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TOTAL PROGENY IN A SUBCRITICAL BRANCHING

PROCESS WITH TWO TYPES OF IMMIGRATION

M. Slavtchova-Bojkova, P. Becker-Kern, K. V. Mitov1

We consider subcritical Bellman-Harris branching processes with two types
of immigration - one appears whenever the process hits zero state and an-
other one is in accordance of an independent renewal process. The law of
large numbers (LLN) for the total progeny of these processes and Anscombe’s
type central limit theorem (CLT) for the total number of particles in the cy-
cles completely finished by the moment t are obtained.

1. Introduction

In general, the total progeny is studied for different classes of branching processes
in two settings. For Galton-Watson processes the sum of the particles in the first
n generations was investigated by several authors. Pakes (1971) have considered
the total progeny for the Galton-Watson branching processes and Kulkarni and
Pakes (1983) for the Galton-Watson branching processes with immigration in the
state zero.

For continuous-time branching processes, the total number of particles up to
the instant t is the following continuous-time characteristic of the process, (e.g.
for Z(t)),

∫ t

0
Z(u)du, t ≥ 0,
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which is analogous to the total number of particles up to the instant t. More
comments and discussions on this characteristic can be found in Pakes (1972) or
in Jagers (1975).

In the recent paper of Glynn and Whitt (2002) the problem is solved in a
more general setting. They have obtained necessary and sufficient conditions for
LLN and CLT for an integral of a delayed regenerative process. However, our
method is quite different as the total progeny we are interested in could not be
reduced directly to the problem involving random sums of independent identically
distributed (iid) random variables (r.v.) and will comment this matter again later
in Section 2.

The total progeny of our process has been partially investigated by Weiner
(1991) in the critical case.

The rest of the paper is organized as follows.: in Section 2, we give basic def-
initions and introduce some auxiliary random quantities connected to our model.
In Section 3 some preliminary results are proved in detail. In Section 4 the asymp-
totic behaviour of the moments of the numbers of life cycles that are completely
finished respectively unfinished at the instant t is investigated. In Section 5 the
WLLN and SLLN for the total progeny of the processes of interest and CLT for
the total number of particles in the cycles completely finished by the instant t
are obtained. Section 6 contains a version of the key renewal theorem which we
apply essentially in the proofs of the previous results.

2. Definitions and notations

Let {X(t)}t≥0 be a population, wherein the individuals reproduce according to a
Bellman-Harris branching process with immigration only in the state zero (BHIO)
(generically denoted Y (t), t ≥ 0) and in addition a random number of immigrants
enters the population at the event times τ0 ≡ 0, τ1, τ2, . . . , τn, . . . of a given
renewal process. It is assumed that the inter arrival times T1 = τ1 − τ0 = τ1,
T2 = τ2−τ1, . . . are iid r.v. with cumulative distribution function (cdf) G0(t). The
numbers of immigrants Ii are assumed to be iid r.v.’s with probability generating
function (pgf) f0(s) = EsIi , |s| ≤ 1. Denote by

n(t) = max{n : τn ≤ t}

the number of renewal events in the sequence τn, n = 1, 2, . . . during the time
interval [0, t].

The BHIO process {Y (t)}t≥0 is constructed by a sequence of iid classical
Bellman-Harris branching processes (denoted generically by Z(t), t ≥ 0). The
process Z(t), t ≥ 0 is governed by the life time θ of one particle with cdf G(t), t ≥
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0, the offspring of one particle ξ with pgf h(s), the pgf f(s) of the random number
νi of immigrants in the state zero and the cdf K(t) of the duration Li of the stay in
the state zero. The construction is as follows (see e.g. Mitov and Yanev (1985)):
Let σi be the life period of the process Zi(t). Then the sequence Ui = Li+σi, i =
1, 2, . . . defines

S0 = 0, Sn = Sn−1 + Un, n = 1, 2, . . .(1)

and

N(t) = max{n : Sn ≤ t}.(2)

The BHIO process Y (t) is defined by

Y (t) = ZN(t)+1(t − SN(t) − LN(t)+1)I{SN(t)+LN(t)+1≤t},

where IA denotes the indicator of the event A.

Now the process X(t) can be defined as follows (taking into account that
τ0 ≡ 0 is the first renewal event when the I0 independent BHIO processes start)

X(t) =

n(t)
∑

i=0

Ii
∑

k=1

Y (i,k)(t − τi), t ≥ 0,

where Y (i,k)(t), t ≥ 0 are independent copies of Y (t).

The process X(t) is studied by Weiner (1991) in the critical case, and by
Yanev and Slavtchova-Bojkova (1994) in the non-critical cases. Multi type gener-
alization of these results in non-critical cases was obtained by Slavtchova-Bojkova
(1996). In Slavtchova-Bojkova (2002) for subcritical processes LLN was proved.

In the present paper we will consider the total number of particles for the
process X(t) in the subcritical case. Let us denote by ζ(t), the total number of
particles which are born up to the moment t in the process Z(t), and by ζ the
total number of particles which are born in the process Z(t) during its life period
σ. It is well known that the r.v. ζ is proper in the sense that P (ζ < ∞) = 1,
provided that the process Z(t) is not supercritical. Moreover the distribution of
ζ has a pgf

g(s) = f(g1(s)),(3)

where g1(s) is the pgf of the total number of particles in a Bellman-Harris branch-
ing process starting with one ancestor. The pgf g1(s) satisfies the functional
equation (see e.g. Section 2.11, Jagers (1975), or Pakes (1971))
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g1(s) = sh(g1(s)).(4)

Let us denote by V (t) the total number of particles up to the moment t in
the process Y (t). Then

V (t) =

N(t)
∑

i=1

ζi + ζN(t)+1(t − SN(t) − LN(t)+1)I{SN(t)+LN(t)+1≤t}.

Kulkarni and Pakes (1983) have studied the corresponding quantity to V (t)
for Galton-Watson branching processes. In the recent paper of Glynn and Whitt
(2001) the problem is solved in a more general setting. They have obtained
necessary and sufficient conditions for LLN and CLT for an integral of a delayed
regenerative process, i.e.

∫ t
0 Y (u)du in our notations.

Finally, denote by W (t) the total number of particles in the process X(t), i.e.

W (t) =

n(t)
∑

i=0

Ii
∑

k=1

V (i,k)(t − τi)(5)

=

n(t)
∑

i=0

Ii
∑

k=1

N(i,k)(t−τi)
∑

l=0

ζ
(i,k)
l

+

n(t)
∑

i=0

Ii
∑

k=1

ζ
(i,k)

N(i,k)(t−τi)+1
(t − S

(i,k)

N(i,k)(t−τi)
− L

(i,k)

N(i,k)(t−τi)+1
)

× I
{S

(i,k)

N(i,k)(t−τi)
+L

(i,k)

N(i,k)(t−τi)+1
≤t}

,

where V (i,k)(t), t ≥ 0 are independent copies of V (t), t ≥ 0.
From now on we will investigate the limiting behavior of the process W (t), t ≥

0, assuming the following basic moment conditions:
1. For the processes Z(t) :

0 < A = Eξ = h′(1) < 1, 0 < B = Varξ < ∞,(6)

r1 = Eθ =

∫ ∞

0
xdG(x) < ∞, r2 = Varθ < ∞.(7)

2. For the processes Y (t) :

m1 = Eν = f ′(1) < ∞, 0 < m2 = Varν < ∞,(8)

a1 = ELi =

∫ ∞

0
xdK(x) < ∞, a2 = VarLi < ∞.(9)
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3. For the characteristics of the sequence {τn, n = 0, 1, 2, . . . }, we assume

c1 = EIi = f ′
0(1) < ∞, c2 = f ′′

0 (1) < ∞, c3 = VarIi < ∞,(10)

µ0 = Eτ1 =

∫ ∞

0
xdG0(x) < ∞, β0 = Varτ1 < ∞.(11)

By differentiating equations (3) and (4) and setting s = 1 we get for the
moments of the total number of particles ζ in the process (Z(t), 0 ≤ t ≤ σ),

v1 = Eζ =
Eν

1 − Eξ
=

m1

1 − A
,(12)

v2 = Varζ =
E(ν)B

(1 − A)3
+

Var(ν)

(1 − A)2
=

m1B

(1 − A)3
+

m2

(1 − A)2
.(13)

Under the conditions (6) and (7),

P(σ > t) = P(Z(t) > 0) ∼ C exp(αt),

where C is a positive constant and α is a Malthusian parameter defined by

A

∫ ∞

0
e−αtdG(t) = 1.

We always assume that Malthusian parameter exists and in the subcritical case
α < 0 . Hence σ has finite moments of all orders. Therefore, for the moments of
Ui = Li + σi we get (see (9))

µ1 = EUi = ELi + Eσi < ∞, β1 = VarUi < ∞.(14)

3. Basic equations and inequalities

In this section we will introduce two important random quantities our approach
is based on and will obtain integral equations for their pgf’s.

The following inequalities are fulfilled almost surely:

N(t)
∑

i=1

ζi ≤ V (t) ≤

N(t)+1
∑

i=1

ζi,(15)

and

n(t)
∑

i=0

Ii
∑

k=1

N(i,k)(t−τi)
∑

j=1

ζ
(i,k)
j ≤ W (t) ≤

n(t)
∑

i=0

Ii
∑

k=1

N(i,k)(t−τi)+1
∑

j=1

ζ
(i,k)
j .(16)
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Denote by

n∗(t) =

n(t)
∑

i=0

Ii
∑

k=1

N (i,k)(t − τi)(17)

the number of the cycles in all the renewal processes Sn governing the processes
Zi,k(t − τi), t ≥ 0 which are completely finished up to the moment t and by

n∗∗(t) =

n(t)
∑

i=0

Ii(18)

the number of BHIO processes starting at the moments τ0, τ1, . . . , τn(t) during
the interval [0, t]. In other words, n∗∗(t) is the number of the cycles which does
not become extinct at the instant t.

If we enumerate the iid r.v.’s ζ
(i,k)
j by one index (in some order) then by (17),

(18) and (16) one can obtain:

n∗(t)
∑

l=1

ζl ≤ W (t) ≤

n∗(t)+n∗∗(t)
∑

l=1

ζl.(19)

We will use these inequalities together with the definition (5) to investigate the
limiting behaviour of W (t).

Denote by Φ∗(t, s) = Esn∗(t), Φ∗∗(t, s) = Esn∗∗(t) and Ψ(t, s) = EsN(t).

Lemma 1. The pgf’s Φ∗(t, s) and Φ∗∗(t, s) satisfy the following equations:

Φ∗(t, s) = f0(Ψ(t, s))[1 − G0(t) +

∫ t

0
Φ∗(t − u, s)dG0(u)],(20)

Φ∗∗(t, s) = f0(s)[1 − G0(t) +

∫ t

0
Φ∗∗(t − u, s)dG0(u)].(21)

P r o o f. We will prove (20) only.
1) If τ1 > t then n∗(t) =

∑I0
k=1 N (0,k)(t) and in this case

Φ∗(t, s) = Esn∗(t) = Es
� I0

k=1 N(0,k)(t) = f0(Ψ(t, s)).

2) If τ1 = u ≤ t then n∗(t) has the same distribution as the sum n∗(t − u) +
I0
∑

k=1

N (0,k)(t) and the two terms in this sum are independent. Hence in this case

Φ∗(t, s) = Esn∗(t) = f0(Ψ(t, s))Esn∗(t−u) = f0(Ψ(t, s))Φ∗(t − u, s).
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By the total probability formula we get the assertion.
The equation (21) follows by the same arguments and that’s why we omit the

proof. �

4. Moments of n
∗(t) and n

∗∗(t)

In this section we will use the renewal equations for the moments of the processes
n∗(t) and n∗∗(t) to obtain their asymptotic behavior as t → ∞.

Denote

M∗
1 (t) = En∗(t), M∗

2 (t) = En∗(t)[n∗(t) − 1], D∗(t) = Var(n∗(t)),

and

M∗∗
1 (t) = En∗∗(t), M∗∗

2 (t) = En∗∗(t)[n∗∗(t) − 1], D∗∗(t) = Var(n∗∗(t)).

Lemma 2. The moments of n∗(t) satisfy:

M∗
1 (t) ∼

c1t
2

2µ0µ1
, t → ∞,(22)

M∗
2 (t) ∼

c2
1t

4

4µ2
0µ

2
1

, t → ∞,(23)

D∗(t) = o(t4), t → ∞.(24)

P r o o f. Differentiating (20) with respect to s we have

∂Φ∗(t, s)

∂s
= f ′

0(Ψ(t, s))Ψ′
s(t, s)[1 − G0(t) +

∫ t

0
Φ∗(t − u, s)dG0(u)]

+ f0(Ψ(t, s))

∫ t

0

∂Φ∗(t − u, s)

∂s
dG0(u)

and hence

∂2Φ∗(t, s)

∂s2
=
(

f ′′
0 (Ψ(t, s))[Ψ′

s(t, s)]
2

+ f ′
0(Ψ(t, s))Ψ′′

ss(t, s)
)[

1 − G0(t) +

∫ t

0
Φ∗(t − u, s)dG0(u)

]

+ 2f ′
0(Ψ(t, s))Ψ′

s(t, s)

∫ t

0

∂Φ∗(t − u, s)

∂s
dG0(u)

+ f0(Ψ(t, s))

∫ t

0

∂2Φ∗(t − u, s)

∂s2
dG0(u).
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Setting s = 1 in these equations we get

M∗
1 (t) = c1M

0
1 (t) +

∫ t

0
M∗

1 (t − u)dG0(u)(25)

and

M∗
2 (t) = c2[M

0
1 (t)]2 + c1M

0
2 (t) + 2c1M

0
1 (t)

∫ t

0
M∗

1 (t − u)dG0(u)

+

∫ t

0
M∗

2 (t − u)dG0(u)

= c2[M
0
1 (t)]2 + c1M

0
2 (t) + 2c1M

0
1 (t)[M∗

1 (t) − c1M
0
1 (t)]

+

∫ t

0
M∗

2 (t − u)dG0(u),(26)

where M 0
1 (t) = EN(t), M 0

2 (t) = EN(t)[N(t) − 1].
Since (1), (2) and (14), it is well known that (see Feller (1971), Sect. 11.10,

Problem 13 and Sect. 11.3, Theorem 1)

M0
1 (t) =

t

µ1
+ o(t), t → ∞(27)

and

E(N(t))2 =
t2

µ2
1

+
β1

µ3
1

t + o(t), t → ∞.

From (25) and (27) by the key renewal theorem (Section 6) we get (22).
Further we get

M0
2 (t) = E(N(t))2 − M0

1 (t)(28)

=
t2

µ2
1

+
β1

µ3
1

t + o(t) −

(

t

µ1
+ o(t)

)

=
t2

µ2
1

+ o(t2), t → ∞.

Since (22), (27) and (28) one obtains

c2[M
0
1 (t)]2 + c1M

0
2 (t) + 2c1M

0
1 (t)[M∗

1 (t) − c1M
0
1 (t)]

= c2

(

t

µ1
+ o(t)

)2

+ c1

(

t2

µ2
1

+ o(t2)

)

+ 2c1

(

t

µ1
+ o(t)

)[

c1t
2

2µ0µ1
+ o(t2) − c1

( t

µ1
+ o(t)

)

]

=
c2
1t

3

µ0µ2
1

+ o(t3), t → ∞.
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Applying the key-renewal theorem (see Section 6) to (26) we get (23). Finally
from the representation

D∗(t) = M∗
2 (t) + M∗

1 (t) − [M ∗
1 (t)]2,

(22) and (23) we get (24). �

Lemma 3. The moments of n∗∗(t) satisfy:

M∗∗
1 (t) =

c1

µ0
t + o(t), t → ∞,(29)

M∗∗
2 (t) =

c2
1

µ2
0

t2 + o(t2), t → ∞,

D∗∗(t) = o(t2), t → ∞.

The proof is similar to the proof of the previous lemma and it is omitted.

Lemma 4. The following limits take place:

n∗(t)

M∗
1 (t)

p
→ 1, t → ∞(30)

and

n∗∗(t)

M∗∗
1 (t)

p
→ 1, t → ∞.(31)

P r o o f. Since (22) and (24) by the Chebyshev’s inequality it follows that for any
ε > 0

P

(∣

∣

∣

∣

n∗(t)

En∗(t)
− 1

∣

∣

∣

∣

> ε

)

≤
1

ε2
Var

(

n∗(t)

En∗(t)

)

=
1

ε2

Var(n∗(t))

[En∗(t)]2
=

1

ε2

D∗(t)

[M∗
1 (t)]2

→ 0, t → ∞,

which proves (30). The proof of (31) is similar and we omit it. �

Lemma 5. Under the conditions above

n∗∗(t)

n∗(t)

p
→ 0, t → ∞(32)

and

n∗∗(t)
√

n∗(t)

p
→

√

2c1µ1

µ0
, t → ∞.(33)
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P r o o f. One has
n∗∗(t)

n∗(t)
=

n∗∗(t)

M∗∗
1 (t)

·
M∗

1 (t)

n∗(t)
·
M∗∗

1 (t)

M∗
1 (t)

and hence (32) follows from (22), (29), (30) and (31). The proof of (33) is similar.
�

Lemma 6. We even have a stronger convergence in (32):

n∗∗(t)

n∗(t)

a.s.
→ 0, t → ∞.

P r o o f. We have

n∗(2t)

n∗∗(2t)

=

∑n(2t)
i=0

∑Ii

k=1 N (i,k)(2t − τi)
∑n(2t)

i=0 Ii

≥

∑n(t)
i=0

∑Ii

k=1 N (i,k)(2t − τn(t))
∑n(2t)

i=0 Ii

=
2t

∑n(2t)
i=0 Ii

·
1

2

t(n(t)/t)
∑

i=0

Ii
∑

k=1

N (i,k)(t)

t

≥
2t

n(2t)
� n(2t)

i=0 Ii

n(2t)

1

2

t(n(t)/t)
∑

i=0

N (i,1)(t)

t

and by the SLLN for the renewal processes as t → ∞

2t

n(2t)

a.s.
→ µ0,

∑n(2t)
i=0 Ii

n(2t)

a.s.
→ c1,

N (i,1)(t)

t

a.s.
→

1

µ1
, t

n(t)

t

a.s.
→ ∞.

Hence

n∗(2t)

n∗∗(2t)
≥

2t

n(2t)
� n(2t)

i=0 Ii

n(2t)

1

2

t(n(t)/t)
∑

i=0

N (i,1)(t)

t

a.s.
→ ∞, t → ∞.

�
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5. Main results

Theorem 1. Under the conditions (6)-(11), as t → ∞,

W (t)

n∗(t)

p
→ v1,(34)

W (t)

n∗(t) + n∗∗(t)

p
→ v1,(35)

W (t)

t2
p
→

c1v1

2µ0µ1
,(36)

EW (t) ∼
v1c1t

2

2µ0µ1
.(37)

P r o o f. Since (19) we can write

∑n∗(t)
l=1 ζl

n∗(t)
≤

W (t)

n∗(t)
≤

∑n∗(t)
l=1 ζl

n∗(t)
+

∑n∗∗(t)
p=1 ζp+n∗(t)

n∗(t)
.(38)

For the last quantity on the right hand side we have:

∑n∗∗(t)
p=1 ζp+n∗(t)

n∗(t)
=

n∗∗(t)

n∗(t)

∑n∗∗(t)
p=1 ζp+n∗(t)

n∗∗(t)

p
→ 0, t → ∞,(39)

by the LLN and (32). On the other hand by the LLN and (22)

∑n∗(t)
l=1 ζl

n∗(t)

p
→ Eζ = v1, t → ∞.(40)

Now (38)-(40) prove (34). The proof of (35) is similar. The proof of (36) follows
from (34), (22) and (30). The proof of (37) follows from the inequality

v1En∗(t) ≤ EW (t) ≤ v1[En∗(t) + En∗∗(t)], t ≥ 0,

which is a direct consequence of (19), and the asymptotics (22) and (29). �



240 M. Slavtchova-Bojkova, P. Becker-Kern, K. Mitov

Theorem 2. Under the conditions (6)-(11),

∑n∗(t)
i=1 ζi − v1n

∗(t)
√

v2n∗(t)

d
→ N(0, 1), t → ∞,(41)

and

∑n∗(t)+n∗∗(t)
i=1 ζi − v1[n

∗(t) + n∗∗(t)]
√

v2n∗(t)

d
→ N(0, 1), t → ∞.(42)

P r o o f. Since (30), (12) and (13) and the independence of ζi the conditions of the
Anscombe central limit theorem are satisfied (Chow and Teicher (1978), p.139),
which proves (41). Similarly, (42) follows from (31), (12), (13) and (32). �

Theorem 3. Under the conditions (6)-(11),

lim sup
t→∞

P

(

W (t) − v1n
∗(t)

√

v2n∗(t)
≤ x

)

≤ Φ(x),

lim inf
t→∞

P

(

W (t) − v1[n
∗(t) + n∗∗(t)]

√

v2n∗(t)
≤ x

)

≥ Φ(x),

where Φ(x) is the standard normal distribution function.

P r o o f. From the inequalities (19) we get

P

(

∑n∗(t)
i=0 ζi − v1n

∗(t)
√

v2n∗(t)
≤ x

)

≥ P

(

W (t) − v1n
∗(t)

√

v2n∗(t)
≤ x

)

and

P

(

∑n∗(t)+n(∗∗)(t)
i=0 ζi − v1[n

∗(t) + n∗∗(t)]
√

v2n∗(t)
≤ x

)

≤ P

(

W (t) − v1[n
∗(t) + n∗∗(t)]

√

v2n∗(t)
≤ x

)

,

which, together with (41) and (42) proves the theorem.
As a concluding remark our conjecture is that CLT holds for the process W (t)

itself but we haven’t still prove it. �
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6. A renewal theorem

The following version of the key renewal theorem is used in the paper.

Theorem 4. Let A(t) ∼ taL(t), t → ∞, a > 0, be monotone increasing,
where L is slowly varying at infinity. Let a cdf F (t) be such that F (t) = 0 for
t ≤ 0 and 0 < µ =

∫∞
0 tdF (t) < ∞. Then the solution of the renewal equation

X(t) = A(t) +

∫ t

0
X(t − u)dF (u)

has the following asymptotics

X(t) =

∫ t
0 A(u)du

µ
(1 + o(1)) =

ta+1L(t)

(a + 1)µ
(1 + o(1)), t → ∞.

P r o o f. Let us note first that X(t) is also monotone increasing. Taking the
Laplace transforms on both sides of the renewal equation we have

X̂(λ) = Â(λ) + X̂(λ)F̂ (λ),

where

X̂(λ) =

∫ ∞

0
X(t)e−λtdt, Â(λ) =

∫ ∞

0
A(t)e−λtdt, F̂ (λ) =

∫ ∞

0
e−λtdF (t).

Now

X̂(λ) =
Â(λ)

1 − F̂ (λ)
=

Â(λ)

λ

λ

1 − F̂ (λ)
.

By the Tauberian theorem (Theorem 4, Section 13.5, Feller (1971)) one gets

Â(λ) ∼ Γ(a + 1)L(1/λ)λ−a, λ → 0.

On the other hand,
λ

1 − F̂ (λ)
→

1

µ
, λ → 0.

Therefore,

X̂(λ) ∼
Γ(a + 1)L(1/λ)λ−(a+1)

µ
, λ → 0.

By the same Tauberian theorem (since X(t) is monotone) it follows that

X(t) ∼
ta+1L(t)

µ(a + 1)
, t → ∞.
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