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THE GAUGE INVARIANT CURRENTS OF THE 
M AXW ELLIAN  FIELD

Richard Arens
- *

We show that a conserved current for the Maxwellian field, which is inva­
riant under the gauge group of that field, is the sum of two currents Ф -fT ,  
where Ф corresponds to a Poincare symmetry of Ihe field, and Г  is a topological 
form that is conserved under every dynamics.

1. Introduction and summary. In a Lagrangean field theory, the extre­
mals are certain 4-dimensional submanifolds of a bundle В over space time 
/?4( =  Af). A d у n a m i с differential form is of degree 3 and is c l o s e d  on 
each extremal and thus constitutes a conserved q u a n t i t y .  A 3-form e is a 
c u r r e n t  if

( 1 .1 ) * e ≈ y ^ - y a ^  +  y ^ - y ^ 193

in the notation of [2, 529].
The dynamic currents of the M a x w e l l i a n  system fall into five classes 

[2, loc. cit.]. Although each represents a conserved quantity, some of them do 
not correspond to any dynamic symmetry of the system, that is they are not 
N o e t h e r i a n .

We will show here which of them are g a u g e  invariant. The gauge group 
can be abstractly defined as the dynamic symmetries which transform the 
field-space at each point into itself. (Applied to the Maxwellian system, this 
comes down to the addition of a gradient to the ‘^ ’’-vector potential). We show 
that a gauge invariant current is equivalent to the sum of two currents O'and 
T l , where the former is Noetherian and corresponds to an infinitessimal ,trans-. 
lation plus Lorentz transformation in Af, and the latter form is dynamic in­
dependently of the dynamics: a t o p o l o g i c a l  current [3].

2. The gauge group. The field is given by the electromagnetic potentials
Л ъ . . . , Л 4. Thus, field space is also /?4, and we may use the A  s as Cartesian 
coordinates there. Let P = ±M xR *-  Let be a Lorentz coordinate system
in M. We use A 4 as coordinates in P. Let a vector field

( 2 .1 ) U  =  Bi∂/∂Ai

be given in P, with vanishing ^-components. This infinitessimal transformation 
in P  induces an infinitessimal transformation V  in the bundle В of first-order 
jets of sections in A  Here the coordinates are those already listed, plus the 
Ajj corresponding to the ∂jA i% where ∂j means ∂/∂V. The t and A components 
are the same as for U , but additional terms are needed for the Ay, and 
the induced infinitessimal transformation is V ≈ U + C i j∂ j∂ A u , where C ij≈∂ jB i 
Л- A kj∂Bi!∂Ak.

For U  as in (2.1), one may [1, sec. 6 ] take D y L ≈  0  as the condition for 
a gauge symmetry, where DvL  is the Lie derivative with respect to V  of the 
Lagrangean density. For us
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L =  (Ац— Aji)(AiJ'—AJi)l 4.

Hence, DvL =  (Cij —Cjl)(Aii—AJi)l2. The terms of the first degree in the A ki 
yield ∂fij≈ -∂ jB i. The quadratic terms can be manipulated to show that the B’s 
must be independent of the A t. More precisely, (2.1) is an i n f i n i t e s s i m a l  
g a u g e  s y m m e t r y ,  i f  and o n l y  i f

( 2.2) Bi≈∂A/∂t*,

w h e r e  Л  d e p e n d s  o n l y  on t he  s p a c e - t i m e  c o o r d i n a t e s .
3. Gauge invariant quantities. Let Л ~ t k. Then, U≈=∂/∂Ak and V is the same. 

Let F  be a gauge invariant function defined on B. Then, D yF =  0 says that 
∂F/∂Ak =  0. Next, take A  =  tlt2. Then, V = t 1∂2- t 2∂ 1-{-∂l∂A12~∂/∂A21. Hence, 
we also have дЕ/дАп +  дР/дАл =  0. These two sets of conditions also suffice to 
ensure D vF =0 ,  w h e n  (2.2) h о 1 d s. Consequently, a q u a n t i t y  is g a u g e  
i n v a r i a n t ,  i f  and  o n l y  i f  i t  c a n  be  e x p r e s s e d  in t e r m s  o f  t h e  
t’ s and  t he  f i e l  d-c om p o n e n t s  F a ≈  Ац—Ац a l o ne .

4. Gauge invariant currents. A tensor e is gauge invariant, if Di/e =  0, 
when (2.2) holds. For a current (1.1), this just requires each Jt to be gauge 
invariant. If in addition it is dynamic, we may consult [2; 3/8 and 4/1]:

(4.1) ∂S/∂Akj -f ∂Jjl∂Aki =  2Mkg ij— M 'g ki,

(4.2) M i ≈  R l +  SkA ki— BkAik.

We know that the J's depend only on the F ij (and on the t*s). We may 
express the A fs in terms of the F iJ and the Ац-\-Ац, and then set the latter 
variables to 0 , and the A fs  will still work for (4.1). But now the (partial de­
rivative) Si in (4.2) will have to be the same as BL.

As in [2, 4/2], we construct a competing current

Lk ≈ A mnFmkAn 4- (1 l2)AntnF""\Rm- A mnAn) =  (1 /4 )FmnA* +  RmF mk.

This formula was devised to make L satisfy (4.1) with У replaced by L  We de­
fine Z i =  Ji—U . Then Z  satisfies (4.1), with the /M’s equal to 0. The general 
form of such Z  is known [2,533]. We can, therefore, assert for the sum 
Z + L  =  J that

(4.3) Jk — N k -f- *N-hmFom -Y RmFmk +  abN kmnFamFbn

. +  (1 /4)BkF mnF mn +  abcN*""">FamFbnFcp.

These Л/’s are skew-symmetric in each set of indices. For example, abc]\[̂ mnP 
is skew-symmetric in ab, and skew-symmetric in kmnp. They can be used 
to define a system of linear differential forms

abcy ≈  abcN kmnpdkmnpi

where dkmnP is jtlst dkmnp with its indices lowered. (The notation d\ d12y dl23’ 
etc., is that used in (1.1); ab<pt °ф and ф are forms of degree 3,2 and 1 defined 
analogously.)

We will consider the Hodge stars of these forms; for example, the Hodge 
star of abq> is

where zkmnp is the sign of the permutation kmnp.
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The B’s form the components of an infinitessimal conformal transforma­
tion of space-time M. The R's and the TV’s depend ,on the t ’s and possibly 
on the Ak.

We shall prove from gauge invariance that

(4.4) Jk ≈  N k 4 - aN k"'Fam 4 - abN kmnFamFbn +  (1 ∕  4 )B*FmnF mn

+  abcN mnPFamFbnFcp,

w h e r e  t he  Bh a r e  t he  c o m p о n e n t s  o f  an i n f i n i t e s s i m a l  iso - 
m e t r y  o f  t he  s p a c e - t i m e  s t r u c t u r e ,  and t he  f o r m s  abc\j/, ab\\f> 
ai|/, \|/ are c l o s e d .

5. Proo f of (4.4). Let K"'gak—R kgam. Then, aP kmFam≈ R mFkm. Thus,
RmF mk in (4.3) can be “ absorbed” into the aA ktnFam. This gives us that Jk has 
the form (4.4), and is thus a polynomial in the Fs. For any particular degree, 
the homogeneous part of that degree is uniquely determined by /. Thus, the 
abcfrjkmnp̂  afcjkm a∏(j дг are determined by J and so they must be independent 
of Ab. A little more algebra shows that also В and abf\kmn are uniquely de­
termined.

The fact that (1.1) is dynamic imposes the condition [2, (3.7)], which now 
comes down to ∂kJk =  0. Since the coefficients on the right side of an equation 
like (4.4) are uniquely determined by the left side, we conclude that certain 
sums are 0 , for example, ∂kabcN kmnp — 0. This particular equation shows that 
abc\\f is closed, which is to say dabc\|/ —0 .

We also have ∂kBk =  0. We already know that Bl is an infinitessimal con- 
formal vector field and so looks like A1 in [2. middle of p. 536], and if the 
divergence is to be 0 , it must be an infinitessimal isometry. v

6 . Topological forms. We will show first that

(6 .1 ) y* =  (A j∂B '+  AnBj)Fki

defines a t o p o l o g i c a l  form, meaning a form closed upon restriction to any  
section of the bundle В over M. A necessary and sufficient condition that a 
current with components Jk be topological is that

(6.2) ∂kJk -f Ajk∂Jkj∂Aj =  0 and ∂f/∂A^-h∂J’/∂A^≈O.

This is seen as follows. Using the notation of [2,530; 2, (2.2)] J j s topological, 
if and only if [2, (3.2)] holds, whenever A Uk — A ikj. This is equivalent to (6.2). 
Using the fact that Bj ~  mJiti-\-bJ\ where tnji is skew-symmetric, one can de­
duce that (6.1) satisfies (6 .2 ). It follows also that

Tk — N k -f- aN kmFam +  abN kmnFamFpn -j- abcN kmnpFmnFbnFcp -  (A}∂B ∕  +  A tiB ')F *  

is topological, since

N k +  *N »*Fam 4 - abN kmnFamFpn 4 - abcN*"'npFamFbnFcp

satisfies (6 .2 ).
The differential form

Фк =  (\/4)ВкРтюР тп̂ к

is the one corresponding to the infinitessimal space time isometry with compo­
nents Bk. (See for example [2, (2.41)].) Obviously, Jk =  Ф* 4- T h, so Jk has the 
decomposition claimed in Section 1.



10 R. Arens

7. Correction of misprints in [2 ]. (a) Line 12 of [2,537] should read
∂k{∂*fh- ∂ hf k) =  0; (b) in line 13 of [2,533] replace pkm)Sn by pkn)Sm\ (c) in 
line 15 of [2,541] remove the period after ‘provides’ ; (d) in line 8  of [2,530] 
replace л; by X.
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