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SOME COVERING PROPERTIES OF LOCALLY UNIVALENT FUNCTIONS

DAVID ALEXANDER BRANNAN

1. Introduction. In this note we study some aspects of the covering pro­
perties of functions ∕  that are analytic and locally univalent in U ≈{\ z  ! < i } .  
and at most /?-valent in U  but not univalent in U.

For each tf6]0,l[ greater than the radius of univalence of such a ∕  there 
must exist two points zt and z't on {\z\ =  t}, with ■ f (z t)= f (z 't) (= w t, say) such 
that

1) ∕  is univalent on the anticlockwise-described arc C(t) of { j z j ≈^ }  between 
zt and z't,

2 ) zt and z't are the initial and terminal points respectively of the directed 
arc C(t), and

3) f(C(t)) is described clockwise relative to its inside.
Then, T (t )= f(C {t )) is a closed Jordan curve, analytic except at wt. The 

preimage / _ 1  (Int Г(^)) consists of a countable number of disjoint domains in 
Ü ;  let D(t) denote that component which has C(t) as part of its boundary. 
We call D(t) the a d h e r i n g  d o m a i n  to the g e n e r a t i n g  ar c  C(t). It was 
shown in [1] that D(t) is simply-connected and goes to the boundary of U. 

The question arises from [1(c), p. 97] as to whether

(1) D{t)cz{\z\>t)

for all t larger than the radius of univalence of /.
Here we show that (1) is not true in general, and we ask some further ques­
tions about the domains D{t).

In addition we give an example that shows that the conformality condi­
tion in the following result cannot be removed:

T h e o r e m  A (Theorem 2 of [1]). Let w =  f ( z )= z +  a^z2 ±  . . .  be analytic, 
locally univalent but not univalent in U, and strictly /»-valent in U. Then, 
there exists some point и /0 in Cw such that f (z )— w0 has at most (p-2) zeros 
in U.

2 . Example 1. We now construct a Riemann surface ^  that shows that
( 1 ) cannot hold for all sufficiently large t. will be a modification of another 
Riemann surface ^  that we construct first, using the following domains in the 
w-plane: ∙

Gl =  {Rew > — 1 } ;
Ga =  {Re w <  — 1 , Im w <  — 1};
G3 =  {Re w < —2, — 1 < Im  w < l } ;  ∙
G.t =  {Re w <.—1, Im д а>1 };
G6 =  (?!; and

7 5 5 3
Ge =  the triangle in Cw with vertices — 1— §-*> -1 — g- i and — -̂----- j - l .
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Then, for each s£[0,lj, is the two-sheeted Riemann surface obtained by 
sewing Gk to Gk+l, 1 ≤ £ < 5 ,  along their common boundary, and slitting G± along 
the line segment Le =  [— 1 — /, e — 1 — /J.

Let the function
oo

h ( z ) = ∑  an{z)zn
V /1=1

map U  onto with fe(0 ) lying on the portion Gx of
For all sufficiently large t^}0, 1[, the level curve f{{\z\≈t}) closely appro­

ximates at least near to

∙SE ≈  *5* U Le»

where is the square

S = ∂ ( C 9 - M U ) ) .

Let exp (/0j) and exp (/02) denote the points of ∂ U  that are the preimages 
under / 0 of the point w ~  - 1 —/, arranged such that

foie*') 6 ∂G2 and f 0(e‘Q*) 6 ∂G6.
For 8 > 0  and t sufficiently close to 1 , the distance between the level curve 

fz{{\z\ =  t}) and Sc is of the order of magnitude of ( 1 —0 » except that where 
a corner of *S*E is also a corner of the level curve is pulled in towards
the corner. This is because near such a corner, w '=  f e(eiQ') say, we have

f(z)—w' ~  (z — eiQ')3'2A(w/)

for some A(w') independent of z.
Clearly, it is then possible to choose a particular pair (tu Cj) with /i£]o»U 

sufficiently large and ег > 0  sufficiently small, such that there exist two points 
ztl and z ’t on { 1 ^ 1  =  ̂ }  near to exp (Ю2) and exp (/0 2) respectively, with the
following properties:

(a) C (^ ) ≈ ( z tl, z ' ) is a generating arc on {\z\≈t1}> and
(b) f y l (— 1 ) lies in the adhering domain D (^ ) generated by the arc C (^ )e
This follows from the Caratheodory Kernel Theorem and the fact that 
belongs to for each e≥O. v
We have to choose ex sufficiently small and tx sufficiently large for (b) 

to hold, and and t1 sufficiently large so that the level curve has a double 
point near w = — 1—/; this can be done by choosing first t± and then ele In (a), 
ztl is chosen on {\z\ =  tx} such that f (z tj) is the ‘last* double point on f  {{\z \ 
=  ̂ } )  before the level curve sweeps round to intersect the line segment
] —  oo, — 2[.

Then the point w =  — l must lie on , inside the image under /El of the 
level curve {\z\— /j}, so that f ~ l(— 1) lies inside {|г|<^,}. It follows that

∏ {| 2 /| >tfi}=4=0∙

Finally, the desired Riemann surface M is ohtained from £#Cl by slitting 
^ Ei in G1 along very small line segments [— 1—2y nt гп+\ — 1— 2~"], n ~  1,2,..., 
where en J—-»-О, and by attaching small triangles inside *S to Gx midway between
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these slits. Similar arguments to those earlier applied inductively to the effect 
of each successive addition show that there exists a sequence tn\-+\ and a 
sequence of adhering domains D(tn) such that

£>(*„) ∩ {| z| < / „ }4 = 0 .

3. Remark. It would be interesting to know if there exists a function ∕  
analytic in U  and locally univalent in U , such that for some nested family of 
adhering domains, D(t\ we can have

D (t )^ {\ z\ < t}≠ = 0

for all t sufficiently close to 1 , or even perhaps for all t larger than the radius 
of univalence of /.

Also, the question arises as to whether, if f  is assumed to be strictly 
/?-valent in U ' with / '(0 ) = 1 , the number

T  —inf {/ : D(t) ∩ {  Iг  I < ^ } Ф 0 }

is equal to /?„, the radius of univalence of the family of all such /, or whether
T > R U.

4. Example 2. We now construct a function ∕  with the following proper­
ties: ∕  is analytic and strictly /?-valent in U , and the Riemann surface & = f (U )  
covers every point in the image plane al least (p— 1) times. This shows that 
the conformality condition in Theorem A cannot be removed.

Let denote the image Riemann surface associated with the function

w ≈  f 2(z) — 3 +  /, z£ Uy 

where / 2 is the function defined in Example 2  of [ 1 , p. 99] with the choice 

Wt≈ 1 -+-(/— 1 )/(/>— 2 ), 1 ≤ i< *p — 1 .

Let & 2  denote the Riemann surface associated with the function

гг/ =  г2, z^U.

Now delete from @л the copy of {| w\≤ 1}, whose interior lies in a single sheet 
of and whose boundary meets ∂&v and sew in its place a copy of along 
T≈{\w \≈\,  /}; do this in such a way that adjacent points of д@л on T
are sewn to adjacent points (on the same sheet) of Denote by the re­
sulting Riemann surface.

Next, to 2#3 sew a copy of

^ 4 =  {Re w >  — 3,0<Im  w <  2} — [{|^ |≤ l } U { l m w ≤ l . R e  w ≥ O } ]

along the connected copy of

{w ≈ e iQ: тг< 0 < 7г} (J {Im w — 1, Re ?^≥0 }

on £ 3. Denote by @ the resulting Riemann surface.
Then @1 has the desired properties. (Note too that /' has just one zero 

in Ü.)
Related questions will be discussed in [2].
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