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AN ESTIMATE OF THE PROBABILITY Pr(X < Y )

Saralees Nadarajah, Georgi K. Mitov, Kosto V. Mitov1

In the area of stress-strength models there has been a large amount of work
as regards estimation of the probability R = Pr(X < Y ) when X and Y
are independent random variables belonging to the same univariate family
of distributions. In this paper we propose an estimate of this quantity based
on a simple property of the uniform distribution. We illustrate the use of
the estimate with bootstrap confidence intervals for four commonly known
distributions (normal, exponential, gamma and beta).

1. Introduction

Let X and Y be independent random variables with probability density functions
(pdfs) fX , fY and cumulative distribution functions (cdfs) FX , FY . With this
notation, one can write

R = Pr (X < Y ) =

∫
∞

−∞

∫ x

−∞

fX(u)fY (x)dudx =

=

∫
∞

−∞

FX(x)fY (x)dx =

∫
∞

−∞

FX(x)dFY (x).(1)

In an earlier paper of Birnboum and MaCarty [1] the authors studied a distri-
bution-free upper confidence bound for this probability, based on independent
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samples of X and Y . They submitted an estimate obtained by substituting
in (1), the corresponding empirical CDF F̂X(x) and F̂Y (y) obtained from the
independent samples x1 ≤ x2 ≤ . . . ≤ xm and y1 ≤ y2 ≤ . . . ≤ yn, i.e.

R̄ =

∫
∞

−∞

F̂X(x)dF̂Y (x) =
U

mn
,(2)

where

U = number of pairs (xi, yj) such that xi < yj,(3)

is the Wilcoxon-Mann-Whitney statistics.

The above statistics is applicable in the case when the samples consist of non
grouped observations, but in case of grouped observations it must be changed in
an appropriate way.

In the present note we provide another distribution-free estimate of R which
is applicable for grouped and non grouped observations.

It is based on the following simple observation for the uniform distribution.

2. Uniform Distribution

Let X ∈ U(a, b) and Y ∈ U(c, d) be independent uniform random variables. The
expression for Pr(X < Y ) will depend on the relative positions of a, b, c and d.

So, in the case when a < b ≤ c < d, i.e. the support of X is to the left of the
support of Y, Pr(X < Y ) = 1. If c < d ≤ a < b, it is clear that Pr(X < Y ) = 1.

Suppose now that the supports have non empty intersection. We consider
one possible case only. Assume that a < c < b < d, i.e. [a, b]

⋂
[c, d] = [c, b] 6= ∅.

In this case, it is easily seen that

Pr (X < Y |X ∈ [a, c], Y ∈ [c, b]) = 1,

Pr (X < Y |X ∈ [a, c], Y ∈ [b, d]) = 1,

Pr (X < Y |X ∈ [c, b], Y ∈ [b, d]) = 1

and

Pr (X < Y |X ∈ [c, b], Y ∈ [c, b]) =
1

2
.
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The last relation follows from the fact that

Pr (X < Y |X ∈ [c, b], Y ∈ [c, b])

=
Pr (X < Y,X ∈ [c, b], Y ∈ [c, b])

Pr (X ∈ [c, b], Y ∈ [c, b])

=

∫
∞

−∞

Pr (X < Y,X ∈ [c, b]|Y = y ∈ [c, b]) dPr(Y ≤ y)

Pr(X ∈ [c, b]) Pr(Y ∈ [c, b])

=

∫ b

c

Pr (X < y,X ∈ [c, b]) dPr(Y ≤ y)

Pr(X ∈ [c, b]) Pr(Y ∈ [c, b])

=

∫ b

c

Pr(c < X ≤ y)dPr(Y ≤ y)

Pr(X ∈ [c, b]) Pr(Y ∈ [c, b])

and since

Pr(X ∈ [c, b]) =
b − c

b − a
, Pr(Y ∈ [c, b]) =

b − c

d − c
,

Pr(c < X ≤ y) =
y − c

b − a
, dPr(Y ≤ y) =

dy

d − c
.

Thus, by the total probability formula, one obtains

Pr(X < Y ) = Pr(X ∈ [a, c]) Pr(Y ∈ [c, b]) + Pr(X ∈ [a, c]) Pr(Y ∈ [b, d])

+ Pr(X ∈ [c, b]) Pr(Y ∈ [b, d]) +
1

2
Pr(X ∈ [c, b]) Pr(Y ∈ [c, b]).

In the other cases of intersection of supports the calculations are similar.

The fact that Pr(X < Y |X,Y ∈ I) =
1

2
, where I is a given interval can be

generalized easily for densities which are simple functions. Let us note that a
histogram we build on the base of a sample is a function of this type.

This property of the uniform distribution is used in the unpublished paper
[6] for ordering of stochastic numbers in the stochastic arithmetic.

3. Simple Densities

Here, we extend the above formulas to the case when the pdfs of X and Y are
simple functions, i.e.

fX(x) = pn ≥ 0, for all x ∈ (xn−1, xn]
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and

fY (y) = qn ≥ 0, for all y ∈ (xn−1, xn]

for n ∈ Z = {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}.
For densities of this kind it is not difficult to check that for any two given

intervals (xn−1, xn] and (xm−1, xm]:

1. If n < m, i.e. xn ≤ xm−1 then

Pr (X < Y,X ∈ (xn−1, xn] , Y ∈ (xm−1, xm])

= pnqm (xn − xn−1) (xm − xm−1) .

2. If n = m, i.e. (xn−1, xn] ≡ (xm−1, xm] then

Pr (X < Y,X ∈ (xn−1, xn] , Y ∈ [xn−1, xn]) =
1

2
pnqn (xn − xn−1)

2 .

3. If n > m, i.e. xn−1 ≥ xm then

Pr (X < Y,X ∈ (xn−1, xn] , Y ∈ (xm−1, xm]) = 0.

Thus, by the total probability formula, one obtains the exact formula:

Pr(X < Y ) =
∞∑

m=−∞

m−1∑

n=−∞

Pr (X ∈ (xn−1, xn]) Pr (Y ∈ (xm−1, xm])

+
1

2

∞∑

n=−∞

Pr (X ∈ (xn−1, xn]) Pr (Y ∈ (xn−1, xn])

=

∞∑

m=−∞

m−1∑

n=−∞

pnqm (xn − xn−1) (xm − xm−1)

+
1

2

∞∑

n=−∞

pnqn (xn − xn−1)
2 .(4)

4. Continuous Densities

Now we turn to the continuous case. Suppose that X and Y are independent
continuous random variables with pdfs fX(x) and fY (y). Then for every m,n ∈ Z



An estimate of the probability Pr(X < Y ) 163

we have

Pr (X ∈ (xn−1, xn] , Y ∈ (xm−1, xm])

= Pr (X ∈ (xn−1, xn]) Pr (Y ∈ (xm−1, xm])

=

(∫ xn

xn−1

fX(x)dx

)(∫ xm

xm−1

fY (y)dy

)

= fX (ξn) fY (ηm) (xn − xn−1) (xm − xm−1) ,

where the last step follows by the mean value theorem for definite integrals for
ξn ∈ (xn−1, xn) and ηm ∈ (xm−1, xm). Note that one can estimate

fX(x) ≈ fX (ξn) , for all x ∈ (xn−1, xn]

and

fY (y) ≈ fY (ηn) , for all y ∈ (xn−1, xn]

for n ∈ Z. Using these relations and (4), one obtains the estimate

Pr(X < Y ) ≈
∞∑

n=−∞

n−1∑

m=−∞

fX (ξm) fY (ηn) (xn − xn−1) (xm − xm−1)

+
1

2

∞∑

n=−∞

fX (ξn) fY (ηn) (xn − xn−1)
2 .(5)

It is not difficult to see that the first summand on the right hand side of (5)
tends to Pr(X ∈ (xn−1, xn]) Pr(Y ∈ (xm−1, xm]) when the maximum length of
intervals [xn−1, xn) approaches 0. The second summand vanishes to 0 under the
same operation. Thus, if we consider a family of sequences {xk

n, n ∈ Z}∞k=1 such
that

dk = sup
(
x(k)

n − x
(k)
n−1

)
→ 0, k → ∞

then the right hand side of (5) would tend to the exact value of the probability
R given by (1).

5. An Algorithm

Here, we provide an algorithm for estimating R applicable for both simple and
continuous pdfs and for grouped or non grouped data too.

1. Case of non grouped data.
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• Suppose one has independent samples of X and Y :

x1, x2, . . . , xn1

and

y1, y2, . . . , yn2
.

Let z[1] ≤ z[2] ≤ · · · ≤ z[n] denote the order statistics of the pooled sample,
where n = n1 + n2.

• Let m be an integer m < min(n1, n2). Partition the interval [z[1], z[n]] into m
segments (ti−1, ti], i = 1, 2, . . . ,m of equal length ti − ti−1 = (z[n] − z[1])/m.

• Estimate the probabilities

Pr (X ∈ (ti−1, ti])

and

Pr (Y ∈ (ti−1, ti])

by

p̂i =
#{x1, . . . , xn1

} ∈ (ti−1, ti]

n1

and

q̂i =
#{y1, . . . , yn2

} ∈ (ti−1, ti]

n2
,

respectively, for i = 1, 2, . . . ,m.

• By (5), the estimate for R is:

R̂ =

m∑

i=2

i−1∑

j=1

q̂ip̂j +
1

2

m∑

i=1

p̂iq̂i.(6)

2. Case of grouped data.
Suppose that the observations of X are grouped into M intervals

[x1, x2], (x2, x3], . . . , (xM , xM+1]
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and that the observations of Y are grouped into N intervals

[y1, y2], (y2, y3], . . . , (yN , yN+1].

Since there is no any information about the distribution of the observations inside
the intervals, i.e. the observations are uniformly distributed in each interval we
can construct a joint set of intervals

[t0, t1], (t1, t2], . . . , (tm−1, tm]

for both samples as follows

min{M,N} ≤ m ≤ max{M,N},

t0 = min{x1, y1}, tm = max{xM , yN},

h = (tm − t0)/m, tl = t0 + lh, l = 1, . . . ,m.

Now the observations can be redistributed from the initial intervals into the
new ones proportionally on their lengths.

This estimate has the appeal of being simple and does not depend on the pa-
rameters of the distributions. Moreover, it is not necessary the random variables
X and Y belong to the same family of distributions.

It would be of interest to investigate the sampling properties of (6) such as
unbiasedness, consistency and the asymptotic distribution. This would be the
subject of a follow-up paper.

6. Examples

In this section, we illustrate the use of (6) with bootstrap confidence intervals
for the four most commonly known statistics distributions: normal, exponential,
gamma and the beta distributions. From each of these distributions, we simulated
two samples with n1 = 100 and n2 = 100. We took m = 40. Bootstrap confidence
intervals (CIs) were constructed by producing 1000 replications of the estimate
given by (6). All the calculations were performed by using the R language (Ihaka
and Gentleman, 1996).

6.1. Normal Distribution

For normally distributed random variables, we simulated X ∈ N(0, 1) and Y ∈
N(µ, 1) for µ = −3.0,−2.9, . . . , 2.9, 3.0. The exact value of R = Pr(X < Y ) is
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easily calculated by the simple formula (see Downton (1973)):

R = Φ

(
µ√
2

)
,(7)

where Φ(·) denotes the cdf of the standard normal distribution. The results of
the simulations are illustrated graphically in Figure 1.
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Figure 1: Estimates of Pr(X < Y ) with 95% bootstrap confidence intervals for
X ∈ N(0, 1), Y ∈ N(µ, 1) and µ = −3.0,−2.9, . . . , 2.9, 3.0. The solid curve gives
the exact values of Pr(X < Y ) computed using (7).



An estimate of the probability Pr(X < Y ) 167

6.2. Exponential Distribution

For exponentially distributed random variables, we simulated X ∈ Exp(1) and
Y ∈ Exp(λ) for λ = 1.0, 1.1, . . . , 5.9, 6.0. The exact value of R = Pr(X < Y ) is
easily calculated by the simple formula:

R =
1

1 + λ
;(8)

see Nadarajah (2003). The results of the simulations are shown graphically in
Figure 2.
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Figure 2: Estimates of Pr(X < Y ) with 95% bootstrap confidence intervals for
X ∈ Exp(1), Y ∈ Exp(λ) and λ = 1.0, 1.1, . . . , 5.9, 6.0. The solid curve gives the
exact values of Pr(X < Y ) computed using (8).

6.3. Gamma Distribution

For gamma distributed random variables, we simulated X ∈ Gamma (1, 1) and
Y ∈ Gamma (λ, 1) for λ = 1.0, 1.1, . . . , 3.9, 4.0. The exact value of R = Pr(X <
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Y ) is calculated by the formula (see Nadarajah (2003)):

R = 2−(1+λ)
2F1

(
1, 1 + λ; 2;

1

2

)
,(9)

where 2F1 denotes the Gauss hypergeometric function defined by

2F1 (a, b; c;x) =
∞∑

k=0

(a)k(b)k
(c)k

xk

k!
.

The results of the simulations are shown graphically in Figure 3.
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Figure 3: Estimates of Pr(X < Y ) with 95% bootstrap confidence intervals for
X ∈ Gamma(1, 1), Y ∈ Gamma(λ, 1) and λ = 1.0, 1.1, . . . , 3.9, 4.0. The solid
curve gives the exact values of Pr(X < Y ) computed using (9).
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6.4. Beta Distribution

In this example, we simulated X ∈ Beta(a1, b1) and Y ∈ Beta(a2, b2). The exact
value of R = Pr(X < Y ) is (see Nadarajah (2002)):

R =
B (a1 + a2, b2) 3F2 (a1, 1 − b1, a1 + a2; 1 + a1, a1 + a2 + b2; 1)

a1B (a1, b1)B (a2, b2)
,(10)

where B(·, ·) denotes the Beta function defined by

B(a, b) =

∫ 1

0
ta−1(1 − t)b−1dt

and 3F2 denotes the hypergeometric function defined by

3F2 (a, b, c; d, e;x) =

∞∑

k=0

(a)k(b)k(c)k
(d)k(e)k

xk

k!
.

The results of the simulations are given in Table 1.

Table 1: X ∈ Beta(a1, b1), Y ∈ Beta(a2, b2)

a1 b1 a2 b2 Exact Value 95% CI

0.8 0.5 0.8 0.5 0.499 (0.404, 0.563)

0.8 0.5 0.5 0.8 0.300 (0.207, 0.338)

0.9 0.5 0.7 0.4 0.505 (0.457, 0.620)

0.9 0.5 0.4 0.7 0.265 (0.187, 0.319)

0.2 1.5 0.9 2.0 0.827 (0.710, 0.846)

1.5 0.2 0.9 2.0 0.047 (0.025, 0.091)

2.0 0.5 0.5 2.0 0.043 (0.034, 0.095)

0.5 2.0 0.5 2.0 0.563 (0.407, 0.578)

2.0 3.0 2.0 3.0 0.500 (0.451, 0.621)

2.0 3.0 3.0 2.0 0.243 (0.203, 0.344)

2.0 3.0 4.0 5.0 0.576 (0.448, 0.606)

2.0 3.0 5.0 4.0 0.727 (0.612, 0.766)

The exact values were computed using (10).
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