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BULGARICA

APPLICATION OF TWO-PHASE REGRESSION TO

GEOTECHNICAL DATA

E. Stoimenova, M. Datcheva, T. Schanz1

A method for estimating a transition parameter in two-phase regression
is described. The two phases are fitted and simultaneously the transition
point is estimated. Practical application of the method is demonstrated on
the data for determining soil hydraulic properties.

1. Introduction

The method of two-phase regression needs to be used when the dependent variable
behaves differently in two intervals of the independent variable. Situations where
data (original or transformed) behave according to two or more different straight
line relationships are examined in many applications. It is known sometimes prior
to the experiment, that in the studied material, for example a structural change
occurs, when the independent variable exceed a given threshold.

The function of a two-phase regression may be presented as

f(X;α, β, γ) =

{

f1(X;α), X < γ
f2(X;β), X ≥ γ,

(1)

where γ is a transition point while functions f1 and f2 depend on the unknown
parameter vectors α and β. To ensure continuity of the function (1) the following
condition has to be satisfied: f1(γ;α) = f2(γ;β).
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In literature there are methods of determining a multi-phase linear regression
with known and unknown transition point [11], [3], [13]. The situation is relatively
simple when the threshold value (transition point), is known. However, it is rarely
the case of geotechnical data which is the subject of the present work.

In geotechnics, wetting fluid saturation in a porous media during drainage
cycle typically decreases with suction increase. The soil water characteristic curve
(SWCC) relates matric suction, ψ, or water pressure head, h to the water content
(i.e., either volumetric θ or gravimetric) or degree of saturation (see for example
[9]). The true relationship is basically unknown. The shape of the curve is
usually observed by experimental measurements for each particular soil. The
features of the SWCC are the volumetric water content at saturated condition,
θs, the residual water content and the air-entry/expulsion value. The air-entry
value, aev of the soil is the matric suction value where air enters into the soil
pores. Other definitions without stated physical meaning are also present in
the literature. Widely used in the soil mechanics literature is the geometrical
definition of the aev using a tangent to the fitted SWCC in its second phase.

Scientific knowledge of the desiccation process in soils indicates that if there is
no volume change then the volumetric water content, θ, will stay almost constant
for matric suction, ψ, up to the air entry value. This constant characterizes the
volumetric water content at saturated condition. For suction greater than the
aev the volumetric water content will decrease rapidly at first, but then level off
as the drying progresses. In theory the volumetric soil water content will actually
reach 0 when the water is fully removed from the soil. However, a full removal is
unlikely in reality, because there is always some water remaining in the pores that
leaves the soil more and more slowly. As a result, the process will approach only
asymptotically some residual water content. Further pressure increase may cause
soil deformation rather than water removal. Although the residual water content
does not correspond consistently to a recognized physical entity, we assume that
after this point the water removal behaves differently. In this paper we are not
interested in the process beyond this point since no much data is possible to be
obtained and therefore to be used in statistical modeling. Note that the popular
Brooks–Corey relationship [5] is also not recommended for saturation less than
residual water content [6]. There are however approaches in which the SWCC is
defined as a single curve [7], [8] and therefore no changes of the process behaviour
is assumed in such models. Consequently, model equations do not include aev as
a parameter.

In this paper, we consider a two-phase regression model of the SWCC with
unknown transition point. This extra parameter has to be estimated based on the
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process observations. Appropriate data transformations are used in order to meet
the regression assumptions and to make the regression linear. The modified least
squares method gives a solution by minimizing the residual sum of squares with
respect to the regression parameters as well as transition point parameter. The
procedure uses methods known earlier which, however, are significantly modified
to be appropriate for soil data. The approach is illustrated on a data set for sand
soil taken from the literature.

2. Model assumptions

The soil data for SWCC measurements is well recognized as at least two-phase
problem for the regression analysis. There are two more special features of the
SWCC data. The first one is that measurement of the water content is not equally
precise along the full matric suction range. One can observe that θ measurement
is more precise for small values and less precise for large values of ψ [14], [1].
Therefore a multiplicative error is more proper to be used. The distribution of the
error hereafter is assumed Log-normal. Second feature of the soil measurement is
that the regression of θ on ψ is nonlinear on the second phase for any type of soil.
Dealing with these problems is usually done by appropriate data transformations
[12], [4].

Let Y and X denote some transformations of θ and ψ, respectively, that force
data to meet the assumption for constant variation of Y at each X. Some of these
transformations also cause a linear dependence of Y on X in the second phase.
Useful transformations of SWCC data that represent data as a linear pattern are
discussed in [15].

Applying appropriate transformation the regression of Y on X is represented
by two intersecting straight lines, one being appropriate when ψ takes values
below and the other when ψ takes values above the air entry value.

In this paper we are assuming that:

1. Within each phase the observed Y values are normally distributed with
mean zero and constant standard deviation about the true regression line
(classical regression assumption);

2. The transition occurs in some known interval, but it is not known exactly
between which two observed X values it takes place.

The value of the saturated water content which gives us the first phase line is
considered both unknown (Section 3.1.) and known (Section 3.2.).

A difficulty arises if against the assumption 2 the intersection of the fitted
lines has an X coordinate falling outside the estimated interval for the transition
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point. The experimenter must then decide whether to attribute this to sample
errors, or an incorrect assumption about the location of the transition point, and
determine the appropriate procedure accordingly.

3. Two-phase linear model of the SWCC

Let (ψi, θi), i = 1, . . . , n, be n pairs of observations of matric suction and vol-
umetric water content, respectively. Let (Xi, Yi) be the set of the transformed
observations of θ and ψ, which make data to follow linear relationship. Here Xi

corresponds to the i-th observation of the matric suction, ψi, and Yi corresponds
to the observed volumetric water content at ψi. The independent observations
X1 . . . , Xn are assumed ordered and the measurement errors are uncorrelated
N(0, σ2).

The regression function of a two-phase SWCC can be presented by

Y =

{

τ, X < γ
β0 + β1X, X ≥ γ,

(2)

where β = (β0, β1) is the set of the unknown regression parameters of the second
phase, γ is the unknown transition point, and τ corresponds to the unknown satu-
rated volumetric water content. Here the parameter γ is the transformed value of
the aev by the same transformation applied to ψ, while τ is the transformed value
of the saturated volumetric water content by the same transformation applied to
θ.

The transition point satisfies the linear constraint

β0 + β1γ = τ(3)

to ensure the continuity of the solution in transition point.
Modeling a given phenomenon with two-phase linear regression consists in

estimating unknown parameters (in our case β = (β0, β1), τ and γ), based on the
observations. The independence, homoscedasticity, and normality of the errors
allow the use of an extension of ordinary least sum of squares regression method
for estimating the model parameters.

Adapting the least squares method, it is possible to gain estimates of α, β
and γ (if the last one is unknown), which minimize the sum

S2(τ, β, γ) =
∑

Xi<γ

(Yi − τ)2 +
∑

Xi≥γ

(Yi − β0 − β1Xi)
2,(4)

subject to (3). We allow not less then two observations in each phase in order to
proceed the minimization.
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The emphasis in this paper is on estimating and making inference about the
transition parameter γ.

3.1. Estimating the air-entry value

Let us consider the model (2). If the transition point is known, the minimum of
S2(τ, β, γ) can be found minimizing each component of (4) separately, based on
a properly determined sets of observations. This, however, does not ensure the
continuity of the solution (3) in the transition point. We apply different approach
dealing with this problem.

For each β and τ fixed, S2(τ, β, γ) as a function of γ changes only when the
transition point parameter γ passes over the sample points Xt of the independent
variable X. Therefore conditional on Xt < γ ≤ Xt+1, the residual sum of squares
S2(τ, β, γ) can be minimized over τ and β, and this yields a sequence of residual
sums of squares functions S2

t (τ, β, γ) (t = 3, . . . , n− 2, and Xt < γ ≤ Xt+1). The
sequence of functions S2

t (τ, β, γ) is segmenting overall S2(τ, β, γ). That is

S2(τ, β, γ) = S2
t (τ, β, γ) if Xt < γ ≤ Xt+1, t = 3, . . . , n− 2(5)

where by definition

S2
t (τ, β, γ) =

t−1
∑

i=1

(Yi − τ)2 +
n

∑

i=t

(Yi − β0 − β1Xi)
2.(6)

Therefore, the minimization of S2(τ, β, γ) can be done over the function (6)
as follows. The first stage is to compute the minimum of S2

t (τ, β, γ) with respect
to τ and β for t = 3, . . . , n− 2. Denote τ̂(t) and β̂(t) the minimizers for τ and β
when Xt < γ ≤ Xt+1.

In the second stage, we compute the estimator of γ using the linear constraint
for the two phases (3):

γ̂(t) =
τ̂(t) − β̂0(t)

β̂1(t)
.

Now since S2
t (τ, β, γ) corresponds to S2(τ, β, γ) only for Xt < γ ≤ Xt+1, it

follows that either

γ̂ = γ̂(t) for some t, in case Xt < γ̂(t) ≤ Xt+1,
or

γ̂ 6= γ̂(t) for some t, in case γ̂(t) lies outside the interval (Xt, Xt+1).

To determine γ̂ we have to compare the values of S2
t (τ̂(t), β̂(t), γ̂(t)) for all t

such that Xt ≤ γ̂(t) < Xt+1 and choose t∗ which gives the minimum value for S2
t .
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If for some t the intersection of the fitted lines, γ̂(t) is falling outside the
assumed interval [Xt;Xt+1) , one should use the confidence interval to decide
whether to attribute this to sample errors or an incorrect assumption. In such
case Hinkley, [10] proposed to use γ̂ = Xt or γ̂ = Xt+1 depending on S2 .
However, the observations Xt or Xt+1 may have a large measurement error and
this error will be included in the estimation of τ . In our case of constant first
phase, this method gives τ = Yt or τ = Yt+1 , which is obviously not applicable.

The transition point estimate γ̂ separates observations into two phases. Thus
the first phase observations are used to estimate τ while the second phase observa-
tions are used to estimate β0 and β1. For known transition point these estimates
coincide with ordinary least squares estimates obtained by two regression lines
passing trough the fixed point, namely the transition point.

Confidence interval for γ. Since γ̂ is a ratio of two correlated normal
random variables, τ̂ − β̂0 and β̂1, we use Fieller’s method to find an interval
estimate for γ.

The 100(1 − α) confidence interval for γ is obtained by the solutions of

[τ̂ − β̂0 + γ̂β̂1]
2 −

n1n2

n
Fα

1,n−3

S2

n− 3
= 0,(7)

where τ̂ , β̂0, β̂1 and γ̂ are the estimated parameters, S2 is the residual sum of
squares 4 for these estimates, F α

1,n−3 is the upper α critical value for the F -
distribution with 1 and n− 3 degrees of freedom, and n1 and n2 are the number
of observations in the first and the second phase, respectively.

3.2. Modification for known saturated volumetric water content

Now suppose that the saturated volumetric water content, θs, respectively τ is
known. We suppose that data satisfy the linear regression assumptions for the
model (2). The parameters β = (β0, β1) and γ are assumed unknown and should
be estimated through the data.

The function to be minimize is simplified by eliminating the first term in (4)
and in this case we have:

S2(β, γ) =
∑

Xi≥γ

(Yi − β0 − β1Xi)
2,(8)

subject to β0 + β1γ = τ .
If the transition point is known, the minimum of S2(β, γ) can be found using

only the observations after this point. The rest of the data should be viewed as
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error measurement of the saturated volumetric water content. Such an approach
is used in [5] and [6] for X = log ψ and Y = log θ for data after air entry value.

Conditional on γ ≥ Xt, S
2(β, γ) is minimized over β. Denote β̂(t) the mini-

mizer of

S2
t (β, γ) =

n
∑

i=t

(Yi − β0 − β1Xi)
2

For t = 1, . . . , n − 1 we obtain a sequence of functions S2
t (β̂(t), γ) which are

segments of S2(β, γ) like it is given in (5).

The process of estimating the parameters in the second phase is carried out
sequentially. It starts by estimating the parameters based on all observations. In
this case t equals to the number of the step. Next, in each following (t-th) step
the parameters are estimated using the n − t + 1 observations and eliminating
the first t − 1 observations. This process should be continued as long as the
determination coefficient R2 increases. The step, in which the biggest value of
the determination coefficient is obtained, gives estimates β̂0(t) and β̂1(t) of the
parameters for the second phase. In consequence it may be expected that the
transition point is less then Xt and its estimate is calculated using the constraint
(3), i.e.

γ̂ =
τ − β̂0(t)

β̂1(t)
.

Therefore in our procedure we determine an estimate of the unknown transition
parameter γ, corresponding to the highest value of R2 for the second phase. The
proposed procedure is illustrated in Section 4.

4. Example

A case study is performed in order to illustrate the proposed technique for esti-
mating the transition point. The data contains of 21 experimental measurement
of pressure head and volumetric water content for sand 4443, (UNSODA data
base, [2]). The soil properties given in UNSODA are: porosity is 0.385, bulk den-
sity is 1.63 g/cm3 and particle density is 2.65 g/cm3. Measurements are taken
using tensiometry and gamma attenuation. Fig. 1 (a) presents data from the 21
experimental measurements for sand 4443. In this example we use the measured
pressure head for the SWCC regression fit and therefore we fit the relation be-
tween volumetric water content and water pressure head h. This way we do not
introduce the error due to conversion of pressure head to matric suction. The
volumetric water content at saturation is given in UNSODA to be equal to 0.3.
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Figure 1: Sand 4443 UNSODA: (a) measured data and (b) plot after data trans-
formation.

The following transformations X = lnh, Y = ln θ are applied to reduce the
error for large pressure head values and to make the relationship linear. The plot
for the transformed variables is given in Fig. 1 (b). From this plot it is seen that
two intersecting straight lines represent the relationship between X and Y quite
well.

First we consider a model with unknown saturated volumetric water content.
The unknown θs has to be estimated through the data. Therefore we use the
model

Y =

{

τ, X < γ
β0 + β1X, X ≥ γ,

subject to β0 + β1γ = τ with unknown parameters τ , β0 and β1. The estimation
problem is that described in Section 3.1.

Since we have no information where approximately the transition point lies,
we use a search procedure throughout the whole range of variability for indepen-
dent variable. The stepwise procedure from section 3.1. is now used to obtain the
optimal estimates of the parameter β0 and β1 and to estimate the aev together
with θs. We start the search using 2 observations in the first phase and the rest
19 observations in the second phase. The results from the stepwise procedure
given in Section 3.1. are summarized in Table 1. Since the R2 is decreasing after
t = 9 the procedure has been ceased after t = 12.

The optimum result is obtained for t = 9 with 8 observations used in the first
phase and 13 observations used in the second phase. The parameters τ , β0 and
β1 has been estimated as follows: τ̂ = −1.205, β̂0 = 5.567, β̂1 = −2.366. The
residual sum of squares, S2, for the estimated model is 0.159 and the variance
explained by the two phase linear model is R2= 98.98%.
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t β̂0(t) β̂1(t) τ̂(t) Final loss R2 γ̂(t) θs aev

3 2.46 -1.46 -1.187 2.228 85.69 2.49 0.305 12.062
4 2.94 -1.61 -1.193 1.733 88.87 2.571 0.303 13.080
5 3.52 -1.78 -1.201 1.206 92.26 2.655 0.301 14.223
6 4.20 -1.98 -1.197 0.697 95.52 2.732 0.302 15.356
7 4.83 -2.16 -1.200 0.357 97.71 2.794 0.301 16.352
8 5.29 -2.29 -1.200 0.202 98.70 2.836 0.301 17.053
9 5.57 -2.37 -1.205 0.159 98.98 2.862 0.300 17.490
10 5.69 -2.40 -1.221 0.170 98.91 2.879 0.295 17.790
11 5.49 -2.35 -1.237 0.177 98.86 2.868 0.290 17.603
12 5.20 -2.27 -1.262 0.218 98.60 2.851 0.273 17.308

Table 1: Results from the stepwise estimation procedure.

The estimated value for the saturated volumetric water content is obtained
using the first 8 observations and the estimated value is θs = 0.29975 which is
the same as the saturated volumetric water content given in UNSODA. Further,
the transition point is estimated using the constraint (3), that gives γ̂ = 2.86 and
consequently ˆaev = 17.49 cm.

Now, the 95% confidence interval for γ is estimated using the equation (7).
For this data n1 = 8, n2 = 13, F 0.05

1,18 = 4.41 and the confidence interval is
[2.79; 2.93]. Since γ is a transformed value of the aev, namely γ = ln(aev),
the corresponding 95% confidence limits for aev are calculated using the inverse
transformation. That gives the 95% confidence interval for the air entry value
in cm to be [16.29; 18.79]. That is between observed values h8 = 16 cm and
h10 = 20 cm.

Next consideration is reasonable only if we know from other sources the sat-
urated volumetric water content, θs. For instance, the UNSODA data base gives
for this data θs = 0.3.

In this case the model has the form described in Section 3.2. That is

Y =

{

ln 0.3, X < γ
β0 + β1X, X ≥ γ,

subject to β0 + β1γ = ln 0.3 with unknown parameters β0 and β1.
The estimation problem is that described in Section 3.2. The transition point

γ should be estimated using only data from the second phase. Thus we have to
decide which data are from the second, i.e. after air entry value, and use them
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in estimation procedure. The rest of the data will be eliminated. The stepwise
procedure for this estimation is given at the end of section 3.2.

Step Number of β̂0(t) β̂1(t) R2

t observations %

1 21 1.116 -1.052 71.893
2 20 1.690 -1.230 77.293
3 19 2.460 -1.465 84.381
4 18 2.937 -1.606 87.188
5 17 3.516 -1.777 90.545
6 16 4.204 -1.978 94.091
7 15 4.830 -2.158 96.687
8 14 5.295 -2.290 97.891
9 13 5.567 -2.366 98.101
10 12 5.687 -2.399 97.866
11 11 5.492 -2.346 97.649
12 10 5.204 -2.268 97.536
13 9 4.962 -2.202 97.027
14 8 4.601 -2.106 96.620
15 7 4.320 -2.032 96.111
16 6 4.338 -2.036 95.168

Table 2: Results from the stepwise estimation procedure.

The results from the stepwise procedure for our data are given in Table 2. The
optimum result for the second phase is obtained in step 9 with 13 observations
used. In this step the first 8 observations are eliminated since they are considered
to be the measurements before aev. The parameter β0 and β1 has been estimated:
β̂0 = 5.567, β̂1 = −2.366. The residual sum of squares, S2, for the estimated
model is 0.0235 and the variance explained by the model is R2= 98.101%. The
estimation of the transition point is done using the equation (3) and therefore
γ̂ = (ln 0.3 − 5.567)/(−2.36) = 2.86. The corresponding value of the air entry
value is ˆaev = exp(γ̂) = 17.50 cm.

The fit of the model to Sand 4443 UNSODA data with unknown θs is pre-
sented in fig.2.



Application of two-phase regression to geotechnical data 255

Figure 2: Sand 4443 UNSODA. Two-phase regression analysis and the fitting
curve in θ versus h representation.

5. Conclusions

We presented results of the application of two-phase regression to fit SWCC data.
It has been shown that if the regression of θ on ψ (or h) can be represented by
two intersecting curves, one being appropriate for values below and the other for
values above the aev then two phase regression is giving reasonable fit for the
SWCC. In this case the aev of the SWCC is clearly a transition point. The first
phase of the SWCC, in case no volume changes are present, could be taken lin-
ear with zero slope while some exponential functions are good candidates for the
second phase, [15]. Several useful generalizations of the model (2) suggest them-
selves, for example smooth transition between two phases. Smooth transition
models are discussed in [18] and [17] and could be adopted for the geotechnical
data. The first phase of the multi-phase regression is not necessarily a constant.
Therefore the extension of the proposed procedure is possible to cases when vol-
ume changes occur during SWCC measurements and the measured water content
is not constant before the air entry value.

REFERE NCES

[1] S.S. Agus and T. Schanz. Vapour equilibrium technique for tests on a
highly compacted bentonite-sand mixture. In Proc. Int. Conf. on Problematic
Soils, Jefferson et al. Eds, Nottingham, UK, July, (2003), 467–474.

[2] Attila Nemes, Marcel G. Schaap and Feike J. Leij. UNSODA Ver-

sion 2.0 1999.



256 E. Stoimenova, M. Datcheva and T. Schanz

[3] D.W. Bacon and D.G. Watts. Estimating the transition between two
intersecting straight lines. Biometrika 58 (1971), 525–534.

[4] Box G. E. P. and Cox D. R. An Analysis of Transformations, Journal of

the Royal Statistical Society (1964), 211-243, discussion 244-252.

[5] R. Brooks and A. Corey. Hydraulic properties of porous media, Hydrol-
ogy Paper No. 3. Colorado State University, Fort Collins, CO. (1964).

[6] Corey A.T. and H.R. Brooks. The Brooks–Corey Relationships. in Proc.
of the International Workshop on Characterisation and Measurement of the
Hydraulic Properties of Unsaturated Porous Media (eds. by M. Th. van
Genuchten, F.J. Leij, and L. Wu), Riverside, California, 1997, 13–18.

[7] M.T. van Genuchten. A closed-form equation for predicting the hydraulic
conductivty of unsaturated soils. Soil Sci. Soc. Am. J.,44 (1980), 892-898.

[8] D.G. Fredlund and A. Xing. Equations for the soil-water characteristic
curve. Can. Ceotech. J. 31(4) (1994), 521-532.

[9] D.J. Fredlund and H. Rahardjo. Soil Mechanics for Unsaturated Soils.
Interscience, 1993.

[10] D.V Hinkley. Inference about the intersection in two-phase regression.
Biometrika 56 (1969), 495-504.

[11] H.J. Larson. Least squares estimates of linear splines with unknown knot
location. Computational Statistics & Data Analysis 13 (1992), 1–8.

[12] S. Ashish and M. Srivastava. Regression Analysis. Theory, Methods and
Applications. Springer-Verlag, 1990.

[13] P. Sprent. (1961). Some hypotheses concerning two phase regression lines.
Biometrics, 17, 634–645.

[14] E. Stoimenova and M. Datcheva and T. Schanz. Statistical modeling
of the soil water characteristic curve for geotechnical data. In: Proceedings
of the First International Conference for Mathematics and Informatics for
Industry, Thessaloniki, Greece, 2003, 356–366.

[15] E. Stoimenova and M. Datcheva and T. Schanz. Statistical approach
in soil-water characteristic curve modeling. In Proc., International confer-
ence from experimental evidence towards numerical modelling of unsaturated
soils, Bauhaus-Universitat Weimar, Germany, 2003.



Application of two-phase regression to geotechnical data 257

[16] S.K. Vanapalli, W.S. Sillers, and M.D. Fredlund. The meaning and
relevance of residual state to unsaturated soils. 51st Canadian Geotechnical
Conference, Edmonton, Alberta, 1998.

[17] D.G. Watts and D.W. Bacon. Using an hyperbola as a transition model
to fit two-regime straight-line data. Technometrics 16 (1974), 369–373.

[18] R. Walkowiak and R. Kala. Two-phase nonlinear regression with
smooth transition. Commun. Statist. – Simula. 29(2) (2000), 385–397.

Eugenia Stoimenova

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bontchev str., bl.8

1113 Sofia, Bulgaria

e-mail: jeni@math.bas.bg

Maria Datcheva

Institute of Mechanics

Bulgarian Academy of Sciences

and

Laboratory of Soil Mechanics

Bauhaus-Universität Weimar

Coudraystr. 11 C

Weimar 99432, Germany

e-mail: maria.datcheva@bauing.uni-weimar.de

Tom Schanz

Laboratory of Soil Mechanics

Bauhaus-Universität Weimar

Coudraystr. 11 C

Weimar 99432, Germany

e-mail: tom.schanz@bauing.uni-weimar.de


