatorname{det}\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{j} \\
\cdots \\
v_{m}
\end{array}\right]^{\mathrm{T}}\right\} \\
& \left.\leqq \operatorname{det}\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right]^{\mathrm{T}}\right]^{\mathrm{T}}\left\{\operatorname{det}\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{j} \\
\cdots \\
v_{m}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{j} \\
\cdots \\
v_{m}
\end{array}\right]^{\mathrm{T}}\right\} .
\end{aligned}
$$

Proof. By the Binet-Cauchy multiplication theorem for determinants, the determinant on the left in (26) can be written as a sum of products of determinants [compare (8), ..., (11)]. Apply the Schwarz inequality [1, p. 606] to this sum of products. Then use the Binet-Cauchy multiplication theorem again, in order to state the result in the form shown in (26).

Theorem 4. Let $P_{0} P_{1} \ldots P_{m}, m \geqq 2$, be the simplex in Section 2. Then

$$
\begin{equation*}
\left(P_{1} \ldots P_{m}\right) \leqq \sum_{i=1}^{m}\left(P_{0} P_{1} \ldots \widehat{P}_{i} \ldots P_{m}\right) \tag{27}
\end{equation*}
$$

Proof. By (15), $\left(P_{l} \ldots P_{m}\right)^{2}$ is equal to or less than the sum of the absolute values of all the terms on the right. Apply Lemma 1. It is known [1, Ex. 20.6, p. 171] that

$$
\left(P_{0} P_{1} \cdots \widehat{P}_{i} \cdots P_{m}\right)^{2}=\frac{1}{[(m-1)!]^{2}} \operatorname{det}\left[\begin{array}{c}
v_{1} \tag{28}\\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right]_{-}^{\mathrm{T}}
$$

Thus, the inequality obtained from (15) can be written as' follows
(29) $\left(P_{1} \cdots P_{m}\right)^{2} \leqq \sum_{i=1}^{m}\left(P_{0} \cdots \widehat{P}_{i} \cdots P_{m}\right)^{2}+2 \Sigma\left(P_{0} \cdots \widehat{P}_{i} \cdots P_{m}\right)\left(P_{0} \cdots \widehat{P}_{j} \cdots P_{m}\right)$.

The second sum on the right is extended over all i, j such that $1 \leqq i<j \leqq m$. Thus,

$$
\begin{equation*}
\left(P_{1} \cdots P_{m}\right)^{2} \leqq\left\{\sum_{i=1}^{m}\left(P_{0} \cdots \widehat{P}_{i} \cdots, \dot{P}_{m}\right)\right\}^{2} \tag{30}
\end{equation*}
$$

and (30) is equivalent to (27).
We now investigate conditions under which the equality holds in (27). The following lemma is needed.

Lemma 2. Let $P_{k}:\left(x_{k}^{1}, \cdots x_{k}^{n}\right), k=1, \cdots, m$, be points in $R^{n}, m-1 \leqq n$, and let

$$
\begin{equation*}
P_{0}=\left(\sum_{k=1}^{m} t_{k} x_{k}^{1}, \cdots, \sum_{k=1}^{m} t_{k} x_{k}^{n}\right), \quad \sum_{k=1}^{m} t_{k}=1 \tag{31}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{m}\left(P_{0} P_{1} \cdots \widehat{P}_{t} \cdots P_{m}\right)=\left(\sum_{k=1}^{m}\left|t_{k}\right|\right)\left(P_{1} \cdots P_{m}\right) \tag{32}
\end{equation*}
$$

Furthermore, if P_{0} is a point of the form (31), then

$$
\begin{equation*}
\left(P_{1} \ldots P_{m}\right)=\sum_{i=1}^{m}\left(P_{0} P_{1} \ldots \bar{P}_{i} \ldots P_{m}\right) \tag{33}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
0 \leqq t_{k} \leqq 1, \sum_{k=1}^{m} t_{k}=1 ; \tag{34}
\end{equation*}
$$

that is, (33) holds, if and only if P_{0} is a point in $P_{1} \ldots P_{m}$. Proof. Formula (17) shows that

$$
\left(P_{0} P_{1}^{\prime} \cdots \widehat{P}_{l} \cdots P_{m}\right)^{2}=\frac{1}{((m-1)]^{2}} \Sigma\left|\begin{array}{ccccc}
x_{0}^{1} & \cdots & x_{0}^{l} m-1 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
\hat{x}_{t}^{l} & \cdots & x_{t}^{l} m^{m-1} & 1 \\
\cdots & \cdots & \cdots & \\
x_{m}^{l} \cdots & x_{m}^{\prime}{ }_{m-1} & 1
\end{array}\right| .
$$

Multiply the row corresponding to $P_{k}, k=1, \ldots, \widehat{i}, \ldots m$, by t_{k} and sub. tract it from the first row. The result shows that ($P_{0} P_{1} \cdots \widehat{P}_{i} \cdots P_{m}$) $=\left|t_{i}\right|\left(\mathrm{P}_{1}\right.$ $\cdots P_{m}$), and (32) follows. Now (32) shows that

$$
\begin{equation*}
\sum_{i=1}^{m}\left(P_{0} P_{1} \ldots \widehat{P}_{i} \ldots P_{m}\right)>\left(P_{1} \ldots \mathrm{P}_{m}\right) \tag{35}
\end{equation*}
$$

unless $\sum_{k=1}^{m}\left|t_{k}\right|=1$, and this equation is true, if and only if (34) is satisfied. Now P_{0} in (31) is in $P_{1} \cdots P_{m}$, if and only if (34) holds. Thus, (35) holds if P_{0} in (31) is not in $P_{1} \cdots P_{m}$, and (33) holds if P_{0} is in $P_{1} \cdots P_{m}$.

Theorem 5. Let $P_{1} \ldots P_{m}$ be a simplex in $R^{n}, m-1 \leqq n$, such that

$$
\begin{equation*}
\left(P_{1} \cdots P_{m}\right)>0 . \tag{36}
\end{equation*}
$$

If P_{0} is in $P_{1} \cdots P_{m}$, then

$$
\begin{equation*}
\left(P_{1} \cdots P_{m}\right)=\sum_{i=1}^{m}\left(P_{0} P_{1} \cdots \widehat{P}_{i} \cdots P_{m}\right) ; \tag{37}
\end{equation*}
$$

if P_{0} is not in $P_{1} \cdots P_{m}$, then

$$
\begin{equation*}
\left(P_{1} \cdots P_{m}\right)<\sum_{i=1}^{m}\left(P_{0} P_{1} \ldots \widehat{P}_{i} \ldots P_{m}\right) \tag{38}
\end{equation*}
$$

Proof. Lemma 2 has shown that (37) is true, if P_{0} is in $P_{1} \ldots P_{m}$, and that (38) is true, if P_{0} is a point of the form shown in (31) but not in $P_{1} \ldots P_{m}$. The proof of Theorem 5 can be completed by showing that (38) is true for all points P_{0}, which cannot be represented as shown in (31). The proof proceeds as follows: Let $P_{0}:\left(x_{0}^{1}, \ldots, x_{0}^{n}\right)$ be a point in R^{n}, which is not in the plane of $P_{1} \ldots P_{m}$, and let $h:\left(h^{1}, \ldots, h^{n}\right)$ be the foot of the perpendicular from P_{0} onto the plane of $P_{1} \ldots P_{m}$. Then

$$
\begin{align*}
& \left(H P_{1} \cdots \widehat{P}_{1} \cdots P_{m}\right)<\left(P_{0} P_{1} \ldots \widehat{P}_{i} \cdots P_{m}\right), \quad i=1, \cdots, m, \tag{39}\\
& \sum_{i=1}^{m}\left(H P_{1} \cdots \widehat{P}_{i} \cdots P_{m}\right)<\sum_{i=0}^{m}\left(P_{0} P_{1} \cdots \widehat{P}_{i} \cdots P_{m}\right) . \tag{40}
\end{align*}
$$

If H is in $P_{1} \ldots P_{m}$, the sum on the left in (40) equals ($P_{1} \cdots P_{m}$) by Lemma 2, and (38) follows. If H is not in $P_{1} \cdots P_{m}$, then

$$
\begin{equation*}
\left(P_{1} \cdots P_{m}\right)<\sum_{i=1}^{m}\left(H P_{1} \cdots \hat{P}_{i} \ldots P_{m}\right) \tag{41}
\end{equation*}
$$

again by Lemma 2, and (38) follows from (40) and (41). The proofs of these statements follow.

Let $v_{k}:\left(v_{k}^{1}, \cdots, v_{k}^{n}\right), k=0,2, \cdots, m$, be the vector with components $\left(x_{k}^{1}-x_{1}^{1}, \cdots, x_{k}^{n}-x_{1}^{n}\right)$. For every point $\left(x^{1}, \cdots, x^{n}\right)$ in the plane of $P_{1} \cdots P_{m}$ there are numbers t_{2}, \cdots, t_{m} in R such that

$$
\begin{equation*}
\left(x^{1}, \cdots, x^{n}\right)=\left(x_{1}^{1}, \cdots, x_{1}^{n}\right)+\sum_{k=2}^{m} t_{k} v_{k} \tag{42}
\end{equation*}
$$

The altitude is a vector from $\left(x^{1}, \cdots, x^{u}\right)$ to $\left(x_{1}^{1}, \cdots, x_{1}^{n}\right)+v_{0}$; it is the vector

$$
\begin{equation*}
v_{0}=\sum_{k=2}^{m} t_{k} v_{k} \tag{43}
\end{equation*}
$$

The vector in (43) is an altitude from the plane of $P_{1} \cdots P_{m}$ to P_{0}, if and only if it is orthogonal to each vector v_{2}, \cdots, v_{m}. Thus, if t_{2}, \cdots, t_{m} satisfy the following equations, then $\left(x^{1}, \cdots, x^{n}\right)$ in (42) is $H:\left(h^{1}, \cdots, h^{n}\right)$, the foot of the altitude from P_{0} to $P_{1} \cdots P_{m}$:

$$
\begin{align*}
& \left(v_{2}, v_{2}\right) t_{2}+\cdots+\left(v_{m}, v_{2}\right) t_{m}=\left(v_{0}, v_{2}\right) \tag{44}\\
& \cdot \\
& \left(v_{2}, v_{m}\right) t_{2}+\cdots+\left(v_{m}, v_{m}\right) t_{m}=\left(v_{0}, x_{m}\right)
\end{align*}
$$

Hypothesis (36) shows that the determinant of the coefficients in (44) is notzero (compare (28) ; [1, p. 167-170]), thus (44) has a unique solution for t_{2}, \cdots, t_{m}. Henceforth, let t_{2}, \cdots, t_{m} denote this solution. The altitude from H to P_{0} has components $\left(x_{0}^{1}-h^{1}, \ldots, x_{0}^{n}-h^{n}\right)$; denote it by $w:\left(w^{1}, \cdots, w^{n}\right)$. Now by (17),

Since $1=1+0$ and

$$
\begin{equation*}
\left(x_{0}^{1}, \cdots, x_{0}^{n}\right)=\left(h^{1}+w^{1}, \ldots, h^{n}+w^{n}\right) \tag{46}
\end{equation*}
$$

the determinant in (45) equals

$$
\left|\begin{array}{cccc}
h^{i_{1}} \cdots & h^{i_{m-1}} & 1 \tag{47}\\
\cdots & \cdots & \cdots & \cdot \\
\hat{x}_{i}^{i_{1}} & \cdots & \hat{x}_{i}^{i_{m-1}} & \widehat{1} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m}^{i_{1}} & \cdots & x_{m}^{i_{m-1}} & 1
\end{array}\right|+\left|\begin{array}{llll}
w^{i_{1}} & \cdots & w^{i_{m-1}} & 0 \\
\cdots & \cdots & \cdots & \cdots \\
\hat{x}_{i}^{i_{1}} & \cdots & \hat{x}_{i}^{i_{m-1}} & \\
\cdots & \widehat{1} \\
\cdots & \cdots & \cdots & \cdot \\
x_{m}^{i_{1}} & \cdots & x_{m}^{i_{m-1}} & 1
\end{array}\right| .
$$

Replace the determinant in (45) by its value in (47), and square the terms as indicated. The sum of the squares of the first terms gives $\left(\hbar P_{1} \ldots \widehat{P_{i}} \ldots P_{m}\right)^{2}$ by (17) or (45). Except for a constant factor, the sum of the middle terms is a sum of products of the two determinants in (47). As a matter of notation, let $u_{k}:\left(u_{k}^{1}, \cdots, u_{k}^{n}\right)$ be the vector such that

$$
\begin{equation*}
\left(u_{k}^{1}, \cdots, u_{k}^{n}\right)=\left(x_{k}^{1}-h^{1}, \cdots, x_{k}^{n}-h^{n}\right), \quad k=1,2, \ldots, m . \tag{48}
\end{equation*}
$$

In the first determinant in (47), subtract the first row from each of the other rows and expand by minors of elements in the last column; in the second determinant in (47), subtract the second row from each row which follows it and then expand by minors of elements in the last column. Thus, the sum of middle terms becomes, except for a constant multiplier, the following:

By the Binet-Cauchy multiplication theorem for determinants, the sum in (49) equals

$$
\operatorname{det}\left[\begin{array}{c}
u_{1} \tag{50}\\
u_{2} \\
\cdots \\
\widehat{u}_{i} \\
\cdots \\
u_{m}
\end{array}\right]\left[\begin{array}{c}
w_{2} \\
v_{2} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right]_{-}^{\mathrm{T}} .
$$

Now u_{1}, \ldots, u_{m} lie in the plane of $P_{1} \ldots P_{m}$, and w is a normal to this plane. Thus, $\left(u_{\bar{k}}, w\right)=0$ for $k=1, \ldots, m$ and the determinant in (50) is zero Finally, a similar analysis shows that the sum of squares of the second determinant in (47) is

$$
\left.\left.\operatorname{det}\left[\begin{array}{c}
w^{2} \tag{51}\\
v_{2} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right] \right\rvert\, \begin{array}{c}
-w \\
v_{2} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right]^{\mathrm{T}} .
$$

Now v_{2}, \ldots, v_{m} are in the plane of $P_{1} \ldots P_{n}$, and w is normal to this plane; thus, $\left(v_{k}, w\right)=0$ for $k=2, \ldots, m$. Therefore, the determinant in (51) simplifies to

$$
\left.(w, w) \operatorname{det}\left[\begin{array}{c}
v_{2} \tag{52}\\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
v_{2} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right]_{-}^{\mathrm{T}} .
$$

Collect results, beginning with (45); the analysis has shown that

$$
\begin{align*}
& \left(P_{0} P_{1} \cdots \widehat{P}_{t} \cdots P_{m}\right)^{2}=\left(H P_{1} \cdots \widehat{P}_{i} \cdots P_{m}\right)^{2}+\frac{(w, w)}{(m-1)^{2}} \tag{53}\\
& \quad \times\left\{\begin{array}{c}
\\
\left.\left.\frac{1}{[(m-2)!]^{2}} \operatorname{det} \left\lvert\, \begin{array}{c}
v_{2} \\
\cdots \\
\widehat{v}_{l} \\
\cdots \\
v_{m}
\end{array}\right.\right] \left\lvert\, \begin{array}{c}
v_{2} \\
\cdots \\
\widehat{v}_{i} \\
\cdots \\
v_{m}
\end{array}\right.\right]
\end{array}\right\}
\end{align*}
$$

for $i=2, \ldots, m$. Now (w, w) >0 since, by hypothesis, P_{0} is not in the plane of $P_{1} \ldots P_{m}$. Also (compare (28); [1, p. 167-170]), the expression in the curly braces in (53) is the square of the measure (area, volume, etc.) of $P_{1} P_{2}$ $\cdots \widehat{P}_{i} \cdots P_{m}$. Now ($P_{1} P_{2} \cdots P_{m}$) equals the product of $1 /(m-1)$, the length of the altitude from P_{i} to the plane of $\widehat{P_{1}} \cdots P_{i} \cdots P_{m}$, and the square root of the expression in the braces in (53); therefore, the hypothesis in (36) that $\left(P_{1} \ldots P_{m}\right)>0$ shows that the expression in the braces is positive. Thus, (53) shows that $\left(H P_{1} \cdots \widehat{P}_{i} \cdots P_{m}\right)<\left(P_{0} P_{1} \cdots \widehat{P}_{i} \cdots P_{m}\right)$ for $i=2, \ldots, m$. A similar analysis shows that the same inequality holds for $i=1$. Finally, (39), (40) and (41) show that (38) is true as stated, and the proof of Theorem 5 is complete.

Another statement of the general triangle inequality is the following: If $P_{1} \cdots P_{m}$ is a simplex in R^{n} such that $\left(P_{1} \cdots P_{m}\right)>0$, then $\sum_{i=1}^{m}\left(P_{0} P_{1} \cdots \widehat{P}_{i}\right.$ $\cdots P_{m}$), considered as a function of P_{0}, takes on its minimum value at each point of $P_{1} \cdots P_{m}$, and this minimum value is $\left(P_{1} \cdots P_{m}\right)$.

REFERENCES

1. G. B. Price. Multivariable Analysis. Berlin, Springer, 1984. 655.
