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A REFINEMENT OF SOME OVERRELAXATION

ALGORITHMS FOR SOLVING A SYSTEM

OF LINEAR EQUATIONS∗

Nikolay Kyurkchiev, Anton Iliev

Abstract. In this paper we propose a refinement of some successive over-

relaxation methods based on the reverse Gauss–Seidel method for solving a

system of linear equations Ax = b by the decomposition A = Tm−Em−Fm,

where Tm is a banded matrix of bandwidth 2m + 1.

We study the convergence of the methods and give software implemen-

tation of algorithms in Mathematica package with numerical examples.
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1. Introduction. Let us consider the linear system:

(1) Ax − b = 0.

Let A = (aij) be an n×n matrix and Tm = (tij) be a banded matrix of bandwidth
2m + 1 defined as:

tij =

{

aij , |i − j| ≤ m,

0 otherwise.

Let

Tm =



















a11 · · · a1,m+1

...
. . .

. . .

am+1,1
. . . an−m,n

. . .
. . .

...
an,n−m · · · an,n



















,

Em =















−am+2,1
...

. . .

−an,1 · · · −an,n−m−1















and

Fm =















−a1,m+2 · · · −a1,n

. . .
...

−an−m−1,n















.

In [15] Salkuyeh considers the following overrelaxation method, based on Gauss–
Seidel (forward algorithm) [10]–[12]:

(2) xk+1 = (Tm−ωEm)−1[ωFm+(1−ω)Tm]xk+(Tm−ωEm)−1ωb, k = 0, 1, 2, . . . ,

where A = Tm − Em − Fm.
In [22] the following iteration scheme, based on the reverse Gauss–Seidel

method [1] is proposed:

(3)
xk+1 = (Tm − ωFm)−1[ωEm + (1 − ω)Tm]xk + (Tm − ωFm)−1ωb

= Bm
SOR1NM2x

k + cb, k = 0, 1, 2, . . . .
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Henceforth, we shall call the above scheme the Successive Overrelaxation method
with 1 parameter, based on (NM2) – (SOR1NM2).

In [1] D. Faddeev and V. Faddeeva pointed out that such iteration processes
in which cycles studied in Gauss–Seidel (forward and reverse) algorithms alter-
nate.

The following theorem holds true:

Theorem A [22]. Let A and Tm be a strictly diagonally dominant (SDD)
matrix. Then for every 0 < ω < 2 the (SOR1NM2) method is convergent for any
initial guess x0.

Salkuyeh in [17] proposed the following overrelaxation method, based on
Gauss–Seidel (forward algorithm):

(4) xk+1 = (Tm−γEm)−1[(1−ω)Tm +(ω−γ)Em +ωFm]xk +(Tm −γEm)−1ωb,

k = 0, 1, 2, . . . .

In [22] Zaharieva and Malinova published the following iteration scheme,
based on the reverse Gauss–Seidel method:

(5)
xk+1 = (Tm − γFm)−1[(1 − ω)Tm + (ω − γ)Fm + ωEm]xk + (Tm − γFm)−1ωb,

= Bm
SOR2NM2x

k + c1b, k = 0, 1, 2, . . . .

We shall call the above scheme the Successive Overrelaxation method with 2 pa-
rameters, based on (NM2) – (SOR2NM2).

Definition. A is an M - matrix if aij ≤ 0 for i 6= j, A is non-singular
and A−1 ≥ 0.

The following theorem holds true:

Theorem B [22]. If A is an M -matrix and 0 ≤ γ < ω ≤ 1 with ω 6= 0,
then the (SOR2NM2) method is convergent, i.e.:

ρ (Bm
SOR2NM2) < 1.

For other results, see [3]–[6], [8], [9], [21], and [23].

2. Main results. In this paper, following the ideas given in [20] and
[7], we propose a refinement of the methods (SOR1NM2) and (SOR2NM2).
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I. Let x1 be an initial approximation for the solution of system (1) and

b1
i =

n
∑

j=1

aijx
1
j , i = 1, 2, . . . , n.

After kth step we have: bk+1

i =

n
∑

j=1

aijx
k+1

j , i = 1, 2, . . . , n.

Now we refine this obtained solution as bk+1

i → bi.

Assume that x̃k+1 =
(

x̃k+1

1
, . . . , x̃k+1

n

)

is good approximation for the so-

lution of system (1), i.e., x̃k+1 → x, where x is the exact solution of system (1)

and bi =
n

∑

j=1

aij x̃
k+1

j , i = 1, 2, . . . , n.

Since all x̃k+1
t are unknown, we define them as follows, x̃k+1 = xk+1 +

bk+1 − b.

By the decomposition

ωA = (Tm − ωFm) − [(1 − ω)Tm + ωEm]

we have

(6)

[(Tm − ωFm) − [(1 − ω)Tm + ωEm]]x = ωb

(Tm − ωFm)x = [ωEm + (1 − ω)Tm]x + ωb

(Tm − ωFm)x = [Tm − ωFm − ωA]x + ωb

(Tm − ωFm)x = (Tm − ωFm)x + ω(b − Ax)

x = x + ω(Tm − ωFm)−1(b − Ax)

i.e.

x̃k+1 = xk+1 + ω(Tm − ωFm)−1(b − Axk+1).
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For the method (3) we have

(7)

xk+1 = (Tm − ωFm)−1[ωEm + (1 − ω)Tm]xk + (Tm − ωFm)−1ωb+

+ (Tm − ωFm)−1
[

ωb − ωA
[

(Tm − ωFm)−1[ωEm + (1 − ω)Tm]xk+

+ (Tm − ωFm)−1ωb
]]

=
[

(Tm − ωFm)−1[ωEm + (1 − ω)Tm]
]2

xk+

+
[

I + (Tm − ωFm)−1[ωEm + (1 − ω)Tm]
]

(Tm − ωFm)−1ωb

= Bm
RSOR1NM2x

k + c2b, k = 0, 1, 2, . . . ,

We shall call the above scheme the Refinement of (SOR1NM2) method –
(RSOR1NM2).

The following theorem holds true:

Theorem 1. Let A be a strictly diagonally dominant (SDD) matrix.

Then for any natural number m < n the (RSOR1NM2) method is conver-
gent for any initial guess x0.

P r o o f. Assuming x is the real solution of (1), as A is a SDD matrix by
Theorem A, a (SOR1NM2) method is convergent.

Let xk+1 → x. Then

‖x̃k+1 − x‖∞ ≤ ‖xk+1 − x‖∞ + ω‖(Tm − ωFm)−1‖∞‖(b − Axk+1)‖∞.

From the fact ‖xk+1 − x‖∞ → 0, we have ‖(b − Axk+1)‖∞ → 0.

Therefore, ‖x̃k+1 − x‖∞ → 0 and a (RSOR1NM2) method is conver-
gent. �

II. By the decomposition

ωA = (Tm − γFm) − [(1 − ω)Tm + (ω − γ)Fm + ωEm]
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we have

(8)

[(Tm − γFm) − [(1 − ω)Tm + (ω − γ)Fm + ωEm]]x = ωb

(Tm − γFm)x = [(1 − ω)Tm + (ω − γ)Fm + ωEm]x + ωb

(Tm − γFm)x = [Tm − γFm − ωA]x + ωb

(Tm − γFm)x = (Tm − γFm)x + ω(b − Ax)

x = x + ω(Tm − γFm)−1(b − Ax)

i.e.

x̃k+1 = xk+1 + ω(Tm − γFm)−1(b − Axk+1).

For the method (5) we have

(9)

xk+1 = (Tm − γFm)−1[(1 − ω)Tm + (ω − γ)Fm + ωEm]xk+

+ (Tm − γFm)−1ωb + (Tm − γFm)−1
[

ωb − ωA
[

(Tm − γFm)−1[(1 − ω)Tm+

+ (ω − γ)Fm + ωEm]xk + (Tm − γFm)−1ωb
]]

=
[

(Tm − γFm)−1[(1 − ω)Tm + (ω − γ)Fm + ωEm]
]2

xk+

+
[

I + (Tm − γFm)−1[(1 − ω)Tm + (ω − γ)Fm + ωEm]
]

(Tm − γFm)−1ωb

= Bm
RSOR2NM2x

k + c3b, k = 0, 1, 2, . . . ,

We shall call the above scheme the Refinement of (SOR2NM2) method –
(RSOR2NM2).

The following theorem holds true:

Theorem 2. Let A be an M -matrix. Then for any natural number m < n

the (RSOR2NM2) method is convergent for any initial guess x0.

The proof follows the ideas given in [21], and will be omitted.

Remark. If the (SOR1NM2) method is convergent, then the (RSOR2NM2)
method is also convergent.

Evidently, the (RSOR2NM2) method yields considerable improvement in
the rate of convergence for iterative method (SOR2NM2).
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III. We define the new Refinement Symmetric Successive Overrelaxation
Nekrassov–Mehmke method (RSSOR2NM2) consists the cyclic procedures

xk+1/2 =
[

(Tm − γEm)−1[(1 − ω)Tm + (ω − γ)Em + ωFm]
]2

xk + αb,

xk+1 =
[

(Tm − γFm)−1[(1 − ω)Tm + (ω − γ)Fm + ωEm]
]2

xk+1/2 + βb.

This gives the recurrence

xk+1 = Bm
RSSOR2NM2x

k + δb,

where

Bm
RSSOR2NM2 =

[

(Tm − γEm)−1[(1 − ω)Tm + (ω − γ)Em + ωFm]
]2

×

×
[

(Tm − γFm)−1[(1 − ω)Tm + (ω − γ)Fm + ωEm]
]2

.

3. Numerical example. Let A is an M–matrix (example by Salkuyeh
[16]):









4 −2 −1 −2
−1 5 −5 −1
−2 −1 9 −1
−1 −1 −1 5









.

Let γ = 0.5, ω = 0.9.
For algorithms (5) and (9) and m = 1 we have (see Figure 2):

ρ
(

B1
RSOR2NM2

)

= 0.4927 < 0.7019 = ρ
(

B1
SOR2NM2

)

< 1.

For m = 2 we obtain:

ρ
(

B2
RSOR2NM2

)

= 0.245 < 0.495 = ρ
(

B2
SOR2NM2

)

< 1.

These results show that the method (9) is more appropriate in this case.

For an implementation of algorithms (5) and (9) in the Mathematica pack-
age ([19]), see Figure 1. The results for m = 1 are shown, see Figure 2.

For other results, see [2], [13], and [14]. For other iteration schemes with
increased speed of convergence, see [18].

Acknowledgements. The authors would like to thank the anonymous
reviewers for their helpful and constructive comments that contributed to improv-
ing the final version of the paper.
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Fig. 1
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Fig. 2



254 Nikolay Kyurkchiev, Anton Iliev

R EFER EN CES

[1] Faddeev D., V. Faddeeva. Numerical Methods of Linear Algebra. 2nd
ed., Fizmatgiz, M., 1963.

[2] Golev A., A. Malinova, D. Zaharieva. Software implementation of
modifications of iterative algorithms for solving linear systems of equations.
Int. J. of Pure and Appl. Math., 76 (2012), No 4, 489–500.

[3] Iliev A., N. Kyurkchiev. Nontrivial Methods in Numerical Analysis: Se-
lected Topics in Numerical Analysis. LAP LAMBERT Acad. Publ., Saar-
brucken, 2010.

[4] Iliev A., N. Kyurkchiev, M. Petkov. On some modifications of the
Nekrassov method for numerical solution of linear systems of equations.
Serdica Journal of Computing, 3 (2009), No 4, 371–380.

[5] Jin X., Y. Wei, H. Tam. Preconditioning technique for symmetric M-
matrices. Calcolo, 42 (2005), 105–113.

[6] Kinashi Y., H. Sawami, H. Niki. An iterative method applied to nonsym-
metric linear systems. Japan J. Indust. Appl. Math., 13 (1996), 235–241.

[7] Kyurkchiev N. Refinement of some iterative algorithms for solving sys-
tem of linear equations. Compt. rend. Acad. bulg. Sci., 65 (2012), No 12,
1657–1664.

[8] Kyurkchiev N., M. Petkov, A. Iliev. A modification of Richardson
method for numerical solution of linear system of equations. Compt. rend.
Acad. bulg. Sci., 61 (2008), No 10, 1257–1264.

[9] Li W. A note on the preconditioned Gauss–Seidel (GS) method for linear
systems. J. Comput. Appl. Math., 182 (2005), 81–90.

[10] Mehmke R. On the Seidel scheme for iterative solution of linear system of
equations with a very large number of unknowns by successive approxima-
tions. Math. Sb., 16 (1892), No 2, 342–345 (in Russian).

[11] Mehmke R., P. Nekrassov. Solution of linear system of equations by
means of successive approximations. Math. Sb., 16 (1892), 437–459 (in
Russian).



A Refinement Of Some Overrelaxation Algorithms . . . 255

[12] Nekrassov P. Determination of the unknowns by the least squares when
the number of unknowns is considerable. Math. Sb., 12 (1885), 189–204 (in
Russian).

[13] Popova E. Connectivity to Interval Libraries filib++ and C-XSC. In: Nu-
merical Validation in Current Hardware Architectures (Eds A. Cuyt, W.
Kramer, W. Luther, P. Markstein), Lecture Notes in Computer Science,
Vol.5492 , Springer Berlin/Heidelberg, 2009, 117–132.

[14] Popova E., L. Kolev, W. Kramer. A solver for complex-valuated para-
metric linear systems. Serdica Journal of Computing, 4 (2010), No 1, 123–132.

[15] Salkuyeh D. A generalization of the SOR method for solving linear system
of equations. J. Appl. Math., 4 (2007), No 15, 31–38.

[16] Salkuyeh D. Generalized AOR method for solving system of linear equa-
tions. Australian J. of Basic and Appl. Sci., 5 (2011), No 3, 351–358.

[17] Salkuyeh D. Generalized Jacobi and Gauss–Seidel methods for solving lin-
ear system of equations. Numer. Math. A J. of Chinese Univ. (English Ser.),
16 (2007), No 2, 164–170.

[18] Soleymani F. A new method for solving ill–conditioned linear systems.
Opuscula Math., 33 (2013), No 2, 337–344.

[19] Trott M. The MATHEMATICA GuideBook for Numerics. Springer Sci-
ence+Business Media, Inc., 2006.

[20] Vatti V., G. Gonfa. Refinement of generalized Jacobi (RGJ) method for
solving system of linear equations. Int. J. Contemp. Math. Sci., 6 (2011), No
3, 109–116.

[21] Zaharieva D., N. Kyurkchiev, A. Iliev. Generalized Nekrassov-
Mehmke procedures for solving linear system of equations. Compt. rend.
Acad. bulg. Sci., 64 (2011), No 4, 487–496.

[22] Zaharieva D., A. Malinova. On some (AOR) iterative algorithms for
solving system of linear equations. Plovdiv Univ. “P. Hilendarski” Sci. Works
– Math., 38 (2011), No 3, 133–144.

[23] Zaharieva D., N. Kyurkchiev, A. Iliev. A SOR-Nekrassov-Mehmke
procedure for numerical solution of linear system of equations. Plovdiv Univ.
“P. Hilendarski" Sci. Works – Math., 37 (2010), No 3, 121–134.



256 Nikolay Kyurkchiev, Anton Iliev

Nikolay Kyurkchiev

Faculty of Mathematics, Informatics

and Information Technology

Paisii Hilendarski University of Plovdiv

24, Tsar Assen Str.

4000 Plovdiv, Bulgaria

e-mail: nkyurk@uni-plovdiv.bg

and

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: nkyurk@math.bas.bg

Anton Iliev

Faculty of Mathematics, Informatics

and Information Technology

Paisii Hilendarski University of Plovdiv

24, Tsar Assen Str.

4000 Plovdiv, Bulgaria

e-mail: aii@uni-plovdiv.bg

and

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: anton.iliev@gmail.com

Received September 16, 2013

Final Accepted November 7, 2013


