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O N  G E N E R A L IZ E D  O R LIC Z S E Q U E N C E  S P A C E S  O F  F O U R IE R  
C O E F F IC IE N T S  F O R  T R IG O N O M E T R IC  G A P  SER IE S .  I

J. MUSIELAK

To the memory o f  
Y. A. Tagamlitzki

We investigate the operator associating with a function f£L%n, \ < p ≤2 , the sequence 
of Fourier coefficients of ∕  ŵ ith respect lo a trigonometric gap system, as well as an operator 
from a modular space X  to the generalized Orlicz sequence space /ф.

p.?

1. Let (nk) be an increasing sequence of positive integers. We take an 
increasing function l (x ), such that l(k) =  nk for A = l ,  2 , . . . ,  and we de­
note by m(x) the inverse function of/. We write Av =  {k i  N : 2V_1 n ≤ n k<  2v7c}, 
v = l ,  2, 3 , . . . ,  and we put k0 =  [m(n)] + 1, where [x] denotes the integer part 
of X. Then, tiko is the least integer in A x. Let \AV\ be the number of elements 
of Av\ then, I Av |< [m(2vrc)— m(2v-1rc)]H- 1 =  Л/у for v£N.

Let
oo
∑ (ak( f )  cos nkx  +  b„(f) sin nkx)

A=1

be the Fourier series of a function l < p < 2 ,  with respect to the trigo­
nometric gap system cos^x, sin пгх, cos n2x, sin n2x %..  > in <0, 2n). With
every /££§„ we associate the sequence c ( f ) ≈ a ko( f ), bko(f ) ,  ako+ i ( f ) ,  bko+ x ( f ) , . : . 
with some fixed index k0. We shall investigate the linear operator с : / —∏>c(f) 
as an operator from some modular space X  (S) to a generalized Orlicz sequence

Рф
space /ф, generated by a sequence ф =  (фя) !̂=1 of ф-functions ф„ (for the ter. 
minology, see [2]), i.e. the space of sequences c ≈ ( c k)*k such that p(Xr)
=  <Pn(*∙ \cn l ) <  ∞  for a X > 0 .

The following assumptions on the sequence ф will be fundamental.
A.I. There exists a constant C ≥  1 and a sequence of integers (m(v)) with

/ «(v )M v such that фУ(^ )<Сф т(у) (и) for u'≥:0 and v f  Л У;
A.2. The functions <pn(u)≈(pn (ux̂ )t u > 0, where \/p -f-\/q= 1, are concave-
Let us remark that A.l is certainly satisfied, if (ф/Ди))^ is an increasing 

(decreasing) sequence for all u ≥ 0. Moreover, it is easily observed that if ф 
satisfies A.2, then

(*) N фл(2и )<2 1̂ фп(я) for u '≥ 0, n t  N.

In the following, we denote by сор the /?-th modulus of continuity of ∕  
in LPn, i. e.

V p ( f  S )=  sup ( f \ f ( x + h )—f(x )Y dx ) '! » .
|Л|£б 0
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2. We prove now the following:
* T h e o r e m  1. Let ф =  (фп) 1̂=1, satisfy A.l and A.2. Then, fo r  every 

\ < p ≤ 2 , there holds the inequality

p ( C ( f ) ) ≤ ∑  p < ? > ( / )  =  P < r > ( / ) .  
a= l ,

where
Р(У  ( / )  =  2C/VV Ф т ( У )  co„ ^  )}

\  •
or v£N,  with l/p-\~\/q≈\.

P r o o f .  Applying the Hausdorff-Young inequality to the function 
Fh(x) =  f ( x -bh )—f i x —h) and taking into account the formulae

ak (F„) =  2bk (/) sin nk A, 6* (Fh) =  .—2ak{ f )  sin nk h,

we obtain the inequality

{ l^ {\ak(f)\* +  \bk(f)\4)\smnkk\‘>y* ≤ ^ {  JL  J \ Fh(x) \ ’  dx)'*.

Restricting the summation on the left-hand side to and observing that
I sin nk 2 - v“ 11≥2“ 1/2 for we obtain

(**) {  2 ( K ( / ) l * + I M / ) i 9) }1/7'

≤ w { ^ b F ^ X W d x Y 'p ≤ w - Ь г м / .  i *

Now, we have by Jensen’s inequality for concave functions

2 (Ф * (| « * (Л 1 )+ Ф * (| М / )| ) )k(A V

≤ C  ∑ ( w , ( | a * ( ^ l )  +  9 * w ( I M / ) l ) )
*( Иу

≤ 2 C  I Av I «Pm(v, { ̂ A ~ T  ∑ (|tf*(/)|* +  I M / m }2 I i4v I a ( лу

≤ 2 C  I Л у|фт(у) { 2 l^ 4J  “ 2 (/• ^  )}

≤ 2 C  I Лу I Фт(у) { I j /• )}•

Since <pm(V) are concave, then (pw(V) (u)/u are nonincreasing. Hence,

^ Ш  I « * ( / ) ! )  +  Ч>*( I * * ( / )  |))≤2CA/V Vm(v) {/V -1̂ co„( ‘ / ,  J - ) } » Р (ф»( / ) .
k  ( A v  1

This gives

p ( c ( / ) ) = ∑  ∑ ( Ф * ( К ( / П )  +  Ф * ( | М / ) | ) ) ^  2 Р 1Ф , ( / )  =  Р ^ Ч / ) .V=>1 k  £ A y , v≈l
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Taking as a special case =  n? | и |Y with any real ß and for 0<y≤>q, 
we obtain from Theorem 1 the following

C o r o l l a r y  1. I f  0 < y ≤ q ,  ß real and\

∑ m(v)P ЛP -n «  a U f ,  <  oo,
v =  1 Z

then

∑ « > ( | a „ ( / ) l Y+ I M / ) i Y) < ∞ ∙n= 1

This Corollary generalizes a number of well-known results on Fourier 
series (see e.g . [4, Chapter VI, §3 ] ;  also [1, p. 149, Theorem 3.1]).

Following [1], one may consider also special cases with kr ≈ 0 (n k) for an 
r > 0 and or nk+1/nk> a  >1 for

3. We are going to apply Theorem 1 in order to investigate the conti­
nuity of the linear operator с : f —+с ( f).  Obviously, р̂ ф) is a pseudomodular 
in the space L?K, thus generating the modular space

X ^  =  { f t L P K: pjr>(Л./) —  0 as X. —  0 +  }

(see [2, Def. 1.4J).

The following results is obtained applying Theorem 1, immediately: 
T h e o r e m  2. Under assumptions A. 1 and A.2, c: f —+ с ( f )  is a linear 

operator, continuous from X  (ф) to /ф.

Let us remark that due to the inequalities (*). modular convergence and 
norm convergence are equivalent in both spaces X  (ф) and /ф, so there is no

need to distinguish between them.
Theorem 2 generalizes results of [3] concerning trigonometric Fourier 

series, if we put nk =  k.
4. Now, let ф^(ф/г)~=1 and ¥ =  (y rt)^L, be two sequences of ф-functions 

satisfying A.l with the same m(v). Let us consider the following assumption 
(see [2, 8.1]):

A.3. There exist positive numbers S, K\> K 2 and a sequence (гк) with
o°

eA≥ 0 ,  ∑ ek<  co such that for every a ≥ O  and the inequality Ц>к(и )<д
l

implies
yk(u)≤>K\4>k{K2u).

Let us note that A.3 is the necessary and sufficient condition, in order 
that l<pczlv continuously (see [2, Theorem 8.5]).

T h e o r e m  3. I f  A.3 holds, then X  (ф) czX  (V), and this imbedding is con-
p s  Ps

tinuous both with respect to the modular convergencies, as well as to norm 
convergencies.

P r o o f .  Let / 6 А Г(Ф), then р<.ф)(^/ )-*0  as X — whence р̂ ф)(>*/)<6 

for 0 < ‘k < X i with some >0. Hence, р(,ф)(^ / )< 5  for 0 <  A,< kl9 v£N,  and so
♦ \ > - * 

4 > « , v , { A ^ 7 ' ^ ( . X  k f ,  - £ ■ ) } <  6 .
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By A.3,

V « ( V ) { A ^ ∙ / ? ( 0 P( 4 -  X f ,  J L  ) } < K ,  <Pm(v,;{AT9 N - V I  to ,  ( - * -  X / ,  - L ) }

for v£ N, 0 <  A.< A,|. Thus p(/> ( k f ) ≤ K i  р*.ф) (AT2 ^/) for 0 <  A,< Xj, which shows 
that / f  А" (ф). Now, let f ni X  (ф), /„-*0 in А" (ф) in the sense of modular con-

PS PS P s
v0vergence (resp. norm convergence). From f n —► 0 it follows that р̂ ф) (/Ca Xfn) - 

as n —► oo for some X > 0  (resp. for every X>0 ). Taking such a A,>0 fixed, we 
choose an index N  such that Р̂.ф)(^/я)<^  *ог n"≥N. Arguing as above, we 
obtain р<ф) (k/J≤/Ci р<ф> (/C2 ^/„) for n>lV. Hence, p̂ v> (X/„) —► 0 as n —► oo for 
a X > 0  (resp. for all X>0). This means that f n—+ 0 in X  (V) in the sense of

modular convergence (resp. norm convergence).
R e m a r k  1. From Theorems 2 and 3 and from [2, Theorem 8.5], we 

may put our results together in the form of the following diagram:

A .l,  A.2

A.3

^  A.l, A.2

R e m a r k  2. All the above results may be extended to the case of al­
most periodic functions, taking noninteger values of nk (see [1]).
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