
Serdica J. Computing 7 (2013), No 3, 257–270

PLAINTEXT RECOVERY IN DES-LIKE CRYPTOSYSTEMS

BASED ON S-BOXES WITH EMBEDDED PARITY CHECK

Vesela Angelova, Yuri Borissov

Abstract. We describe an approach for recovering the plaintext in block
ciphers having a design structure similar to the Data Encryption Standard
but with improperly constructed S-boxes. The experiments with a back-
tracking search algorithm performing this kind of attack against modified
DES/Triple-DES in ECB mode show that the unknown plaintext can be
recovered with a small amount of uncertainty and this algorithm is highly
efficient both in time and memory costs for plaintext sources with relatively
low entropy. Our investigations demonstrate once again that modifications
resulting to S-boxes which still satisfy some design criteria may lead to very
weak ciphers.

1. Introduction. General block ciphers combine simple operations to
construct a complex encryption transformation. This tradition has its roots in
Shannon’s 1949 paper [1] connecting cryptography with information theory. Shan-
non suggested building a strong cipher system out of simple, individually weak
components that substantiate the so-called “confusion” and “diffusion” of data,

ACM Computing Classification System (1998): E.3, I.2.7, I.2.8.
Key words: DES-like cryptosystem, S-box, affine subspace, plaintext recovery, backtracking

search, language model.
*This work was presented in part at the 1st International Conference Bulgarian Cryptography

Days 2012, Sofia, Bulgaria, 20–21 September 2012.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62661531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

258 Vesela Angelova, Yuri Borissov

and applying these components iteratively in a number of rounds. Later (in the
1970s) this approach culminated in two main design methodologies: Feistel ci-
phers and substitution-permutation networks developed by researchers from the
IBM cryptographic team.

The most prominent example of a Feistel type cipher is probably the
Data Encryption Standard (DES). Recall that in addition to a Feistel network,
DES uses an initial permutation (IP) on the input 64-bit plaintext block, a final
permutation (the inverse of IP) on the last sixteenth block, and has a secret key
size of 56 bits. The block cipher Lucifer, a predecessor of DES developed by the
IBM crypto-group in the early 70s, belongs to the same family but has plaintext
block and key size of 128 bits [2]. More recent proposals of Feistel type ciphers
(some of them in a wider sense) are: Triple-DES, the Soviet GOST 28147-89,
Blowfish, CAST-128, etc.

The security of a block cipher depends in a crucial way on the so-called S-
boxes, the non-linear mappings at the core of the cipher. From the cryptanalyst’s
point of view some S-boxes could be much more malleable to carry out a particular
kind of analysis and to perform the corresponding attacks. Of course, S-boxes,
like affine ones, which are extremely vulnerable to linear cryptanalysis, are easily
distinguishable. However, there are some classes of S-boxes looking innocent at
the first sight but still having a hidden trap-door structure. The reader is referred
to [3] for details of a more general probabilistic approach to constructing such
S-boxes, and to [4] for a description of an attack on Feistel ciphers with a non-
surjective round function such as the CAST cipher family and LOKI91. Another
more recent contribution to this topic is given in [5].

The goal of this paper is to re-warn the developers and customers about
the existence of such phenomena and at the same time to make clear in an explicit
manner how dangerous it can be in practice for the case of DES-like cryptographic
systems. For example, such trouble may occur when system of this kind imple-
mented in software (and downloaded from an unreliable WEB site) has been
deliberately damaged by an adversary unbeknownst to the ordinary users. A sim-
ilar situation is considered in the context of symmetric block ciphers based on a
Feistel network with secret S-boxes installed as an additional parameter [6] (as in
case of GOST 28147-89) but the approach presented there leads only to a limited
reduction in the key space per block.

The remaining of the paper is organized as follows. In the next section,
we recall some background needed to present our results. Then in Section 3, we
describe a ciphertext-only attack on DES-like cryptographic systems with a special
kind of non-surjective S-boxes. In Section 4, a backtracking search algorithm for

Plaintext Recovery in DES-like Cryptosystems . . . 259

carrying out such an attack against proper modifications of DES/Triple-DES used
for enciphering of a typical English plaintext source is presented. Finally, in the
last section some conclusions are drawn.

2. Background. A Feistel cipher (network), named after the crypto-
grapher Horst Feistel, is an iterative block cipher, which splits the input block at
the ith round into two parts Li−1 and Ri−1. Then Ri−1 will form the left part of
the next block, while the left part Li−1 will be combined with the output of the
encryption function f of key Ki applied to Ri−1. More precisely,

Li = Ri−1

Ri = Li−1 ⊕ fi(Ri−1),
(1)

where fi = fKi
(.) is the round function, and the sub-keys Ki are all derived by

the key scheduling from the secret key K. Decryption is done using

Ri−1 = Li

Li−1 = Ri ⊕ fi(Li)

regardless of what the round function looks like (can be quite complex and not
necessarily invertible).

We recall that a cryptographic m×n S-box can be regarded as a mapping
S : F2

m 7→ F2
n, where F2 = GF(2), m ≥ n, which satisfies additional criteria (see,

e.g., [7][Ch. 9]) that make the cipher resistant to the known kinds of cryptanalysis
(linear, differential, algebraic, etc.). Note also that in Feistel ciphers, the S-boxes
are embedded in the round function and are the only non-linear part of the cipher.
For instance, in DES, the round function looks as follows:

(2) fi(R) = P(S(E(R) ⊕ Ki)),

where P is a fixed round permutation acting on a 32−bit block; S : F2
48 7→ F2

32

is a mapping produced by concatenating the outputs of the eight DES S-boxes;
E : F2

32 7→ F2
48 is the expansion function of DES. (All these components are set

in concrete specifications of the former U.S. standard.)
Also, we assume the reader has some background in Coding Theory (see,

e.g., [8]). Further on, we shall make use of the following simple:

Proposition 1. Let U be a coset of a binary linear code C, and u1,u2, . . .ut

be t vectors from U . Then

t∑

i=1

ui ∈ C if and only if t ≡ 0 (mod 2), otherwise

t∑

i=1

ui ∈ U .

260 Vesela Angelova, Yuri Borissov

3. Ciphertext-only attack on DES-like cryptosystems with

special non-surjective S-boxes.

3.1. Attack rationale for a Feistel cipher with S-boxes of a special

kind. First, consider a Feistel network with 2t rounds, and let the number of
used S-boxes be s. We shall assume also that the round function is of the form
representing by equation (2), and the outputs of all S-boxes are from F2

n. So,
the round permutation P acts on an s × n-bit block. For example, in the case of
DES we have: t = 8, s = 8, and n = 4.

Using equation (1) by induction one can easily derive the following ex-
pressions for the output block of the last round:

L2t = L0 ⊕
t∑

i=1

f2i−1(R2i−2)

R2t = R0 ⊕

t∑

i=1

f2i(R2i−1),

(3)

where (L0R0) is the input block of length 2 × sn bits, and the sub-keys Ki (re-
spectively the secret key K) are present implicitly.

Now, let us focus on the two XOR sums:

Xl =
t∑

i=1

f2i−1(R2i−2)

Xr =
t∑

i=1

f2i(R2i−1),

(4)

from the right side of equation (3). Rewriting it as follows

L2t = L0 ⊕ Xl

R2t = R0 ⊕ Xr

(5)

one can interpret the considered Feistel cipher as a binary additive stream cipher.
(Notice that the keystream depends on plaintext, thus it is a self-synchronizing
stream cipher.) Of course, the above can be done always but the expressions for
Xl and Xr (see, equation (4)) are very important in some cases of interest as we
will show bellow.

Assume now that the image of each S-box is some fixed proper affine
subspace of the binary vector space F2

n, i.e., a coset of some proper linear code
in F2

n. Since as a permutation P is linear (preserves the XOR operation and

Plaintext Recovery in DES-like Cryptosystems . . . 261

can be taken “out of the brackets”) it follows from equation (4) that both Xl and
Xr, belong to a permuted version of the Cartesian product of the corresponding
subspaces. The latter being by Proposition 1 either the images of S-boxes in
case t ≡ 1 (mod 2), or the linear codes in F2

n whose cosets are these images, in
case t ≡ 0 (mod 2). Therefore both Yl = P−1(Xl) and Yr = P−1(Xr) can be
regarded as sequences of random variables taking their values in proper subsets
of the whole F2

n. This is the reason (the information-theoretical basis) for the
feasibility of breaking the kind of Feistel cipher considered here, provided the
plaintext source redundancy is sufficiently large (see, e.g., [9] or [10][p. 400] for
more general discussion on the last topic).

Remark 1. We emphasize the fact that although the images of the
S-boxes are assumed to be proper affine subspaces, by no means these S-boxes
are affine. For instance, keeping three of the coordinate functions in an S-box of
DES and setting the remaining to be the parity check of the others, the resulting
new S-box is apparently not affine. But of course all S-boxes of this kind are
non-surjective over F2

n.

Remark 2. Note as well that the described approach for attacking the
specified kind of Feistel networks points out a possibility to recover the plaintext
(input block (L0R0)) without actually finding the secret key K.

Remark 3. The restriction to an even number of rounds is not essential
and the above considerations can be properly adjusted for an odd number of
rounds making use of the defining equation (1).

3.2. Attack rationale for DES-like systems based on relevant Feis-

tel network. Second, we shall take into account the initial permutation IP and
final permutation IP−1 present in any DES-like cryptosystem.

Let P be the instant plaintext block, while C is the corresponding cipher-
text block in the attacked cryptosystem. Then for the input block of the included
Feistel network we have: (L0R0) = IP(P), while for the input block of the final
permutation it holds: (R2tL2t) = IP(C) (see, e.g., Fig. 11 [10][p. 410] in case of
DES). Therefore, (L2tR2t) equals to swap(IP(C)), and by equations (5) we get:
swap(IP(C)) = ((L0 ⊕ Xl)(R0 ⊕ Xr)) = (L0R0) ⊕ (XlXr) = IP(P) ⊕ (XlXr).
Finally, taking into account that Xl = P(Yl) and Xr = P(Yr) we obtain:

(6) IP−1((P(Yl)P(Yr))) = IP−1(swap(IP(C))) ⊕ P.

Remark 4. The last equation is very useful if we attempt to solve the
cryptogram by guessing the plaintext P since both Yl and Yr in its left side are con-
strained for the special type of Feistel cipher we consider, and IP−1(swap(IP(C)))
can be computed only once in a preprocessing step of the algorithm.

262 Vesela Angelova, Yuri Borissov

Remark 5. So far we have not given an explicit definition of DES-like
cryptosystem. In this paper, we mean that DES-like system is a superposition of
an initial permutation, Feistel network, and final (inverse of the initial) permuta-
tion preceded by a swap. In this sense Triple-DES is not truly a DES-like system.
But one can easily see that equation (6) is still valid since the permutations and
the two additional swaps on the borders between the consecutive stages of this
cryptalgorithm are canceled in the process of its deduction. So, in general the at-
tack against a triple application of one DES-like system proceeds along the same
lines as against the single one when using the last equation (in particular, this is
true for Triple-DES and DES themselves).

3.3. A representative example: DES with S-boxes having parity

check. We will exemplify the described attack in case of DES/Triple-DES (ECB
mode) with suitably modified S-boxes.

To obtain the S-box of interest, it suffices to change an S-box of DES in
the following way: Set one chosen coordinate function to be an even (or odd)
parity check of the other three which are kept unchanged.

The image of a S-box modified in this way is either the even weight code
E4 of length 4 or its unique nontrivial coset O4 consisting of all 4-bit tuples having
odd weights. Therefore, for the image ℑ(S) of any such S-box: |ℑ(S)| = |E4| = 8.

However, these S-boxes are non-affine and even satisfy other desirable
properties of S-boxes (e.g., the criteria C2a. and C2b. from [7][p. 301]). Here-
inafter, for the reader’s convenience we recall those criteria:

• C2a. Changing one bit in the input of an S-box results in at least two
output bits changing;

• C2b. If two inputs to an S-box differ in the middle two bits, their outputs
must be different by at least two bits [11].

The reason that the above criteria are automatically satisfied is the fol-
lowing: If two outputs of the original S-box of DES differ in at least two positions
they are replaced by different vectors in the modified S-box, therefore as these
vectors belong to a coset of E4 the Hamming distance between them is 2 or 4.
This means that properties C2a. and C2b. are preserved.

Moreover, that modification provides an opportunity to introduce the so-
called customers’s key by specifying the position and kind of the parity bits.
(Recall that customer’s keys are those keys which separate distinct user commu-
nication groups.) So, in case of DES there are 88 = 224 possibilities for such a
key. Additional diversity is achieved by XORing the outputs of any S-box thus
modified with a fixed 4-bit tuple.

Plaintext Recovery in DES-like Cryptosystems . . . 263

The 32-bit blocks Yl and Yr defined above will look as follows:

Yl = (S′

1S
′

2 . . . S′

8)

Yr = (S
′′

1 S
′′

2 . . . S
′′

8),

where S′

i and S
′′

i , 1 ≤ i ≤ 8, are 4-bit tuples corresponding to the ith modified
DES S-box. Since DES has 16 rounds (t = 8), by the general considerations from
Section 3.1 this implies that all S′

i and S
′′

i , 1 ≤ i ≤ 8 are of even weight. We shall
refer to this property as a condition for even parity of a given S-box, or as EP

condition for short.

Denote by P1, P2, . . . , P8 the consecutive bytes of the plaintext block P.
Equation (6) determines how the bytes Pj , 1 ≤ j ≤ 8 influence S′

i, 1 ≤ i ≤ 8,

(respectively S
′′

i , 1 ≤ i ≤ 8), through the initial permutation IP and the inverse
round permutation P of DES. This dependence is summarized in Table 1. The
presence of “x” in a cell of that table means that the corresponding byte affects
the output of the corresponding S-boxes with one bit, while “xx” means the same
but with two bits. For instance, looking at Table 1 one can see that P2 influences
S′

1 and S
′′

1 with two of its bits. The exact influence refined by a detailed analysis
of permutations specified in FIPS-46 (see, e.g., [12]) is presented in the Appendix.

Table 1. The influence of plaintext bytes on outputs of S-boxes through equation (6)

P1 P2 P3 P4 P5 P6 P7 P8

S′

1
/S

′′

1
xx xx

S′

2
/S

′′

2
x x xx

S′

3
/S

′′

3
xx xx

S′

4/S
′′

4 x xx x

S′

5/S
′′

5 x x x x

S′

6/S
′′

6 x x xx

S′

7
/S

′′

7
x x x x

S′

8
/S

′′

8
x xx x

There are two possibilities to exploit equation (6):

• Exhaust all possible “even parity” blocks (YlYr) storing only those plaintexts
Ps (obtained by the equation) which are “meaningful”.

• Generate in some way the “meaningful” Ps storing those of them satisfying
the EP condition (checked by the equation) for all S-boxes.

264 Vesela Angelova, Yuri Borissov

The first possibility requires 248 trials (i.e., the number of “even parity”
blocks), which is undesirable. The second one is more promising for some plaintext
sources, but still some reductions have to be made.

4. Performing the attack.

4.1. A backtracking search algorithm in two variants. To accom-
plish the task from the end of the previous section we have adapted two search
algorithms. Both make intensive use of Table 1 (the Appendix) and a list L of
plausible four-grams for a particular plaintext source. According to Remark 4,
both have a preprocessing step which computes IP−1(swap(IP(C))) accepting
as input the ciphertext block C.

Also, they are based on the so-called backtracking search strategy which
gradually builds candidates and abandons each partial candidate that cannot be
completed to a valid solution (see, e.g., [13]).

Hereinafter, the steps of the first algorithm A, are briefly described:
Step 1. Replace the right half (P5P6P7P8) of the guessed plaintext which affect
the whole S′

4/S
′′

4 with a new four-gram from L (if the list is exhausted then STOP)
and check for the EP condition. If it is not satisfied then continue the step with
the next four-gram, otherwise go to Step 2.
Step 2. Repeat the following until the list L is exhausted:

Replace the left half (P1P2P3P4) of the guessed plaintext by a four-gram
from L (together with the temporary fixed right half they affect all S-boxes), and
check the EP condition. If in some trial the EP condition is satisfied, store the
plausible solution (candidate). When the list L is exhausted return to Step 1.

Note that A exploits essentially only the fact of dependence of the pair
S′

4/S
′′

4 from the right half of the guessed plaintext.
The second algorithm A′ is a derivative of A, which exploits as well the

dependence of the pair S′

3/S
′′

3 from the left half of the guessed plaintext (see Table
1). A′ is more efficient from a computational point of view, but at the expense of
using an additional amount of memory.

The two steps of A′ are described as follows:
Step 1′. Replace the left half (P1P2P3P4) of the guessed plaintext by all four-
grams from list L, check the EP condition for S′

3/S
′′

3 , and when it is satisfied
store the corresponding four-gram in some (new) array L′ .
Step 2′. Execute A substituting in its Step 2 the list L by the array L′.

Actually, one could see that A′ is an appearance of the so-called "meet-
in-the-middle" strategy for attacking the cryptographic schemes since it explores
the halves of the plaintext block independently of each other and then combines
the results (see, e.g., [14] where this technique was described for the first time).

Plaintext Recovery in DES-like Cryptosystems . . . 265

A plausible assumption that when guessing plaintext, the event “given

S-box satisfies the EP condition” holds with probability
1

2
and these events are

independent of each other, implies that the probability that all S-boxes satisfy

the condition simultaneously equals
1

216
. Since the above algorithms explore

the plaintext space L × L, it follows that the expected cardinality of the list of
candidates (the number of “spurious decipherments” + the true one) is about

(7) |L|2/216.

We shall see further that the estimate is remarkably confirmed by our experiments.
(The interested reader is referred to [15] for a general study of this phenomena in
pure information-theoretic settings.)

Also, under the above assumption the computational complexity of the
algorithm A can be easily estimated. Namely, Step 1 is passed successfully by

about
1

4
|L| four-grams from the list L, because the EP condition must be satisfied

for two S-boxes. And for every such right plaintext-half, Step 2 is executed |L|

times giving a total of around
1

4
|L|2 + |L| trials per block.

Regarding A′, again Step 1′ is passed successfully by the same amount

of four-grams from L and thus the virtual memory for L′ is of magnitude
1

4
|L|.

Further on (processing as above), we easily conclude that around
1

16
|L|2 + 2|L|

trials per block are examined in the whole algorithm. Hence on the average, A′

is four times faster than A.

4.2. The language model for candidate’s evaluation and ranking.

The next stage of our attack consists of evaluating each potential solution from
the obtained list and ranking them correspondingly.

To this end, we make use of the relevant plaintext language model assum-
ing that the plaintext is a typical natural-language text, e.g., in English. Tradi-
tionally, in an n-gram language model the probability of a sentence P1, . . . , Pm,
m ≥ n is assumed in the context history of the preceding n − 1 letters, namely:

Prob(P1, . . . , Pm) ≈

m∏

i=1

Prob(Pi|Pi−n+1Pi−n+2 . . . Pi−1)

The above is in connection to the so-called Markov model of natural languages
(see, e.g., [16, Ch. 6]). For other interesting cryptanalytic applications of that
model the reader is referred to [17] and [18].

266 Vesela Angelova, Yuri Borissov

In our case n = 4 and m = 8 (the block length). We use, as well, an
approximation of the above product of probabilities by:

(8)

8∏

i=1

#(Pi−3Pi−2Pi−1Pi)

#(Pi−3Pi−2Pi−1)
,

where #(.) means the frequency count of the corresponding n-gram in a suffi-
ciently large representative text from the plaintext source. For the sake of com-
pleteness, we note that trigram P−2P−1P0 is taken either from an already solved
preceding plaintext block, or if the current plaintext block should start with a
new word (as in the case of initial plaintext block) that trigram is replaced by the
triply repeated symbol “space”. We will refer to P−2P−1P0 as prefix.

In fact, in our software program a logarithmic scale is used in order to avoid
rounding errors, and the multiplications/divisions are replaced by the correspond-
ing additions/subtractions. Also, a smoothing is done by setting the logarithms
for missing four-grams to the “−∞” value, i.e., a value smaller than all associated
to those occurring.

Finally, we sort in descending order the list of candidates according to eval-
uations obtained by (8) in hope to get on the top the true (actually, maximum-
likelihood) solution. In order not to skip that (correct) solution we store and
display a certain part of the sorted list for further analysis such as human inspec-
tion.

4.3. Experiments with the implemented procedure and some

comments. We have carried out our experiments under the assumption that
the plaintext source is ordinary English with an alphabet consisting of 26 capi-
tal Roman letters augmented by “space”, and all presented in the extended 8-bit
ASCII code.

The “knowledge” about that source embedded in our computer program is
the list L of the most frequent 4795 English four-grams (sorted by the frequency of
their occurrence). Our statistics was made using two large English texts on social
and natural topics. All letters were transformed to upper case, and the other
characters are ignored. The statistics is slightly cropped down in order to avoid
the selection of too many rare events, that is only four-grams with occurrences
greater than 2 have been considered.

Our experiments show that the number of candidates for typical plaintext
block is in the range 300 − 500 which confirms the correctness of the estimate of
its expected value (see (7)) because |L| = 4795 is slightly over 212. Also, the time
complexity per block of A is of order 223, while for A′ it is of order 221.

Plaintext Recovery in DES-like Cryptosystems . . . 267

Table 2. Some experiments: rank of solution / all candidates

true plaintext prefix rank / candidates
CH WE NO WHI 1/351
RITICISM T C 1/415
SCIENTIF IF 1/295
S REFORM IOU 1/315
MENTION TO 1/308
THE PAR ING 1/372
CTION OF FLE 1/332
QUESTION 1/370
HEART S THE 6/544

In Table 2 we present summarized results of some experiments with the
program. The last row of the table shows that the true plaintext is not always on
the top (the reason in this particular case is that the list of candidates includes
as well other very plausible phrases like “BASE OF”, “S NOTION”, “EASE ON”).
So, in general the process of plaintext recovery requires an expert’s decision to
choose the suitable candidate (in most cases to confirm the first rank plaintext),
and hence to provide a secure prefix for the next block.

In the worst possible case the correct plaintext may be absent from the list
of potential candidates (from a certain block all decipherments look meaningless),
for instance when the embedded “knowledge” is not compatible with that plain-
text. But these very rare cases could be repaired by the expert guessing the right
phrase. Another possible strategy to overcome this problem is “to jump over the
gap” and try to break the next block using a relaxation variant of the procedure
which ignores the influence of the prefix in (8). At a later stage the cryptanalyst
would go back and fill up the gap on the basis of newly yielded context of the
message.

5. Conclusion. In this paper, we have pointed out the feasibility of
breaking DES-like cryptosystems in which the set of possible outputs of each
S-box is a proper affine subspace of its ambient binary space, in particular the
extreme case of those having S-boxes with a parity check embedded in them. Also,
we have presented a very efficient backtracking search algorithm (in two variants)
performing that plaintext recovery attack on a specific example of modified S-
boxes in DES/Triple-DES (ECB mode) and verified it experimentally for a typical
English plaintext source. But evidently this algorithm can be applied with the
same strength to any plaintext source possessing a sufficiently large redundancy,
for instance to high order ergodic Markov sources of relatively low entropy (which

268 Vesela Angelova, Yuri Borissov

can be applied for approximating adequately the natural languages [16]). In this
way, we show that while such S-boxes do not look very weak at first glance,
and even satisfy several of the common design criteria, they make the cipher
completely insecure, allowing to retrieve the plaintext in a ciphertext-only attack
scenario.

Notice as well that plaintext block length of the aforementioned block
ciphers (eight characters) allows the frequency tables of four-grams, which are
relatively easy to collect, store and access, to be employed in a convenient and
efficient way. However, for larger block lengths (as in the case of modified Lucifer,
for instance) the described approach has no efficient straightforward extension.

This cryptanalytic algorithm can be easily adjusted to the other block
cipher modes of operation, except the CFB and OFB modes with a partial block
as feedback (see, e.g., [19]). And its working depends neither on the length of
the secret key nor on the key itself (in the case of arbitrary DES-like system,
of course, the number of rounds). However, the strength of our attack depends
on the way the round and initial/final permutation act on each other, which
leads to a conclusion (somehow in contrast to the common belief) that initial and
final permutations in DES do have a cryptographic significance for some attack
scenarios, such as that studied in this paper.

Acknowledgments. This work was partially supported under the Bul-
garian NSF grant I01/0003. Both authors would like to thank Svetla Nikova and
the anonymous reviewers for helpful comments which substantially improved the
manuscript. Yuri Borissov wishes to thank FWO-Belgium for support during his
visit at Katholieke Universiteit Leuven in October 2012.

R EFER EN CES

[1] Shannon C. E. Communication theory of secrecy systems. Bell System

Technical Journal, 28 (1949), No 4, 656–715.

[2] Sorkin A. Lucifer, a cryptographic algorithm. Cryptologia, 8 (1984), No 1,
22–41.

[3] Rijmen, V., B. Preneel. A family of trapdoor ciphers. In: Proceedings of
the FSE’97, Zurich, 1997, 139–148.

[4] Rijmen, V., B. Preneel, E. De Win. On weaknesses of non-surjective
round functions. Des. Codes Cryptography, 12 (1997), No 3, 253–266.

Plaintext Recovery in DES-like Cryptosystems . . . 269

[5] Paterson K. G. Imprimitive permutation groups and trapdoors in iterated
block ciphers. In: Proceedings of the FSE’99, LNCS, Vol. 1636, Springer,
1999, 201–214.

[6] Oliynykov R. Cryptanalysis of symmetric block ciphers based on the Feistel
network with non-bijective S-boxes in the round function. Cryptology ePrint
Archive, 2011, #685.

[7] Konheim A. G. Computer Security and Cryptography. John Wiley & Sons,
Inc., New Jersey, 2007.

[8] Pless V. Introduction to the theory of error-correcting codes. John Wiley
& Sons, Inc., New York, Third edition, 1998.

[9] Massey J. L. An introduction to contemporary cryptology. Proceedings of

the IEEE, 76 (1988), No 5, 533–549.

[10] Diffie W., M. Hellman. Privacy and authentication: an introduction to
cryptography. Proceedings of the IEEE, 67(1979), No 3, 397–427.

[11] Coppersmith D. The Data Encryption Standard (DES) and its strength
against attacks. IBM Journal of Research and Development, 30 (1993),
243–250.

[12] Schneier B. Applied cryptography. John Wiley & Sons, Inc., New Jersey,
second edition, 1996.

[13] Knuth D. E. The art of computing programming. Addison-Wesley, 1968.

[14] Diffie W., M. Hellman. Exhaustive cryptanalysis of the NBS Data En-
cryption Standard. Computer, 10 (1977), No 6, 74–84.

[15] Hellman M. An extension of the Shannon theory approach to cryptography.
IEEE Trans. on Information Theory, 23 (1977), No 3, 289–294.

[16] Welsh D. Codes and cryptography. Oxford University Press Inc., New York,
1988.

[17] Griffin A. Solving XOR plaintext strings with the Viterbi algorithm. Cryp-

tologia, 30 (2006), No 3, 258–265.

[18] Griffin A. Solving the running key cipher with the Viterbi algorithm. Cryp-

tologia, 30 (2006), No 4, 361–367.

[19] www.en.wikipedia.org/wiki/Block_cipher_mode_of_operation

270 Vesela Angelova, Yuri Borissov

Vesela Angelova
Software Engineering Department
Institute of Mathematics
and Informatics
Bulgarian Academy of Sciences
Acad. G. Bontchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: vaa@math.bas.bg

Yuri Borissov
Department Mathematical
Foundations of Informatics
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bontchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: youri@math.bas.bg

Received October 16, 2013
Final Accepted January 22, 2014

Appendix. Let T P denote a permutation acting on components of a
64-bit block as a composition of two permutations identical to P−1, each acting
separately on the left and right halves of the block. Then the equation (6) can be
rewritten as:

(9) (YlYr) = T P(swap(IP(C))) ⊕ T P(IP(P)).

Using the concrete settings of the U.S. Federal Standard FIPS-46, it is easy to
obtain the superposition T P ◦ IP. Thus equation (9) which gives the way of
constituting the bits of nibbles S′

i, and S
′′

i , 1 ≤ i ≤ 8 by the corresponding
bits of guessed plaintext P = (p1, p2, . . . p64) (with an accuracy up to a certain
translation for the given ciphertext C), implies the following:

S′

1 = (60 , 62 , 14 , 16), S
′′

1 = (59 , 61 , 13 , 15),

S′

2 = (28 , 40 , 50 , 54), S
′′

2 = (27 , 39 , 49 , 53),

S′

3 = (6 , 4 , 24 , 18), S
′′

3 = (5 , 3 , 23 , 17),

S′

4 = (56 , 38 , 52 , 58), S
′′

4 = (55 , 37 , 51 , 57),

S′

5 = (2 , 20 , 64 , 42), S
′′

5 = (1 , 19 , 63 , 41),

S′

6 = (34 , 32 , 44 , 46), S
′′

6 = (33 , 31 , 43 , 45),

S′

7 = (8 , 36 , 22 , 10), S
′′

7 = (7 , 35 , 21 , 9),

S′

8 = (26 , 48 , 12 , 30), S
′′

8 = (25 , 47 , 11 , 29),

where for the sake of simplicity only the indices of the plaintext bits are present.
Finally, taking into account the positions of plaintext bytes P1, P2, . . . P8, Table
1 can be easily derived.

