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A SOLUTION OF THE TRIGONOMETRIC MOMENT PROBLEM 
VIA TAGAMLITZKPS “ THEOREM OF THE CONES”

TODOR G. GENCHEV

In memory o f my teacher 
Professor Y. A. Tagamlitzki

In 1952 Y. Tagamlitzki gave an elegant proof of the classical Bochner’s 
theorem on the positively definite functions [1]. Unfortunately, he never pub­
lished his proof. In this paper we consider a related but simpler problem, the 
trigonometric moment problem, by using Tagamlitzki’s approach.

D e f i n i t i o n  1. A sequence {£v}:l~ of complex numbers is a m o rn e n t  
s e q u e n c e , i f  there exists a nondecreasing function a : [0, 2n] —► R such 
that the equalities , . . т .

2к
( 1 ) £v =  / elwt da(t), v =  0 , ± 1 , ± 2 , . . . ,  ,

о

hold.
The following result is classical.
T h e o r e m  1. (F. Riesz [2J). A sequence {^v}i~ ib a moment seqencet i f

n
and only i f  f o r  any trigonometric polynomial q(t) =  ∑ av eivt, non-negative

' —n
on the real axis, we have

(2 ) ∑ cv av≥ 0 .
—n

(The degree n of q is arbitrary).
We shall prove Theorem 1 via Tagamlitzki’s “ Theorem of the cones.” Since 

this general result of Tagamlitzki published in Bulgarian is unpopular, we are 
giving a complete formulation. To this end, we begin with some definitions.

Let IT  be a linear space and F — be a sequence of linear functio­
nals. We say that F  is a coordinate system in W, if the equalities F v( f )  — 0, 
f i W ,  v = 0 , ± 1 , ± 2 , . . .  imply / = 0 ,

D e f i n i t i o n  2. A set K c :W  is said to be a c o n e ,  i f  it has the 
following properties :

1. I f  / (  К  and X is a nonegative real number, then l ∙ f i  K∙
2 . I f  f ( :K ,  d (:K , then f +  gX K.
D e f i n i t i o n  3. Let К а  № be a cone and P  be a norm defined in K∙ 

An element f^K,  /=1=0, is P-irreducible, i f  the equalities

(3) f ≈ g + h ,  P( f )  =  P(g) +  P(h), f i K ,  h (,K .

are possible only i f  g =h f ,  h=\af, Я-≥O, ji≥O , ц-(-Х==1.
D e f i n i t i o n  4. Let F  be a coordinate system in the linear space W  

and K czW  be a cone. Further, let P  be a norm defined in K∙ The cone К  
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is (F ; P )  compact, // fo r  any sequence {x n}^czSK9 *S y =  {лг, л;£/С P ( x ) ≤ l  } 
there exist an element a^SK and a subsequence {xn/̂ cz{xn} such that

(4) ' lim Fv(xnt)  =  Fv(a)
Пк-+ oo

holds fo r  any /\ £ Z7.
It is proved in [3] that every (F, P ) compact cone contains P-irreducible 

elements.
Now we may state Tagamlitzki’s result we need-
T h e o r e m  2. {Theorem of the cones [3]). Let W  be a linear space with

coordinate system F. Given the two cones L and K, LczKczW, suppose the
following conditions are satisfied:

1. The cone L is (F t Q ) compact, whereas К  is (F, P )  compact. (Q and 
P  are norms defined in L and К  respectively).

2. All the P-:rreducible elements o f К  belong to L and fo r  any P-irre- 
ducible f t  К  the inequality P (/ )≥ Q (/ )  holds.

Then, L ≈ K  and we have P ≥ Q  in the whole Af.
R e ma r k .  For our goal in this paper the earlier version of Theorem 2

published in [4] is quite sufficient.
In order to prove Theorem 1, we introduce the linear space W  of all the 

complex sequences {rtv}±∞ and set Fw (a) =  av, v =  0, ±  1 , ± 2 . . . fo r  any a =  {a v}±∞ 
£ W. It is clear that is a coordinate system in W. Further, we de­
fine the cones L and К  a s  follows.

D e f i n i t i o n  5. A sequence {cv}+∞ belongs to K, i f  and only i f  the 
Riesz condition (2) is satisfied. Finally L consists of all moment sequences

2n ,
(5) Cv =  J elv* da(t)j v≈O , Hbl, 4-2........

о

where a: [0, 2tt]->R is nondecreasing, a(0) =  0 and ci(t) =  u(t—0) fo r  0 < t ≤ 2 n  
It is well known and easily seen that under these conditions a is uni 

quely determined by its moments {Су}±~.
The following lemma is obvious.
L e m m a  1 . The inclusion L a  К  holds.

n
P r o o f .  It q (t )=  ∑ av eiv* is non-negative on the real axis and {cv} i “ c=£,

—n
we have

∑ cvav — Г ∑ aveiwd a ( t ) = f  q(t) da (t)^0
~ n  о ~ n  u

and (2 ) is established.
L e m m a  2. Denote by P  the linear functional a —► a0, where a ≈ { a v}±∞.  

Then P  is a norm in K∙
P r o o f .  Let be an element of К  Since the trigonometric po­

lynomials qi{t)— 1 and q<i (t) =  2JrZseint-\-£,e- int, |£|≈ 1 are non-negative on 
the real axis, taking into account (2) we get a∏d 2c0-\- ĉn-\-\c-n>Q. In
turn, the second inequality implies that the number D  =  ̂ cn-\- Ĉ—n is real. Set­
ting Z ≈ x  +  iy, cn =  p +  iq, c_n =  b +  iy, we find ImD =  (q -\~Ч)х-\-(р—5) y =  0, 
i . e . /7 =  5, q =  — y, since Z, =  x + iy  is an arbitrary point on the unite circle.
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Thus, we have proved c_n =  cn and the relation 2c0 -|-£cn4-£c_,I≥ 0  takes the 
form c0+R e (cn%)^0, i.e. — Re (cn 5) ≤  cQ. Now choosing £ =  — ei(p with 
Ф = —ar g c n, we get | cn \≤c0, n =  0> ±  1, ± 2 , .  . . ,  i. e. | cn |≤P(c) so that P(c j=0,  
cbK,  implies c =  0 . Since P  is linear, it is a norm in K. Now, the inclusion 
LczK  shows that P  is a norm also in L.

The following lemma is crucial in the whole proof.
L e m m a  3. The P-irreducible elements in К  have the form

(6) с =  {ЛХ''}+»,

where A > 0  and | X, [ = 1.
P r o o f .  Let c = { c v}±∞ be an element of K∙ Inspired by Tagamlitzki’s 

proof of the Bochner theorem, we set

(7) г =  4 -Л (^ )  +  4 - Л ( - Е ) ,  Л (4 )= {Л у (4 )}±~ 151-1,

where (§) =  2cv-f-^c,v+i-l- £ c*_v v =  0, ±Д , ± 2 , . . .  It is not diffcult to ve­
rify that A{^)^K for any complex £ with |£|= 1 . Indeed, let the trigonomet-

ric polynomial q (t )=  ∑ aveiW be non-negative on the real axis. Then
—n

(8 ) T  bveM =  (2 + S e“ + $ e - e' )q ( t )
— П— I

has the same property, Thus, we have the inequality
/1-4* I

(9) 2 b\ cv≤^0,
— ft— 1

which after a substitution of the explicit expressions of { 6 V} takes the form

(10) ∑ av/lv(§)≥ 0
—n

and shows that Л(£) f K∙ Since —£ is also on the unit circle, we conclude 
that Л (—£)£Ä\ so (7) is a decomposition in K∙ Finally, P  is linear and we 
have P ( c ) ≈ P  (A(^)/4)-\-P(A(—£)/4). Now, we are ready to complete the proof, 

Indeed, if c£ K  is P-irreducible, we obtain

( 1 1 ) 4M Q c ≈ A ® ,  i.e. 4m c v ≈ A v fc ) .  v =  0 , ± 1 , . . . ,

where 0≤A,(£ )<1 . First, we shall solve ( 1 1 ) under the supposition that cQ≈ l ∙  
In this case we have 4X(£) =  2 +  £>c1+Z>C—L and (11) takes the form

( 1 2 ) (2 -b£ fi Н - ^ _ , ) г у= 2 сУН-^гу + 1 Cv_i,
i. e.

(13) (cxCv—cv+1) £ H- (c_! Cv— Cv_i)S =  0 .

Since £ is an arbitrary point on the unit circle, (13) implies

(14) C v-f 1 — L v> C\—j ==• С—j Cv» V ≈  1, ztz 2, . . . ,

* £ is the conjugate number of



and by setting X ≈ c it \x =  с _ г we easily get
(15) C\ =  A.v, r _ v=  v =  0, 1 , 2 , . . .

Further, taking into account that c < c i =  c0=  1 and according to lemma 2
—  __ I

we get Хц=1, >*= ц, i.e. |i =  — , |A.|≈1. Now, (15) takes the form

(16 ) cv =  -̂v, V =  0, - f -1. 4- 2. . . .

Finally, if с £ К  is an arbitrary P-irreducible element of /C, we have сфО, i. 9 .
Я(с) =  соф 0 , and by applying (16) to — , we obtain

co

(17) c =  {c0K '}±~  |X|=1, co>0

and thus complete the proof.
C o r o l l a r y .  All the P-irreducible elements o f К  belong to L.
P r o o f .  Let с =  A > 0  be P-irreducible. Since | X. j =  1, there is a

t0, 0 ≤ t o<2n  such that X =  elt°, so c =  {.4e/v*o}j:∞. Now define the function
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a(t) _ |  0, 0 ;

I A, t0
)≤t≤t0,

t0<  t≤2n ,

which is increasing because A > 0 . Since the equalities
2 n

CV==<f eiVt(*a V)

are obvious, the corollary is proved.
L e m m a  4. The cones К  and L are (F, P )  compact.
P r o o f .  First, let {c(/7i)}+∞c=/f, P (c (m ))≤  1 be a sequence of elements of A.  

Since we have \ c^(m)\≤P(c(m))≤\, v =  0, ±1 ,  ± 2 , . . . ,  we may apply the 
Cantor diagonal process and select a subsequence { mk}, such that \\mcv(mk),

k-* oo
v =  0, ±  1 , ± 2 , . . . ,  exist. Setting rv =  lim cv(m*), we get a sequence c =  {cv}+∞ 

cr К  with P(c)≤, 1 and such that \lm Fv(c(mk) ) ≈ F v(c) for any Fv£F.
k —*o o

Thus, the (F, P ) compactness of К  is proved.
Now let {c(m)}±∞czL, P (c (m ))≤  1 be an arbitrary sequence. In this case we have

2 k

P(c(m)) =  c0(m) =  f  dam (t) =  am (2 тг)— am(0) =  а/;1(2 я )^  1

and by applying a well-known theorem of Helly [5], we select a subsequence
{mk} such that lim am,(t) exists for every /f[0, 2n]. Setting

k—>oo

a(t) =  lim amk(t), cv =  ̂  cist da(t), v == 0 , ±  1 , ±  2 , . . . ,  

by means of the second theorem of Helly [5], we get cv — lim cv (/n*).' Since
k —»00

c =  obviously belongs to L and satisfies the inequality P(c)<, 1, the proof
of Lemma 4 is completed.

It remains to summarize now. Since Lemma 1 , the corollary of Lemma 3 
and Lemma 4  permit us to apply Theorem 2 with Q =  P, we conclude that 
L ≈ K  and complete the proof of Theorem 1.
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