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ON THE EQUALITY OF SHARP AND GERM σ - FIELDS
FOR GAUSSIAN PROCESSES AND FIELDS

Raina S. Robeva, Loren D. Pitt

Let Φ = {φ(x) : x ∈ Rn} be a Gaussian random process (n = 1) or field
(n > 1) on Rn. For S ⊂ Rn we investigate the relationship between the
σ- field, F(Φ, S) = σ{φ(x) : x ∈ S} and the infinitesimal or germ σ-field
F(Φ, S) = ∩ε>0F(Φ, Sε), where Sε is an ε neighborhood of S. We show
here that the equality F(Φ, S) = F(Φ, S) is equivalent to an approximation
problem in the reproducing kernel Hilbert space associated with Φ. The
method is then applied to identify the sets S for which the equalty F(Φ, S) =
F(Φ, S) holds for the Ornstein - Uhlenbeck process, the classical Brownian
motion, the Levy Browninan motion, the fractional Brownian motion, the
the Bessel fields, and the solution of the stochastic heat equation.

1. Introduction

We consider a stochastically continuous mean zero real valued random field Φ =
{φ(x) : x ∈ Rn}. Our focus in this paper is the relationship between the sharp
σ-field

F(Φ, S)
def
= σ{φ(x) : x ∈ S},

and the germ σ-field

F(Φ, S)
def
= ∩ε>0F(Φ, Sε),
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with Sε denoting the uniform neighborhood {x : dist(x, S) < ε} of S. Writing S̄
for the closure of S, and equating σ-fields that differ only by null sets,

F(Φ, S) ⊆ F(Φ, S) and F(Φ, S) = F(Φ, S̄).

If S = Γ ⊂ Rn is a surface that separates Rn into complementary open sets
D+ and D−, the problem of equality between the sharp and germ σ fields for Φ
is closely related to question of whether Φ satisfies the sharp Markov property at
Γ.

The field Φ is said to satisfy the germ field Markov property at Γ if F(Φ, D+)
and F(Φ, D−) are conditionally independent given F(Φ,Γ). If Φ satisfies the more
restrictive condition with F(Φ, D+) and F(Φ, D−) are conditionally independent
given F(Φ,Γ), Φ satisfies the sharp Markov property at Γ (see e.g. Pitt (1971)
and Rozanov (1982)).

In the typical cases of interest when Γ is the boundary of both sets D+ and
D−, the relationship between the two Markov properties is relatively direct and
elementary. Namely, in this case,

F(Φ,Γ) ⊆ F(Φ, D+) ∩ F(Φ, D−),

and, modulo null sets, F(Φ, D+) and F(Φ, D−) can not be conditionally inde-
pendent over any proper sub σ-field of F(Φ,Γ). We can thus state

Proposition 1. Suppose that Γ is a closed set separating Rn into comple-
mentary open sets D+ and D−, with Γ = D̄− ∩ D̄+. Then Φ = {φ(x) : x ∈ Rn}
satisfies the sharp Markov property at Γ iff Φ satisfies the germ field Markov
property at Γ and the identity

F(Φ,Γ) = F(Φ,Γ)(1)

holds.

These considerations raise the following fundamental question:
Question. What conditions on a closed set S ⊂ Rn imply that 1 holds?
In Pitt and Robeva (1994, 2003) we showed that 1 is equivalent to an approx-

imation property for the set S in the reproducing kernel Hilbert space H = H(Φ)
associated with Φ. The same question for open sets is also of interest, as it gives
conditions under which a slightly different definitions of the sharp Markov prop-
erty (see e.g. Dalang and Walsh (1991) and Rozanov (1982)) coinsides with our
definition above. The paper Pitt and Robeva (2003) presents a complete char-
acterization of the sets S ⊂ R2 that satisfy 1 for the so-called Bessel fields. In
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the same paper, for smooth curves Γ ⊂ R2, we also give a decomposition of the
germ σ- field F(Φ,Γ) into a tangential (sharp field) component and the σ- fields
generated by the generalized normal derivatives of the Bessel field along Γ.

The reproducing kernel Hilbert space approach is, in principle, very general.
However, in practice, it requires detailed structural knowledge of the space H =
H(Φ), and such knowledge may not be generally available.

In this paper we apply the reproducing kernel Hilbert space approach to a
range of random processess and fields and present conditions on S ⊂ Rn for which
1 is satisfied. Although some of the arguments can in principle be extended, we
will only discuss closed sets S here since in this case 1 is equivalent to the sharp
Markov property.

The paper is organized as follows. In Section 2 we describe the reproducing
kernel Hilbert spaces approach and show that 1 is equivalent to an approximation
problem in this space. In Section 3, we consider the Whittle field and the family of
Bessel fields and identify their reproducing kernel Hilber spaces with the classical
Bessel potential spaces. We also present a characterization for the sets S for
which 1 holds for the Bessel fields. These results are then used in Section 4 to
investigate the same question for other random processes and fields including
the Ornstein - Uhlenbeck process and the classical Brownian motion, the Lévy
Browninan motion and the fractional Brownian motion, and a solution of the
stochastic heat equation.

2. An Approximation Problem in the Reproducing Kernel Hilbert

Space

Here we show that for a stochastically continuous real valued Gaussian random
field Φ the equality F(Φ, S) = F(Φ, S) is equivalent to an approximation condi-
tion in the reproducing kernel Hilbert space associated with Φ (Theorem 1). A
description of this approach can also be found in Pitt and Robeva (1994, 2003).
We include it here for completeness.

Let Φ = {φ(x) : x ∈ R2} be a real valued mean zero Gaussian random
field defined over a complete probability space (Ω,Σ, P ) and let F(Φ, S) and
F(Φ, S) be the sharp and the germ σ-fields of Φ for a set S, as defined in the
Introduction. Associated with these σ-fields, are two subspaces of the Hilbert
space L2(P ) = L2(Ω,Σ, P ):

1) H(Φ, S)
def
= sp{φ(x), x ∈ S}L2 - the closed linear subspace of L2(P ) ob-

tained as the closed linear span of {φ(x), x ∈ S} in L2(P ); and

2) H(Φ, S)
def
=

⋂

H(Φ, Sε), with the intersection taken over all ε neighbor-
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hoods Sε of S.
The assumption that Φ is Gaussian implies [see e.g. Rosanov (1982), p.41]

that

F(Φ, S) = σ(H(Φ, S)), F(Φ, S) = σ(H(Φ, S)),

and thus

F(Φ, S) = F(Φ, S) if and only if H(Φ, S) = H(Φ, S).(2)

In terms of the reproducing kernel Hilbert space associated with Φ, this can
be rephrased as follows.

Let H(Φ, S) be the space of functions on R2 given by

H(Φ, S) = {u(x) def
= EXφ(x) : X ∈ H(Φ, S)}.

with the inner product

〈u1, u2〉H = 〈u1, u2〉 = EX1X2,

where u1(x) = EX1φ(x) and u2(x) = EX2φ(x).
It is clear that each function ρ(x, .), x ∈ S, determined by the correspon-

dence y 7→ ρ(x, y), belongs to H(Φ, S), and that (i) The map J : X 7→ EXφ(x)

determines an isometry between H(Φ, S) and H(Φ, S);
(ii) H(Φ, S) is spanned by the functions {ρ(x, .), x ∈ S};
(iii) For each u ∈ H(Φ, S) the reproducing property u(x) = 〈u, ρ(x, .)〉 holds.

H(Φ) = H(Φ, Rn) is the reproducing kernel Hilbert space of Φ, and ρ is the

reproducing kernel of H(Φ).

Setting

H(Φ, S) =
⋂

Sε⊃S̄

H(Φ, Sε),

the isometry (i), maps the spaces of random variables H(Φ, S) and H(Φ, S) onto
the function subspaces H(Φ, S) and H(Φ, S) of H(Φ), and from 2 it follows that

F(Φ, S) = F(Φ, S) if and only if H(Φ, S) = H(Φ, S).(3)

The following elementary result identifies the orthogonal complement of H(Φ, S)
in H(Φ) and is fundamental for our discussion.

Proposition 2. For u ∈ H(Φ), u ∈ H(Φ, S)⊥ iff u(x) = 0 holds for all
x ∈ S.
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P r o o f. Observe that u ⊥ H(Φ, S) iff 〉u, ρ(x, .)〉 = 0 holds for all x ∈ S. But the
reproducing property (iii) of ρ gives, u(x) = 〈u, ρ(x, .)〉 and the result follows.

This result prompts the following notation. Let

H0(Φ, S)
def
= {u ∈ H(Φ) : u(x) = 0 for x ∈ S}(4)

and

H00(Φ, S)
def
=

⋃

H0(Φ, Sε),(5)

where the union is over all ε neighborhoods Sε of S̄ and the closure is taken in
the norm of H(Φ).

Our principle result in this section is the following criterion.

Theorem 1. For a continuous Gaussian random field Φ and a set S, F(Φ, S)
= F(Φ, S) iff H0(Φ, S) = H00(Φ, S); that is iff each function in H0(Φ, S) is a
limit in the norm of H(Φ) of a sequence of functions that vanish on neighborhoods
of S̄.

P r o o f. By (3) F(Φ, S) = F(Φ, S) holds iff H(Φ, S) = H(Φ, S) and thus the
spaces H(Φ, S) and H(Φ, S) are equal if and only if their orthogonal complements
are equal. It only remains to identify the orthogonal complement of H(Φ, S) as
H00(Φ, S), which follows directly from the definition of H(Φ, S) and Proposition
2.

Remark. In analogy with the classical results of Beurling (1948), approx-
imation results such as Theorem 1 are called spectral synthesis theorems. If
H0(Φ, S) = H00(Φ, S) the set S is said to admit spectral synthesis in the function
space H(Φ).

3. The Bessel Random Fields

Although, as we already mentioned, the approach described in Section 2 is very
general, the geometric conditions on S under which the approximation in Theo-
rem 1 is possible depend on the structure of the reproducing kernel Hilbert space.
In particular, pointwise properties such as continuity and differentiability (either
everywhere or off of certain small exceptional sets) prove to be important. In this
section we identify the reproducing kernel Hilbert spaces for a class of random
fields Φβ = Φ = {φ(x) : x ∈ Rn} that satisfy the stochastic pseudo-differential
equations

(I − ∆)β/2φ(x) = Ẇ (x), x ∈ Rn,(6)
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where β > n/2 is constant and Ẇ (x) is a stationary Gaussian white noise on Rn.
The case β = 2 deserves special attention. It is the simplest and most interesting
of the Bessel fields and we consider it separately.
The Saces of Bessel Potentials. The spaces of Bessel potentials are defined
by

Lβ,2 = Lβ,2(Rn) = {u : u = Gβ(g), g ∈ L2(Rn)},(7)

where Gβ , β ∈ R, is the Bessel kernel of order β defined as the inverse Fourier

transform of Ĝβ(λ) = (1 + |λ|2)−
β
2 . The norm in Lβ,2 is defined by ‖u‖β,2 =

‖Gβ ∗ g‖β,2 = ‖g‖2, where ‖.‖2 denotes the L2 norm [see e.g. Adams and Hedberg

(1996), p. 11, for more details].
The theory of Bessel spaces is well developed and the properties of the func-

tions in these spaces are well known. For example, Stein (1970) and Adams and
Hedberg (1996) present a good introduction to the field and contain numerous
references to the original sources. We present some important facts about these
spaces here, as they will be fundamental to our considerations.

In particular, it is shown in Stein (1970), p.136, that a function u ∈ Lβ,2 if
and only if u ∈ Lβ−1,2 and for each j, ∂ju ∈ Lβ−1,2. Moreover, the norms ‖u‖β,2

and ‖u‖β−1,2 + ‖∇u‖β−1,2 are equivalent.

When β ≥ 0 is an integer, the space Lβ,2 can be identified with the Sobolev
space W β,2 of weakly differentiable functions of order β:

W β,2(Rn)
def
= {u ∈ L2 :

∫

Rn

∑

0≤|k|≤β

|∇ku|2 <∞},(8)

and the norm ‖u‖W β,2 =
(

∫

Rn

∑

0≤|k|≤β |∇ku|2
)1/2

is equivalent to the norm of

Lβ,2 [Stein (1970), p. 135].
Further, when β > n/2, the functions u in Lβ,2(Rn) are continuous but not

for β ≤ n/2, [Adams and Hedberg (1996), Ch.6]. Thus, since in our case β > n/2,
the functions in the reproducing kernel space H(Φβ) will be continuous but their
derivaties may not be. A useful way of measuring the deviation from continuity
is given by (β, 2)-capacity [see Adams and Hedberg (1996), Ch.2]. This capacity
of a set S ⊆ Rn can be defined as

Cβ,2(S) = inf{‖g‖2
L2 : g ≥ 0, Gβ ∗ g ≥ 1 on S}.(9)

In the more general context of Lp integrability, the spectral synthesis problem
in the spaces Lβ,2(Rn) has been studied extensively (see e.g. Hedberg (1980,
1981) for integral β and Adams and Hedberg (1996), Chapter 10, for the general
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case) and the theorem of Netrusov below (Theorem 3) gives the complete answer.
Before we can present this result, it will be necessay to provide some background.

A property of points is be said to hold (β, 2)-quasieverywhere ((β, 2)-q.e.) if
it holds for all points except those belonging to a set of (β, 2)-capacity zero. A
function u, defined (β, 2)-q.e. on Rn, is called (β, 2)-quasicontinuous, if for each
ε > 0 there is an open set D with Cα,2(D) < ε such that f is continuous on
Rn \D.

Theorem 2 (See Adams and Hedberg (1996), Ch.6) Let u ∈ Lβ,2(Rn) and
β ≤ n/2. After possible redefinition on a set of measure zero, u is (β, 2)-
quasicontinuous. Moreover, if u and v are two (β, 2)-quasicontinuous functions
such that u(x) = v(x) a.e., then u(x) = v(x) (β, 2)-q.e.

If u ∈ Lβ,2, β < n/2, and S ⊂ Rn are arbitrary, then the trace of u on S,
denoted u |S , is defined as the restriction to S of any (β, 2)- quasicontinuous
representative of u. In particular, u |S= 0 or ∇u |S= 0 means these statements
hold q.e.

Theorem 3 (Stoke (1984)) Let u ∈ Lβ,2 where β ≥ 1 is such that β > n/2
but (β − 1) ≤ n/2. Then u is differentiable (β − 1, 2)-q.e.

For a set S ⊂ Rn denote by Lβ,2
00 (S) the closure in Lβ,2(Rn) of the functions

u ∈ Lβ,2 with compact support contained in S. If S is open, then Lβ,2
00 (S) is the

closure in Lβ,2(Rn) of C∞
0 (S). The following is the L2 version of a result due to

Hedberg (1981) for integer order Bessel spaces (Sobolev spaces) and to Netrusov
[Adams and Hedberg (1996), p. 281] for β > 0.

Theorem 4. Let β > 0, 1 < p <∞, u ∈ Lβ,p(Rn), and S ⊂ Rn be arbitrary.
Then the following statements are equivalent:

(i) Dκu |S=0 for all multiindices κ, 0 ≤ |κ| < β;

(ii) u ∈ Lβ,p
00 (Sc);

Remark. 1 For β < n/2, the capacity Cβ,2 defined by (3.4) is equivalent to
the classical Riesz capacity defined through the power kernel k(x) = 1/|x|n−2β

from classical potential theory, [Adams and Hedberg (1996), Ch.5]. More pre-
cisely, if k(x) ≥ 0 is a decreasing continuous extended real valued function
on [0,∞], the k-energy of a positive measure µ is E(k, µ) =

∫

Rn

∫

Rn k(|x −
y|)dµ(x)dµ(y). Then, for compact sets A ⊆ Rn, define the k-capacity of A as

k − C(S) = sup
µ
{ 1

E(k, µ)
: supp µ ⊆ A, µ(A) = 1},
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and for an arbitrary S ⊆ Rn,

k − C(S) = sup
A

{k − C(A) : A is compact, A ⊆ S}.(10)

When k(x) is the power kernel k(x) = 1/|x|t, the capacity k − C(.) is the t-
Riesz capacity and is also denoted by Ct(.). When β = n/2, the capacity (1) is
equivalent to the classical logarithmic capacity Clog(S).

Remark. 2 If Λt is the t-dimensional Hausdorff measure, Λt(S) <∞ implies
k − C(S) = 0 for k(x) = 1/|x|t, [Falconer (1985), Theorem 6.4], and therefore
Λn−2β(S) <∞ implies Cβ,2(S) = 0.

Remark. 3 When β ≤ 1/2, and S is a line segment, the energy integral
for the power kernel k(x) = 1/|x|n−2β diverges and therefeore Cβ,2(S) = 0. For
β > 1/2, line segments have positive Cβ,2 capacity.

The Whittle Field. The mean zero, stationary Gaussian field that arises as a
solution of the stochastic equation

(I − ∆)φ(x) = Ẇ (x), x ∈ Rn, n = 1, 2, or 3,

where Ẇ is Gaussian white noise with EẆ (A)Ẇ (B) = |A ∩ B|, was studied in
Whittle (1954) and is called the Whittle field.

To identify the reproducing kernel Hilbert space H(Φ) for this field, we only
consider the case of dimension n = 2 and recall that the operator I − ∆ has an
inverse given by convolution with the Bessel kernel G2(x), and we can write

φ(x) =

∫

R2
G2(x− y)Ẇ (y)dy,

and so Eφ(x)φ(y) = G2 ∗ G2(x − y). Taking Fourier transforms on both sides,
we obtain the spectral representation of the covariance function

ρ(x, y) =
1

(2π)2

∫

R2
ei(x−y)·λ(1 + |λ|2)−2dλ =

∫

R2
ei(x−y)·λ∆(λ)dλ,

where ∆(λ) = (2π(1 + |λ|2))−2. The family {eix·λ : x ∈ R2} spans L2(R2,∆) and
the functions u ∈ H(Φ) are given by

u(x) =

∫

R2
eix·λf(λ)∆(λ)dλ = G2 ∗ g(x),(11)

where f satisfies
∫

R2 |f(λ)|2(1+ |λ|2)−2dλ <∞ and ĝ(λ) = f(λ)(1+ |λ|2)−1 ∈ L2.
Therefore we can identify the space H(Φ) is L2,2 and ‖u‖2,2 = ‖g‖2.



Gaussian Processes and Fields 191

The following arguments identifying conditions under which a closed set S
satisfyes the sharp Markov property for the Whittle field appeared in the disser-
tation Robeva (1997).

It follows from Theorem 4 that the Whittle field satisfies F(Φ, S) = F(Φ, S)
for a closed set S ⊆ Rn, n = 2, 3 if and only if for each f ∈ W 2,2, f |S= 0
implies ∇f |S= 0 where ∇f = {Dαf, |α| = 1}. Note that for the dimensions
under consideration, the functions in W 2,2(Rn) are continuous and are therefore
defined pointwise everywhere. Thus the trace f |S is defined for all x ∈ S. Since
the gradient ∇f for f ∈ W 2,2(Rn), n = 2, 3, is only quasicontinuous, it follows
from Theorems 2 that ∇f is defined pointwise only (1, 2)-q.e. We thus have

Theorem 5. For the Whittle field and a closed set S ⊆ Rn the equality
F(Φ, S) = F(Φ, S) holds if and only if for each f ∈ W 2(Rn) with f |S= 0 it
follows that C1,2(S ∩ {x : ∇f(x) 6= 0}) = 0.

The following corollary is immediate.

Corollary 1. Let Φ be the Whittle field and S ⊂ Rn, n = 2, 3, be such that
C1,2(S) = 0. Then F(Φ, S) = F(Φ, S).

As we see next, F(Φ, S) = F(Φ, S) may also hold for large but sufficiently
irregular sets S.

Following Saks (1937), p. 262, we define contingents of a set S ⊆ R2. For
points x 6= y ∈ R2, we let l(x, y) denote the line in R2 that contains x and y. If
x is an accumulation point of S, and if l is a line through x, we will say that l
is a contingent of S at x provided there is a sequence of points yn 6= x in S that
converges to x with limn→∞ l(x, yn) = l. We let Contg(S, x) denote the set of all
contingents to S at x. For a subset S ⊆ R2, we say that S has a tangent at x ∈ S
provided that Contg(S, x) contains a unique line. We write T (S) for the set of
points in S at which S has a tangent.

In the same way, if A is a subset of R3, we say that A has a tangent plane h
at x if all contingents of A at x lie in the plane h.

Let T (S) be the set of points in S at which S has a tangent line (if S ⊆ R2)
or a tangent plane (if S ⊆ R3). Our next theorem shows that whether f |S= 0
implies ∇f |S= 0 for a W 2 function f , depends on how big the set T (S) is in
terms of appropriate capacities.

Theorem 6. Let Φ be the Whittle field and S ⊆ Rn, n = 2, 3, be closed. If
C1,2(T (S)) = 0, then F(Φ, S) = F(Φ, S).

P r o o f. To proof of Theorem 6, we use the following elementary result.
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Lemma 1. Let S ⊆ Rn, n = 2, 3, and x0 ∈ S \ T (S). Let the function u,
defined on S, vanish on S and be differentiable at x0. Then ∇u(x0) = 0.

P r o o f. Set v = ∇u(x0). We will show that v = 0. Since u is differentiable
at x0,

u(y) = u(x0)+ < y − x0, v > +o(|y − x0|), as |y − x0| → 0.

Hence, if y approaches x0, the unit vectors (y − x0)/|y − x0| are asymptotically
orthogonal to v. Since x0 /∈ T (A), the set of cluster points of the vectors (y −
x0)/|y − x0| must contain a basis for Rn, n = 2, 3, all elements of which are
orthogonal to v. Thus v = ∇u(x0) = 0.

As the functions in W 2(Rn), n = 2, 3, are continuous but not necessarily
differentiable, it follows from Theorem 3 that if f ∈ W 2(Rn), n = 2, 3, there
exists a set E such that C1,2(E) = 0 and such that f is differentiable at all x ∈ Ec.
Therefore, without loss of generality, we may assume that f is differentiable at
all points x ∈ S. Further, if f(x) = 0 for all x ∈ S, we have by Lemma 3.15 that

C1,2(S \ {x ∈ S : ∇f(x) 6= 0}) ≤ C1,2(T (S)) = 0.

We now apply Theorem 5 to complete the proof.
The Bessel Fields. The family of continuous, mean-zero, stationary Gaussian
fields Φβ = Φ = {φ(x) : x ∈ Rn} which satisfy the stochastic pseudo-differential
equations (6) defines the Bessel fields. Using the same approach as for the Whittle
field, the reproducing kernel Hilber spaces for these fields can be identified with
the Bessel potential spaces Lβ,2(Rn) from 7.

The following resuts concern the equality F(Φβ, S) = F(Φβ, S) for close sets
S ⊂ R2 and will be used in Section 4. These results appeared in Pitt and Robeva
(2003) and the proofs can be found there.

Combining Theorems 1 and 4, gives the following result.

Theorem 7. Let Φβ with k < β ≤ k+1 , for some integer k ≥ 1, be a Bessel
fields of order β. Let S ⊆ R2. Then F(Φβ, S) = F(Φβ, S) iff for any u ∈ Lβ,2,
u |S= 0 implies ∇mu |S= 0 for all integers m with 0 < m ≤ k.

In the range 1 < β ≤ 2 therefore, Cβ−1,2(S) = 0 implies that F(Φβ , S) =
F(Φβ , S). For β > 2, however, Cβ−1,2(S) > 0 for any non-empty set S (see
Remark 1 following Theorem 4 above), and the condition Cβ−1,2(S) = 0 is thus
never applicable. Observe also that if Cβ−m,2(S) = 0 for some integer m, 0 <
m < k, the conditions ∇mu |S= 0, . . . ,∇ku |S= 0 in Theorem 9 are vacuous. In
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addition, when β moves from one of the ranges k < β ≤ k+1, k- positive integer,
to the next, the order of the derivatives involved in Theorem 9 increases by one.

As we just noted, this result immediately implies that F(Φβ , S) = F(Φβ, S)
for any sufficiently small set S satisfying, for k < β ≤ k + 1, Cβ−k,2(S) = 0. As
for the Whittle field, large irregular sets S may also satisfy F(Φ, S) = F(Φ, S).

We have

Theorem 8. Let S be a closed set and T (S) be the set of all x ∈ S for which
S has a tangent line. Let k < β ≤ k + 1, where k ≥ 1 is an integer. Then
Cβ−k,2(T (S)) = 0 implies F(Φβ, S) = F(Φβ, S).

4. Other Random Processes and Fields

In this section, we identify the reproducing kernel Hilber spaces for the Ornstein-
Uhlenbeck process and the Brownian motion on R1, the Lévy Brownian motion,
the fractional Brownian motion on Rn, and a solution of the stochastic heat
equation. For each of these random processes and fields, we give conditions for
spectral synthesis.

The Ornstein-Uhlenbeck Process on R1.

Let Φ be the Orstein-Uhlenbeck process on the line, i.e. Φ is the continuous
stationary Gaussian random process on R1 with mean zero and covariance

ρ(x, y) = ρ(x− y) = e−|x−y|.

Φ is easily seen to have a spectral density of the form ∆(λ) = 1
π

1
1+λ2 and therefore

the reproducing kernel Hilbert space H(Φ) consists of all functions of the form

u(x) =
1

π

∫ ∞

−∞
eiλxf(λ)

dλ

1 + λ2
,

where
∫ ∞
−∞ |f(λ)|2(1 + λ2)−1dλ < ∞. Thus H(Φ) is exactly the Bessel potential

space L1,2 = W 1,2.

By combining Theorems 1 and 4, the following result becomes immediate.

Theorem 9. The Ornstein-Uhlenbeck process Φ on the line satisfies F(Φ, S)
= F(Φ, S) for all closed sets S ⊂ R1.

The Brownian Motion on R1. The Brownian motion on R1 is defined as the
real valued continuous process Φ = {φ(x), x ∈ R1} with independent Gaussian
increments satisfying the conditions φ(0) = 0, Eφ(x) = 0, E|φ(x)−φ(y)|2 = |x−y|
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for any x, y ∈ R1. The distribution of Brownian motion, as with all Gaussian
fields, is completely determined by its covariance function

ρ(x, y) =
1

2
{x+ y − |x− y|}.

It is known (see for example Kailath (1971), p. 242) that the reproducing
kernel Hilbert space H(Φ) for the Brownian motion consists of all absolutely
continuous functions that have square integrable derivatives and that vanish at
x = 0 i.e. H(Φ) = {u : u is absolutely continuous, u(0) = 0, ‖u′‖L2 <∞}. This
can be easily verified by observing that

ρ(x, y) =
1

2
{x+ y − |x− y|} = min(x, y).

Then for any finite collection of points 0 < x1 < x2 < . . . < xk, the linear
combinations of the functions ρ(x1, y), ρ(x2, y), . . . , ρ(xk, y) are piecewise linear
functions equal to xk for y > xk. Thus their derivatives are step functions and
the result follows by density arguments.

We next show that Brownian motion does have the sharp Markov property
for each compact set Γ separating R1 into two open sets D1 and D2.

We will need the following definition. For a compact set S ⊂ Rn we say
that two function spaces L1 and L2 are locally equivalent near A if there is an
open neighborhood U of S for which Cc(U) ∩ L1 = Cc(U) ∩ L2 in the sense that
they contain exactly the same functions, and that as normed function spaces the
two norms are equivalent. Here we have denoted with Cc(U) the space of all
continuous complex valued functions with compact support contained in U .

Theorem 10. Let Φ be Brownian motion on R1 and S ⊂ R1 be compact.
Then F(Φ, S) = F(Φ, S)

P r o o f. It follows from Theorem 1 that F(Φ, S) = F(Φ, S) if and only if any
function u ∈ H(Φ) with u |S= 0 can be approximated in H(Φ) by functions that
vanish on neighborhoods of S. If 0 ∈ S, because for the Brownian motion H(Φ)
is locally equivalent to W 1 away from the origin, we get that the collection of
all functions with compact support u ∈ H(Φ) with u |S= 0 coincides with the
collection {u ∈W 1(R) : u |S= 0}. Thus, by Theorem 4, F(Φ, S) = F(Φ, S).

If 0 /∈ S, then H(Φ) and W 1(R) are equivalent near S and, again, the result
follows.

As a special case we obtain the Blumental’s 0 − 1 law for Brownian motion:
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Corollary 2. For the Brownian motion the germ σ-field for the origin is
trivial, i.e. F(Φ, {0}) = {Ω, ∅}.

P r o o f. We apply Theorem 10 for S = {0} to get F(Φ, {0}) = F(Φ, {0}). Since
the normalizing condition φ(0) = 0 holds, the sharp σ-field F(Φ, {0}) is trivial.
Therefore the germ σ-field F(Φ, {0}) is also trivial.
The Lévy Brownian Motion and the Fractional Brownian Motion. This
is the Gaussian random field Φ on Rn of mean zero and covariance function

ρ(x, y) =
1

2
(|x| + |y| − |x− y|), x, y ∈ Rn.(12)

normalized with the condition φ(0) = 0. The following property is characteristic
of it (McKean, 1963): E|φ(x)−φ(y)|2 = |x−y|. It is clear from (12) that the Lévy
Brownian motion is not stationary but its increments φ(x) − φ(y) are stationary
with Gaussian distribution N(0, |x − y|).

It is known that the Lévy Brownian motion has the following spectral repre-
sentation (Molchan, 1966):

φ(x) =
1√
K

∫

Rn

eix·λ − 1

|λ|n+1
2

Ẇ (λ)dλ, x ∈ Rn,(13)

where Ẇ is Gaussian white noise.
To identify the reproducing kernel Hilbert space H(Φ), notice that, using

(13), the covariance function of Φ can be written as

ρ(x, y) =
1

K

∫

Rn
[eix·λ − 1][e−iy·λ − 1]

dλ

|λ|n+1
.(14)

Further, notice that the functions { eix·λ−1
|λ|(n+1)/2 , x ∈ Rn} form a complete system in

L2(Rn). To see this, let

∫

eix·λ − 1

|λ|(n+1)/2
f(λ)dλ = 0, x ∈ Rn.

Consider the difference of the above integrals for x = y and x = y + z. We get

∫

eiy·λ
eiz·λ − 1

|λ|(n+1)/2
f(λ)dλ = 0, y, z ∈ Rn,

from where
eiz·λ − 1

|λ|(n+1)/2
f(λ) = 0 a.e., z ∈ Rn.
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and thus f(λ) = 0 a.e.

It follows now from (14) that an arbitrary element of the space H(Φ) has the
representation

u(x) = K

∫

Rn

[eix·λ − 1]

|λ|n+1
2

f(λ)dλ.(15)

where f ∈ L2(Rn) and K is a constant depending on the dimension n.

The Lévy Brownian motion corresponds to α = 1 in the family of real valued
Gaussian mean zero random fields Φα, 0 < α < 2, known as the fractional
Brownian motions. The covariance function of Φα has the form

ρ(x, y) =
1

2
(|x|α + |y|α − |x− y|α), x, y ∈ Rn.

It is known (Gangolli, 1967) that for this range of α, Φα is a random field of
stationary increments and can be written as

φ(x) = K

∫

Rn

eix·λ − 1

|λ|n+α
2

Ẇ (λ)dλ,(16)

where now K = Kn,α is a constant depending on the dimension n and α. Thus,
for the covariance function, we have

ρ(x, y) =
1

K

∫

Rn
[eix·λ − 1][e−iy·λ − 1]

dλ

|λ|n+α
.

and applying the same arguments as for the Lévy Brownian motions, we arrive
at the general form of the functions in the reproducing kernel space H(Φα) for
the fractional Brownian motion:

u(x) =

∫

Rn

[eix·λ − 1]

|λ|n+α
2

f(λ)dλ(17)

where f(λ) ∈ L2(Rn).

The following lemma gives the connection between the reproducing kernel
Hilbert spaces H(Φα) and the Bessel potential spaces.

Lemma 2. All functions u in H(Φα) are Hölder continuous of order α/2,

satisfy u(0) = 0, and are locally in the Bessel potential space L n+α
2

,2.
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P r o o f. It is obvious from (17) that u(0) = 0 for all u ∈ H(Φα). Next, if
u ∈ H(Φα), it follows from our discussion in Section 2 that that u has the
representation u(x) = Eηφ(x) where η ∈ H(Φα). Therefore

|u(x) − u(y)| = Eη(φ(x) − φ(y)) ≤
(

E|η|2
)

1
2

(

E|ξ(x) − ξ(y)|2
)

1
2 = K|x− y|α

2 .

Finally, to prove the second part of the statement, let u ∈ H(Φα) and thus
from (17) u can be written as

u(x) =

∫

Rn

[eix·λ − 1]

|λ|n+α
2

f(λ)dλ,

for some function f ∈ L2(Rn). We split the above integral as I1(x)+ I2(x) where

I1(x) = K

∫

|λ|≤1

[eix·λ − 1]

|λ|n+α
2

f(λ)dλ−
∫

|λ|>1

1

|λ|n+α
2

f(λ)dλ =

= K

∫

|λ|≤1

[eix·λ − 1]

|λ|n+α
2

f(λ)dλ+ C,

where C is some constant. For I2(x) we have

I2(x) = K

∫

|λ|>1

eix·λ

|λ|n+α
2

f(λ)dλ = K

∫

|λ|>1

eix·λ

(1 + |λ|2)n+α
4

g(λ)dλ,

where

g(x) =







(1+|λ|2)
n+α

4

|λ|
n+α

2

f(λ) for |λ| > 1

0 for |λ| < 1

.

Therefore, since g ∈ L2(Rn), I2(x) ∈ Ln+α
2

,2. Since I1(x) is real analytic, it is

locally in Ln+α
2

,2 and the claim follows.

Next, we use Theorem 4 to determine whether the sharp and the germ σ-field
for compact sets S ⊂ Rn are equal. The next lemma is almost obvious.

Lemma 3. The space H(Φα) is locally equivalent to the Bessel potential space

Ln+α
2

,2 at points away from the origin.
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P r o o f. From Lemma 2 every u ∈ H(Φα) is locally in Ln+α
2

,2. Now let

v ∈ Ln+α
2

,2. Then v can be written as

v(x) =

∫

eiλ·xf(λ)

(1 + |λ|2)n+α
4

dλ, for some f ∈ L2(Rn).

Therefore v(x) − v(0) ∈ H(Φα) and thus v ∈ H(Φα) if and only if v(0) = 0.
The next result follows from combinig Lemma 2 and Theorem 4.

Theorem 11. Let Φα, 0 < α < 2 be a fractional Brownian motion and

S ⊂ Rn be compact. Then if for any f ∈ L n+α
2

,2 with compact support, f |S= 0
implies Dβf |S= 0 for all multiindices β, 0 < |β| < (n + α)/2, the equality
F(Φα, S) = F(Φα, S) holds.

The following corollary generalizes Theorem 10.

Corollary 3. If Φα, 0 < α ≤ 1 is a fractional Brownian motion over R1

then F(Φα, S) = F(Φα, S) holds for any compact S ⊂ R1.

More detailed results for the fractional Brownian motion can be obtained in the
cases when the dimension n and the parameter α are in a certain relationship.

Theorem 12. Let Φα, 0 < α < 2 be a fractional Brownian motion over Rn,
S ⊂ Rn be compact and 2 < n+ α ≤ 4. Let T (S) be the subset of points in S at
which S has a tangent hyperplane.

(i) If Cn+α
2

−1,2(S) = 0, then F(Φα, S) = F(Φα, S);

(ii) If Cn+α
2

−1,2(S) > 0 but Cn+α
2

−1,2(T (S)) = 0, F(Φα, S) = F(Φα, S) holds.

P r o o f. The result follows from Lemma 3 and from applying Theorems 7 and 8
for β = (n+ α)/2.

As a corollary, we obtain that the Whittle field and the Lévy Brownian motion
on R3 are equivalent with respect to the sharp Markov property for compact sets.

Corollary 4. Let Φ be the Lévy Brownian motion on R3 and let Ψ be the
Whittle field on R3. Then for compact sets S, F(Φ, S) = F(Φ, S) if and only if
F(Ψ, S) = F(Ψ, S).

A Solution of the Stochastic Heat Equation. Consider a continuous
solution Φ with stationary increments of the stochastic differential equation

L(φ) = (
∂

∂t
− ∂2

∂x2
)φ(t, x) = Ẇ (t, x), (t, x) ∈ R2,(18)
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normalized with the condition φ(0, 0) = 0. As always, Ẇ (t, x), (t, x) ∈ R2 is a
Gaussian white noise.

The following steps help to identify the reproducing kernel Hilbert space
H(Φ).

Proposition 3. The field Φ = {φ(t, x), (t, x) ∈ R2} with the representation

φ(t, x) =
1

2π

∫

R2

[ei(λt+µx) − 1]

iλ+ µ2
Ẇ (λ, µ) dλdµ(19)

is a continuous solution of (19) with stationary increments, normalized with the
condition φ(0, 0) = 0.

P r o o f. From (19), the covariance function ρ[(t1, x1), (t2, x2)] has the form

ρ[(t1, x1), (t2, x2)] =

∫

[ei(λt1+µx1) − 1][ei(λt2+µx2) − 1]
dλdµ

λ2 + µ4
.(20)

Since
∫

R2

λ2 + µ2

1 + λ2 + µ2
· dλdµ

λ2 + µ4
<∞,

a theorem of Yaglom (Yaglom, 1957) implies that ρ is a covariance of a continuous
random field with stationary increments. Verifying that the random field (19)
satisfies the equation (18) and that φ(0, 0) = 0 is straightforward.

To obtain the reproducing kernel Hilbert space H(Φ), using arguments similar
to those used for the Lévy Brownian motion, one can verify that the family of
functions

{

[ei(λt+µx) − 1]

(λ2 + µ4)
1
2

, (t, x) ∈ R2

}

is complete in L2(R2). Therefore a function u belongs to the reproducing kernel
Hilbert space H(Φ) for the random field (19) if and only if u can be written as

u(t, x) =

∫

R2

[ei(λt+µx) − 1]

(λ2 + µ4)
1
2

f(λ, µ) dλdµ,(21)

with f ∈ L2(R2).

Notice the lack of isotropy in the space H(Φ) for this field. This example
presents a clear directional dependence suggesting the need for a non-isotropics
capacity as a measure for the negligible sets. Classes of such non-isotropic spaces
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are studied in Nikolskii (1975) Chap.9, and Nikolskii (1991), Chap.5, in the con-
text of establishing imbedding and trace-type theorems. Schmeisser and Triebel
(1987), Chapter 4, study equivalent norms for anisotropic Bessel spaces and inter-
polation results. More recently, such anisotropic spaces are examined by Secchi
(2000), and Farkash (2002) presents atomic decomposition theorems. However,
to study intrinsically anisotropic fields such as (18) above, a satisfactory poten-
tial theory for the corresponding anisotropic function spaces is neeed. It appears
that, to date, this general work has not been done.

Below, we definine a non-isotropic capacity that reflects the non-isotropy of
the space H(Φ) and we use this capacity as a measure of ”smallness” for the

exceptional sets. For our definition we use the kernel L(t, x) = (t2 + x4)−
1
4

to difine the non-isotropic capacity in a way analogues to the definition of the
classical Riesz capacities (see Remarks 1 and 2 following Theorem 4). The general
spectral synthesis problem for closed sets S remains open here, but we obtain
solutions in some special cases.

For a finite positive Borel measure dm(t, x) on R2, define the energy integral
associated with the kernel L by

EL(m) =

∫

R2

dm(t, x)dm(s, y)

[(t− s)2 + (x− y)4]
1
4

.

For a compact set F ⊂ R2 we define the capacity of F , associated with K as

CL(F ) = sup
m

{ 1

EL(m)
: supp m ⊆ F, m(F ) = 1},(22)

with the usual convention 1/∞ = 0. For an arbitrary E ⊆ R2 we define

CL(E) = sup{CL(F ) : F is compact, F ⊂ E}.
Our next lemma characterizes the subsets S of the coordinate axes with CL(S) =
0.

Lemma 4. (i) If S ⊆ Rt = {(t, x) : x = 0}, then CL(S) = 0 if and only if S
has zero Riesz 1/2-capacity;

(ii) If S ⊆ Rx = {(t, x) : t = 0}, then CL(S) = 0.

P r o o f. (i) When restricted to the t-axis the kernel L(t, x) reduces to L(t, 0) =

|t|− 1
2 . For A ⊆ Rt we will thus have CL(S) > 0 if and only if there exists a

measure m supported on S for which

EL(m) =

∫

S×S

dm(t)dm(s)

|t− s| 12
<∞.
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Therefore, for such sets S, CL(S) > 0 if and only if S has zero Riesz 1/2-capacity.
(ii) When restricted to the x-axis the kernel L becomes L(0, x) = |x|−1. Thus

a set S ⊆ Rx will have positive capacity with respect to L if and only if it has
positive Riesz 1-capacity. We now show that if S ⊆ Rx, S has zero Riesz 1-
capacity. By definition of capacity, it is enough to prove this for compact sets
S. But if S ⊂ Rx is compact, its Hausdorff measure Λ1(S) < ∞ and therefore
implies that S has zero Riesz 1-capacity (see Remarks 1 and 2 following Theorem
4). This completes the proof of part (ii).

Our next Theorem gives a complete answer to the question of when are the
sharp and the germ field equal for the random field Φ from (20) for sets S which
are compact subsets of the coordinate axes.

Theorem 13. Let S be a compact set and Φ be the solution (13) of the
stochastic heat equation.

(i) If S ⊂ Rt then F(Φ, S) = F(Φ, S) if and only if CL(S) = 0;
(ii) If S ⊂ Rx then F(Φ, S) = F(Φ, S).

P r o o f. Since S is compact, in the same way as for the fractional Brownin
motion above, it will be enough to show that for the stationary Gaussian random
field

ψ(t, x) =

∫

R2

ei(λt+µx)

(1 + λ2 + µ4)
1
2

Ẇ (λ, µ)dλdµ.

F(Ψ, S) = F(Ψ, S) if and only if CL(S) = 0. Denote the spectral density of Ψ
by ∆(λ, µ) = (1 + λ2 + µ4)−1 and the space of all square integrable with respect
to ∆(λ, µ) functions by L2(∆). Recall that for any closed set E ⊂ R2, we defined
(Section 2)

H(Ψ, E) = s̄p{ei(λt+µs) : (t, x) ∈ E}L2(∆)

and H(Ψ, E) =
⋂

H(Eε) where the intersection is taken over all ε neigborhoods
Eε of E. Since F(Ψ, E) = F(Ψ, E) if and only if H(Ψ, E) = H(Ψ, E). We will
prove that if S is a subset of one of the coordinate axes then H(Ψ, S) = H(Ψ, S)
if and only if CL(S) = 0.

(i) Let S ⊂ Rt and CS(S) > 0. We will show that there exists a function
f(λ, µ) ∈ H(Ψ, S) such that f(λ, µ) /∈ H(Ψ, S), i.e. H(Ψ, S) 6= H(Ψ, S).

Let f(λ, µ) ∈ H̄(Φ, S). Then since S ⊂ Rt is bounded, it follows from a
version of Paley-Wiener’s theorem ([Pit 73, Lemma 3.1]) that f(λ, µ) is an entire
function of exponential type which, as a function of µ, is of minimal exponential
type. But a function f(λ, µ) that is in L2(∆) must, for almost all fixed λ, be

in L2
(

1
1+µ4

)

. Thus, since µ 7→ f(λ, µ) is of minimal exponential type, f(λ, µ)
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must be linear as a function of µ. Therefore f(λ, µ) = g(λ)+h(λ)µ, where, since
f ∈ L2(∆), we have

∫

R2

|h(λ)|2µ2

1 + λ2 + µ4
dλdµ <∞.

After integrating out the variable λ, the above condition gives h ∈ L2((1+λ2)−
1
4 ).

We will show now that because CL(S) > 0, h(λ) can be taken to be the Fourier
transform of a measure m, supported on S.

Since CL(S) > 0, it follows from Lemma 4 (i) that there exists a measure m,
supported on S, with finite 1/2-energy, i.e.

E 1
2
(S) =

∫

S

∫

S

dm(t)dm(s)

|t− s| 12
<∞.

This last statement is (in Fourier variables) equivalent to

E 1
2
(S) =

∫

R2

|m̂(λ)|2

|λ| 12
dλ <∞,

and since S is bounded, equivalent to m̂(λ) ∈ L2((1 + λ2)−
1
4 ). Therefore, if

we take h(λ) = m̂(λ), the function f(λ, µ) = h(λ)µ belongs to H̄(Ψ, S) but is
obviously not in H(Ψ, S). Thus H(Ψ, S) 6= H̄(Ψ, S).

Next, let CL(S) = 0. We will show that H(Ψ, S) = H̄(Ψ, S). As in the
previous case, if f ∈ H̄(Ψ, S), then f(λ, µ) = g(λ) + h(λ)µ where h ∈ L2((1 +

λ2)−
1
4 ). We will show that CL(S)=0 implies h(λ) = 0. Since h ∈ L2((1+λ2)−

1
4 ),

h is the Fourier transform of a W− 1
4 (R1) distribution T supported on S, i.e.

T (φ) = 0 if supp φ ∈ R2 \ S. Therefore T (u) = 0 for all u ∈ W
1
4 that can

be approximated by functions in W
1
4 that vanish on the set S. By the classical

spectral synthesis result of Beurling and Deny, this will be the whole space W
1
4

if C 1
4
,2(S) = 0. Since C 1

4
,2(S) = 0 if and only if the 1/2-Riesz capacity of S is

zero, we get that T (u) = 0 for all u ∈W
1
4 , which shows that T and thus h vanish

identically. We therefore have f(λ, µ) = g(λ). Since f ∈ L2(∆),

∫

R2

|g(λ)|2
1 + λ2 + µ4

dλdµ = C

∫

R2

|g(λ)|2

(1 + λ2)
3
4

dλ <∞,

which shows that g(λ) is a Fourier transform of aW − 3
4 (R1) distribution supported

on S. Thus g(λ) can be approximated in L2( 1

1+λ
3
2
) by Fourier transforms of
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measures supported on S, which shows that f(λ, µ) = g(λ) ∈ H(Ψ, S). Since f
was arbitrary, we get H(Ψ, S) = H̄(Ψ, S). This completes the proof of part (i).

(ii) Let S ⊂ Rx. We will show that H(Ψ, S) = H̄(Ψ, S).

Let f ∈ H̄(Ψ, S). Since S ⊂ Rx and S is compact, it follows from the Paley-
Wiener theorem that f(λ, µ) is an entire function of exponential type, which is
of minimal type as a function of λ. Since f ∈ L2(∆), ∆ = (1 + λ2 + µ4)−1, for
almost all fixed µ we have f ∈ L2( 1

1+λ2 ). Because the function λ 7→ f(λ, µ) is of
minimal exponential type, we must have f(λ, µ) = g(µ) and therefore

∫

R2

g(µ)

1 + λ2 + µ4
dλdµ <∞.

Integrating out the variable λ, this gives that g ∈ L2( 1
1+µ2 ). Thus g(µ) is the

Fourier transform of a W−1 distribution supported on S and is therefore a limit
in L2( 1

1+µ2 ) of Fourier transforms of measures supported on S. This shows that

f(λ, µ) = g(µ) ∈ H(Ψ, S). Since f was arbitrary, we obtain H̄(Ψ, S) = H(Ψ, S).
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