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SIMULATION AND ROBUST MODIFICATIONS OF

ESTIMATES IN BRANCHING PROCESSES

V. Stoimenova, D. Atanasov, N. Yanev1

This study is focused on the comparison and modification of different es-
timates arising in the branching processes. Simulations of models with or
without migration are put through. Due to the complexity of the computa-
tions the algorithms are designed with the language of technical computing
MATLAB. Using the simulations, estimates of the offspring mean of the gen-
erated processes are calculated. It is well known in the literature that under
certain conditions the asymptotic distribution of the estimates is proved to
be normal. Using the asymptotic normality a modified method of maximum
likelihood is proposed. The aim is to obtain trimmed maximum likelihood
estimates based on several sample paths with the same number of genera-
tions. Thus in a natural way the observations, inconsistent with the aprior
information about the asymptotic normality are excluded from the model.
The computation of the standard error allows the comparison of different
types of estimates.

1. Introduction

1.1. The problem

Our work is focused on two main topics, which may be considered separately,
but are still in close relationship. The first one is to show how robust statistics
can be used for estimating the parameters of some classes of branching processes.
As far as we know, this has not been done before, so we have decided to start
with the simplest case - the Bienayme-Galton-Watson process and to show that
this estimation is reasonable and in some cases may be preferred. The proposed

1This paper is supported by National Foundation for Scientific Investigation - Bulgaria, grant
MM-1101/2001 and PRO-ENBIS: GTC1-2001-43031
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weighted least trimmed estimate (WLTE) may be considered as a generalization
of the maximum likelihood and needs complex numerical computation. For eval-
uating its reliability we have carried out several simulations. Here appears the
second topic - the development of a software package for simulation and estima-
tion of branching processes in an appropriate computing environment.

Imagine that we have the following situation: one biologist has to find out
what is the average number of children of a bacterium of some specific species. He
decides that its reproduction law follows the concept of the branching processes
theory. So, if he has ten petri (the small dishes used in biology and chemistry)
with bacteria, he will get from each of them after an appropriate period of time
ten numbers - the estimates of the average number of children. They all will be
different. Should he take their average? And what would happen, if some of the
observed cases are not measured correctly, or - if we have outliers? These are
questions we are trying to answer in the simplest case.

1.2. Some basic results about the classical estimation of a Bienayme-
Galton-Watson process

In this work we consider the estimations of a very simple nonergodic model - the
Bienayme-Galton-Watson (BGW) process.We will use the following notation:

Let {Xtj , t = 0, 1, 2, · · · , j = 0, 1, 2, · · ·} is a double array of independent ran-
dom variables, distributed according to the reproduction law {pk, k = 0, 1, 2, · · ·}.
We write

Z0 = 1

Zt+1 =
Zt∑

j=1

Xi,j, t = 0, 1, 2, · · ·

in the sense that the sequence {Zt} given by this recursion has the same distri-
bution as a BGW process (a sum from 1 to zero is given zero).

Let us also denote by

m =
∞∑

k=1

kpk = EZ1

the mean number of children per individual or reproduction mean and by

σ2 =
∞∑

k=1

k2pk − m2 = V arZ1

the reproduction variance.
Some of the unusual features arising in the context of the nonergodic model

estimation are (see [6]):
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• inconsistent maximum likelihood estimates

• nonestimability of many parameters

• nonnormal limit laws with classical type of norming

• conditional asymptotic inference and so on.

If one adopts the Bayessian outlook many of these problems become less
important, but are usually replaced by computational difficulties.

Let us pay our attention to the concept of consistency: In classical i.i.d. theory
consistency is an important requirement of an estimate. If we have a large sample,
any reasonable estimate should be close to the true parameter. In the case of
stochastic processes, the large sample is often obtained by letting the observation
time get large, i.e. by looking at a whole path of the process. Unless p0 = 0 we
can not find any consistent estimate, based on a single infinite realization of a
BGW process. The problem is that the process may become extinct, in which
case there is not enough information in a path to tell two distinct probability
measures apart. In other words even when the observation time becomes large
we may not actually make a large number of observations.

A fundamental difference between the branching process case and the i.i.d.
model is the structure of the tail σ-field. In the i.i.d case it is trivial (Kol-
mogorov’s 0-1 law) but for a branching process it contains the extinction set
B = {Zt = 0 for some t}, which has nonzero probability whenever p0 > 0. Thus
tail-measurable random variables will not in general be trivial. Since consistency
of a sequence of estimates is a tail property it can only be achieved in models
with trivial tail σ-fields. Such models are often called ergodic.

It is proved that we may be able to estimate the offspring mean consistently
on the explosion set A = B̄. In our work we will use the following two estimates:

m̄t =

{ Zt

Zt−1
, Zt−1 > 0

1, Zt−1 = 0
,

known as Lotka-Nagaev estimate and

m̂t =
Z1 + Z2 · · · + Zt

Z0 + Z1 + · · · + Zt−1
,

known as Harris estimate.
The following results are well-known (see f.e. [6]) and describe the asymptotic

behaviour of the estimates in the supercritical case. The Lotka-Nagaev estimate is
obtained by the conditional method of moments and has the following properties:
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Theorem 1. Let 1 < m < ∞ and Z0 > 0. Then as t → ∞
a) m̄t → m a.s. on the explosion set A.
b) if 0 < σ < ∞ then

√
Zt

σ
(m̄t − m) → N(0, 1)

in distribution on A.
The Harris estimate is a nonparametric maximum likelihood estimate, for

which we have the following :
Theorem 2. Let 1 < m < ∞ . Then as t → ∞, conditionally upon

nonextinction (set A)
a) m̂t → m a.s. , i.e. m̂t is strongly consistent.
b) Em̂t < m , Em̂t → m, i.e. m̂t underestimates m, but is asymptotically

unbiased.
c) if 0 < σ < ∞ then

√
Ut

σ
(m̂t − m) → N(0, 1)

in distribution, where Ut = Z0 + · · · + Zt−1.

2. Statistical model

A robust extension of the Maximum Likelihood Estimates (MLE) that pos-
sesses a high breakdown point was introduced by Vandev and Neykov (1993).
This modification considers the likelihood of individual observations as residuals
and applies the basic idea of the Least Trimmed Squares (LTS) estimates of
Rousseeuw (1984) using appropriate weights.

Generally speaking, Vandev and Neykov (1998) defined the WLTE(k) esti-
mates, θ̂, for the unknown parameter θ ∈ Θp as

θ̂ = argmin
θ∈Θp

k∑

i=1

wifν(i) (θ) ,

where fν(1) (θ) ≤ fν(2) (θ) ≤ · · · ≤ fν(n) (θ) are the ordered values of fi =
− log ϕ (xi, θ) at θ, ϕ (xi, θ) is a probability density, θ is an unknown param-
eter and ν = (ν(1), · · · , ν(n)) is the corresponding permutation of the indices,
which may depend on θ. The weights wi ≥ 0, i = 1, · · · , k, are such that an index
k = max {i : wi > 0} exists.

Vandev and Neykov (1998) proved that the finite sample breakdown point
of the WLTE(k) estimates is not less than (n − k)/n if n ≥ 3d, (n + d)/2 ≤
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k ≤ n − d, when Θp is a topological space and the set F = {fi(θ), i = 1, · · · , n}
is d-full. A finite set F of n functions is called d-full, according to Vandev
(1993), if for each subset of cardinality d of F , the supremum of this subset is
a subcompact function. A real valued function g (θ) is called subcompact, if
its Lesbegue sets Lg (C) = {θ : g (θ) ≤ C} are compact for any constant C (see
Vandev and Neykov, 1993).

A simpler and easier to apply criterion for subcompactness is given in the
following theorem (see [2]):

Theorem 3. The real valued continuous function g (θ), defined on an open
subset of D ∈ Rn, is subcompact if and only if for any sequence θi → θ0 where
θ0 belongs to the boundary of D, g (θi) → ∞ when i → ∞.

The likelihood function over 200 observations for different values of the trimming factor

based on normal subcompact likelihood curves.

For the sake of completeness, we draw the attention to the fact that the finite
sample breakdown point of an estimator T , at the finite sample X = {xi; i =

1, · · · , n}, is defined as the largest fraction m/n for which the supX̃

∥∥∥T (X)−T
(
X̃

)∥∥∥
is finite, where X̃ is a sample obtained from X by replacing any m of the points
in X by arbitrary values (see Hampel et al. 1986, Rousseeuw and Leroy, 1987).

Thus, if one wants to study the breakdown point of the WLTE(k) estimates
for a particular distribution, one has to find out the index d of fullness of the
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corresponding set of log-density functions.

We will apply this concept for estimating the offspring mean in some discrete
time branching processes. This study is focused on the well known estimates of
Lotka-Nagaev and Harris. Let us suppose that we have a set of sample paths of
a branching process. Using this set and the estimates mentioned above we can
obtain a number of values for the offspring mean (for any sample path we have
one offspring mean estimate). It is well known that, under certain conditions,
these values are asymptotically normally distributed. If these conditions are not
satisfied the estimated value is far from the real value of the offspring mean.

The aim is to apply the theory of robustness in order to eliminate the cases,
which do not satisfy these conditions, and to obtain an estimate of the offspring
mean closer to the real value.

The study of the robustness of the estimates of the offspring mean will be
based on the breakdown properties of the WLT (k) estimates.

Let us define a robust estimate of offspring mean over the set of sample paths
S = {S1, · · · , Sn} as

M̄ = argmin
µ∈R

k∑

i=1

−wif(Est(Sν(i), µ)),(1)

where k is the trimming factor, f(x) is the logarithm of the density function of
the standard normal distribution, ν is a permutation of the indexes, such that
f(Est(Sν(1), µ)) ≥ f(Est(Sν(2), µ)) ≥ · · · ≥ f(Est(Sν(n), µ)).

With Est(Si, µ) we note the transformation of the offspring mean estimate,
which gives us asymptotic normality.

In the case of Lotka - Nagaev estimate Est(Si, µ) can be presented as follows:

Est(Si, µ) =

√
Zi

t

σ
(m̄i

t − µ), µ ∈ R

where m̄i
t is Lotka-Nagaev estimate for the i−th sample path . Here Z i

t are
the number of individuals in t-th generation in the sample path Si. The fixed
parameter σ represents the variance of the offspring distribution.

By analogy, in the case of Harris estimate, we have

Est(Si, µ) =

√
U i

t

σ
(m̂i

t − µ), µ ∈ R

where U i
t = Zi

0 + · · · + Z i
t−1.
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Proposition. The estimate M̄ defined with (1) exists and its breakdown
point is not less than (n − k)/n if n ≥ 3, (n + 1)/2 ≤ k ≤ n − 1.

P r o o f. To prove this proposition we have to find out the index of fullness of
the set F = {f(Est(Si, µ)), i = 1, · · · , n}.

Let us consider the function

g(µ) = f(Est(Si, µ))

for a given sample path Si. We have

g(µ) = log
1√
2π

− Est(Si, µ)

2
=

= log
1√
2π

− C2(m̄i
t − µ)2

2
,

where the constant C =

√
Zi

t

σ
in the case of Lotka - Nagaev estimate and C =

√
U i

t

σ

in the case of Harris estimate.

It is obvious that the function g(µ) satisfies the conditions of Theorem 3, so
it is subcompact on µ ∈ R. Therefore, according to Vandev (1993), the index
of fullness of the set F is equal to 1. That way the estimate M̄ exists and the
breakdown point is not less than (n − k)/n if n ≥ 3 and (n + 1)/2 ≤ k ≤ n − 1.

To calculate the value of the estimate, defined with (1), we will use an algo-
rithm considered in [1]. The algorithm can be summarized as follows:

1. Setting the initial value for the unknown parameter µ = µ0 ∈ (0,∞)

2. Sorting the observations according to the log-density function at the current
value of the unknown parameter : fν(1) (µ) ≤ fν(2) (µ) ≤ · · · ≤ fν(n) (µ)

3. The weights are equal to 1

4. Finding the value which satisfies (1)

5. If the exit conditions are not satisfied than go back to 2

The optimization algorithm in 4 is based on Golden Section search, parabolic
interpolation and Nelder-Mead simplex (direct search) method (see [9]).
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3. A system for simulation and estimation of branching processes

The software system BPEngine is developed to simulate different models branch-
ing processes and to estimate various parameters of these processes. The simula-
tion algorithm is based on the following definition of the branching process with
random migration (BPRM):

Let us have on the probability space three independent sets of integer-valued
random variables, i.i.d. in each set, X = {Xt,i}, η = {ηt,1, ηt,2}, I = {(It, I

0
t )}.

Then we define

Zt =




Zt−1∑

i=1

Xt,i + Mt




+

, t = 1, 2, · · · ,

Z0 ≥ 0,

where

Mt =





−
(ηt,1∑

i=1
Xt,i + ηt,2

)
, with probability p,

0, with probability q
It1{Zt−1>0} + I0

t 1{Zt−1=0}, with probability r.

Here p+q+r = 1 and Z0 is independent of X, η and I. As usual a+ = max(0, a).

We refer to the random variables, defined above, by the following way: Xt,i

is the offspring in the t-th generation of the i-th individual which exists in the
(t − 1)-th generation. In the t-th generation the following three situations are
possible:

(i) with probability p: ηt,1 families emigrate (family emigration) - that is ηt,1

individuals are eliminated in the (t− 1)-th generation (before reproduction) and
do not take part in the further evolution; additionally after the reproduction in
the (t − 1)- th generation ηt,2 individuals emigrate from the t-th generation who
can be chosen randomly from different families (individual emigration);

(ii) with probability q: the reproduction is according to the Bienayme -
Galton - Watson process (BGW), i.e. without any migration;

(iii) with probability r: state dependent immigration of new individuals is
possible - It individuals in the non-zero states or I0

t in the state zero.

Many particular cases can be obtained from this model. When q = 1 the
process Zt, t = 0, 1, · · · is a classical BGW process. When r = 1 and It and I0

t

are identically distributed , the process is a branching process with immigration
(BGWI). The process with p = 1, i.e. the process with pure emigration was
studied for ηt,2 = 0 a.s. by Vatutin (1977) and Kaverin (1990) and for ηt,1 = 0
a.s. by Grey (1988). Some results for the general process are obtained by Yanev
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and Yanev (1995, 1996, 1997). Models with nonhomogeneous migration, i.e.p =
pt, q = qt, and r = rt were investigated by Yanev and Mitov(1985).

In the program the simulation of each model is determined by some basic
parameters. They are the probability distributions of the random variables, which
the process consists of; the initial number of particles (the ancestors) Z0; the
length of the simulated path (the number of generations).

The system allows to use the most popular discrete distributions - Poisson,
Binomial, Geometric, Hypergeometric, Negative Binomial and Discrete Uniform.
The user can also give an arbitrary discrete distribution.

The system shows also a graphic presentation of the sample path. That
enables the user to have a visual idea about the progress of the process.

Further, the program estimates the basic parameters of the process. The
sample Z0, Z1, · · · , Zt, according to which the estimates are computed, consists
of generation sizes. In this way many of the well known non-parametric esti-
mates for different models branching processes are obtained. To compute other
estimates is possible to use other sets of observations like the three of gener-
ations, two successful generations Zt−1, Zt; the initial and another observation
Z0, Zt; censored observations ZL(n), ZL+1(n), · · · , ZL+T (n). For instance, for the
classical BGW and the BGW process with random number of ancestors we can
obtain the following estimates: Heyde, Lotka-Nagaev and Harris estimates for
the offspring mean, the estimates of the offspring variance when the mean is
known and when using the last three estimates; for the BGWI we have esti-
mates of the offspring mean and immigration mean, proposed first by Heyde and
Seneta (1972), which use the conditional least squares method and the estimates,
proposed by Wei and Winnicki (1998) and so on.

The system can be considered as a new development of the system presented
by Nicheva and Yanev (2000). The main difference is in the computing environ-
ment MATLAB which we have used. There are several reasons for this decision.
First of all, we wanted to coordinate our system with the existing procedures for
robust estimates. MATLAB gives us a very useful and flexible way for develop-
ment of such software. And the last, but not least reason - it is a very convenient
tool in the educational process in courses such as Stochastic and Branching pro-
cesses.

Finally, we would like to mention that all results from the system BPEngine
can be obtained very easily and quickly by the user.

In the future the system will be developed for more complicated models of
branching processes.
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4. Computational Results

To illustrate the advantages of the robust estimate, defined above, we did a
number of simulations of discrete time branching processes with known offspring
mean and variance. Then we used the computational procedure, considered in
[1], to obtain an estimated value of the offspring mean. This value is compared
with the average of Lotka - Nagaev (or Harris) estimates for the simulated set of
sample paths.

We set all the weights in (1) equal to 1. In this way we obtained a Least
Trimmed Estimate. As is shown in [1], in this case we have a faster and more
simple algorithm and a smaller value of the standard error of the estimate.

We generated 10 sample paths with 15 generations for offspring mean equal
to 0.8, 1.0, 1.2, 1.5 and 1.7. The trimming factor was set to 7. Than we calcu-
lated the average of the offspring mean estimates using Lotka - Nagaev or Harris
estimate. The obtained value was compared with the value calculated using (1).
The results are shown in the next two tables, where in columns Lotka-Nagaev
and Harris the average of estimations for corresponding estimates are shown
and the robust estimations are given in columns M̄LN and M̄Hr (with correspon-
dent standard error SE).

Offspring mean Lotka-Nagaev M̄LN SELN

0.8 1 2 ∞
1.0 1.02 1.200 0.2357
1.2 1.1174 1.1372 0.0477
1.5 1.3479 1.4940 0.0070
1.7 1.55 1.6993 0.0020

Table 1. Lotka - Nagaev estimates

Offspring mean Harris M̄Hr SEHr

0.8 0.3923 0.7586 0.1661
1.0 0.6137 1.0524 0.0690
1.2 0.7499 1.2244 0.0212
1.5 1.0521 1.5031 0.0049
1.7 1.3574 1.6996 0.0017

Table 2. Harris estimates

Let us first consider Table 1. The Lotka - Nagaev estimate uses only the last
two generations from the sample path and its value for extinct sample paths is
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artificially defined as 1. That way we do not have much information to use in
the robust estimate. This is seen in the first three rows where the offspring mean
is near 1. For instance, in the first row all sample paths have become extinct
and all Lotka-Nagaev estimates are equal to 1. Thus the idea of the asymptotic
normality cannot be applied. For the values of the offspring mean bigger than
1.2 the robust estimates are obviously closer to the real value.

The situation in Table 2 is completely different. Because of the fact that
the Harris estimate uses all the information from the sample path, we obtain
very good estimates even in the subcritical cases. Although in the subcritical
cases the extinction is almost sure, the estimates, based on some sample paths,
may be also considered to have an approximately normal distribution. The most
interesting result is in the third row where we are in the supercritical case, the
robust estimate is correct and very close to the true value, but the Harris estimate
is smaller than 1 and suggests a subcritical situation.

On Fig.1 the theoretical vs estimated offspring mean is compared.

Here is seen that the classical Harris estimate underestimates the offspring
mean, but the robust modification estimates the parameter correctly. This is
very important in the cases when the offspring mean is higher than 1, but Harris
estimate is less than 1.
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