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A MODIFIED MODEL OF RISK BUSINESS

Leda D. Minkova!

We consider the risk model in which the claim counting process {N(¢)} is
a modified stationary renewal process. {N(¢)} is governed by a sequence of
independent and identically distributed inter-occurrence times with a com-
mon exponential distribution function with mass at zero equal to p > 0.
The model is called a Polya - Aeppli risk model. The Cramér - Lundberg
approximation and the martingale approach of the model are given.

1. Introduction

Assume that the standard model of an insurance company, called risk process
{X(t),t > 0} is given by

0

N(t)
(1) Xt)=ct—=Y Zr, (O =0)
k=1

1

Here ¢ is a positive real constant representing the risk premium rate. The
sequence {Z;}72, of mutually independent and identically distributed random
variables with common distribution function F', F(0) = 0, and finite mean value
w is independent of the counting process N(t), ¢ > 0. The process N(t) is
interpreted as the number of claims on the company during the interval [0,¢]. In
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the classical risk model the process N(t) is a homogeneous Poisson process, see
for instance [1] and [6].

The Poélya - Aeppli distribution is a generalization of the classical Po(\)
distribution, by adding a new parameter p, see [2]. It appears in [4] and [5] as a
compound Poisson distribution. The additional parameter p is called an inflation
parameter. The Pdélya - Aeppli process as a generalization of the Poisson process
is defined in [3].

We will suppose that N(t) is described by the Pélya - Aeppli distribution
with mean function ﬁt, ie.

e M, n=~0
(2) P(N(t) = n) = { e~ Z?:l (?Z:%)Mpn—z7 n=1,2,....

In this section we will discus briefly the basic properties of the Pélya - Aeppli
process.

In [3] is proved that the non-negative random variables 77,75, ..., represent-
ing the inter- arrival times are mutually independent. The time 77 until the first
epoch is exponentially distributed with parameter A. T5,T3,... are identically
distributed as a random variable T5. Moreover 7% is zero with probability p, and
with probability 1 — p exponentially distributed with parameter A, i.e. T5 is ex-
ponentially distributed with mass at zero equal to p. The probability distribution
function is given by

Fr,t)=1—(1—-ple ™, t>0.
The mean value is ETy = %.

The process, described above is a delayed renewal process. It is easy to verify
that the probability distribution functions of the delay 77 and the inter - arrival
times satisfy the following relation

1 t
Fr, = o /0 1 — P, (u)du.

In this case the delayed renewal process is the only stationary renewal process.
So, the Pdlya - Aeppli process is a homogeneous process and if p = 0 it becomes
a homogeneous Poisson process.

In this paper we need also the probability generating function (pgf) of the
Pélya - Aeppli process. It is given by

Py (s) = 1.
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The Pélya - Aeppli risk model is defined in [3]. The probability of ruin and
the Cramér - Lundberg approximation are derived. In this paper the martingale
approach is given.

2. The Polya - Aeppli risk model

We consider the risk process X(¢), defined by (1), where N(¢) is the Pdlya -
Aeppli process, independent of the claim sizes Zp,k = 1,2,.... This process is
called a Pdlya - Aeppli risk model.

The relative safety loading 6 is defined by

_cl=p)—u _c(-p)

3 0 -1
and in the case of positive safety loading 6 > 0, ¢ > 1/\7“[).
Let
1 x
Fr(x) = —/ [l — F(2)]dz
K Jo

be the integrated tail distribution of the claim size. Let us define the function
A

(4) H(2) = pF(2) + "2 Fi(2)

and note that

H(oo):pF(oo)—&—%/Ooo[l—F(z)]dz:p+)\TM<1.

Denote by
7(u) = inf{t > 0,u + X (¢) <0}

the time to ruin of a company having initial capital u. We let 7 = oo, if for all
t>0u+X(t) > 0.
The probability of ruin in the infinite horizon case is

U(u) = P(1(u) < o0)
and in the finite horizon case
U(u,t) = P(r(u) <t).

Assume that there exists a constant R > 0 such that

(5) /OO e®dH(2) =1,

0
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where H (z) is given by (4), and denote h(R) = [;° ef*dF(z) — 1.
The following proposition, proved in [3] is an analogue of the corresponding
approach to the classical risk model.

Proposition 1. Let, for the Pdlya-Aeppli risk model, the Cramér condition
(5) holds and h'(R) < oco. Then

0
1- N Ru: 1%
® 0 W = G R W (R) — (1 T 0)
where
1—[1—pu(1+0R
A(,0.R,p) = 2= L= pLTO)Elp.

L—p

The relation (5) is known as the Cramér condition and the constant R, if it
exists, as the adjustment coefficient or Lundberg exponent for the Pdlya-Aeppli
risk model.

If p =0, A(1,0,R,0) = 1 and (6) coincides with the Cramér - Lundberg
approximation for the classical risk model [1].

3. Martingales for the Pdlya-Aeppli risk model

Let us denote by (F;X) the natural filtration generated by any stochastic process
X(t). (F) is the smallest complete filtration to which X (¢) is adapted.

Let us denote by LSz(r) = [;° e "dF(z) the Laplace-Stieltjes transform
(LS-transform) of any random variable Z with distribution function F'(x).

Lemma 1. For the Pdlya-Aeppli risk model
Eeer(t) _ 6g(?")t7

where

1

g(r) = m[ﬂCTLSZ(—T) + ANLSz(—r)—1) —cr].

Proof. Let us consider the random sum from the right hand side of (1)

N(t)
Si=Y_ Z,
k=1
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where N(t) is a Polya-Aeppli process, independent of Zx, k = 1,2,.... S; is a
compound Pélya-Aeppli process and the LS- transform is given by

A\ 1-LS(r)

LSSt (7") = PN(t)(LSZ(T)) =¢e TTT-pLS0,
For the LS-transform of X (¢) we have the following
LSX(t) (7”) _ Eeer(t) — Eefr[ctfst] — efrctEerSt —
1-LS(—r)
— e Py (LSz(—1)) = o Tety TS — 9()E

From the martingale theory we get the following
Lemma 2. For all r € R the process

Mt _ efv"X(t)fg(r)t7 t> 0

is an F;X -martingale, provided that LSz(—r) < co.

4. Martingale approach to the Pdlya-Aeppli risk model

Using the martingale properties of My, we will give some useful inequalities for
the ruin probability.

Proposition 2. Letr > 0. For the ruin probabilities of the Pdlya-Aeppli risk
model we have the following results

i) W(u,t) < e T supgege; 970 <t < oo

i) Wlu) < e " supgsged)s.

iit) If the Lundberg exponent R exists, then R is the unique strictly positive
solution of

(7) pcrLSz(—r) + AM(LSz(—r) —1) —cr =0
and U(u) < e~ Ru,

Proof. i) For any ty < oo, the martingale stopping time theorem yields the
following

1= MO = EMto/\T = E[Mto/\‘IHT S t] + E]Mto/\‘l‘vT > t] 2

> E[Mypr, 7 < t] = E[e X090 |7 < 4]P(r < 1),
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from which

—Tru

e
P(r<t)= Ele=90T|r <t]’

The statement i) follows from the above relation.
ii) follows immediately from i) when ¢t — oc.
iii) The Cramér condition (5) becomes

p/ooo e dF (z) + % /000 e’(1— F(x))dz = 1.

Using

it can be written as

pLSz(—r) + %(LSZ(—T) -1)=1

This is equivalent to the equation (7).
Let us denote

f(r) = perLSz(—r) + M(LSz(—r) — 1) — cr.

So R is a positive solution of f(r) = 0. Because f(0) =0, f'(0) = Ay — (1 —
p)e < 0 and f"(r) = (per + N)LS,(—r) + 2pcLS,(—r) > 0 there is at most one
strictly positive solution. O

Remark 1. The equation (7) is equivalent to g(r) = 0.

Remark 2. The above inequalities are well known for the classical risk mo-
del. In the case of p = 0 the Pdlya - Aeppli risk model becomes the classical risk
model. The Cramér condition (5) and the function g(r) are the same, see [7].
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