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ESTIMATION OF THE OFFSPRING MEAN IN A GENERAL

SINGLE-TYPE SIZE-DEPENDENT BRANCHING PROCESS

Christine Jacob, Nadia Lalam

We consider a general single-type size-dependent branching process {Nn}n

satisfying Nn =
∑ξ(Nn−1)

i=1 Yn,i(Nn−1), for all n, where the offsprings {Yn,i}i

are identically distributed with mean mn(N) when the size of the population

isN . We assume thatmn(N) may be written: mn(N) = m
(1)
n (N)+m

(2)
n (N),

where m
(1)
n (.) depends on an unknown parameter θ0 of finite dimension

and m
(2)
n (.) may be unknown and is assumed to be negligible relatively to

m
(1)
n (.), as n → ∞. We estimate θ0 on the non-extinction set {limNn 6= 0}

from observations in the time interval [h + 1, n] by using the conditional
least squares method. The estimation is done in the approximate model

m
(1)
n (.) +

̂
m

(2)
n (.), where

̂
m

(2)
n (.) is given. We study the strong consistency

of the estimator with either h or n − h remaining constant as n → ∞. We
prove the strong consistency of the estimator for any value {νn}n of the
nuisance parameter, under some very general conditions on the behavior of
the process. The rate of convergence is calculated for a particular subclass
of this model.

1. Introduction

In this paper, we deal with the estimation of the offspring mean of a general
single-type size-dependent and Markovian branching process in discrete time.
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The size Nn+1 of the population at generation n+ 1 is defined by

Nn =

ξ(Nn−1)∑

i=1

Yn,i(Nn−1),(1)

where ξ(N) ∈ N \ {0} and the offspring variables {Yn,i(N)}i are assumed iden-
tically distributed. Their law, given the past of the process may depend on
the time and on the size N of the population. Denote mn(N) = E(Yn,1(N)),
σ2
n(N) = V ar(Yn,1(N)) and σn,i,j(N) = Cov(Yn,i(N), Yn,j(N)). We assume

σ2
n(N) ≤ σ2

NN
βN
+ , sup

N
σ2
N <∞(2)

σn,i,j(N) ≤ σ2
Nξ

−1(N)NβN
+(3)

where N+ = max{N, 1} and βN is a known real deterministic sequence. For
simplifying the notations, we will write m(.), σ2(.), σi,j(.) instead of mn(.), σ

2
n(.),

σn,i,j(.). The initial size N0 is given. At the opposite of usual branching models,
we do not assume here the independency of the {Yn,i(N)}i. The relaxing of
this assumption allows to describe under this general model a very large number
of models with independent individuals, including the Bienaym-Galton-Watson
process, the usual size-dependent process with independent offsprings, processes
with individual or familial migrations, or processes with an increasing number of
ancestors:

1. The BGW (Bienaymé-Galton-Watson) process which was introduced by
Bienaymé [2] and Galton and Watson [12] for modelling the evolution of family
names and explaining mathematically their extinction:

Nn =

Nn−1∑

i=1

Zn,i; {Zn,i}i i.i.d. (mZ , σ
2
Z)

=

Nn−1,+∑

i=1

Zn,i1{Nn−1>0},

Therefore Yn,i(Nn−1) = Zn,i1{Nn−1>0}, ξ(N) = N+
definition

= max{N, 1},

m(N) = mZ1{N>0}; σ
2(N) = σ2

Z1{N>0}; σi,j(N) = 0.

2. The controlled BGW branching process which allows familial migrations
and the behavior of which was studied by Sevast’yanov and Zubkov [48], Yanev
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[58], Yanev G. and Yanev [61], Gonzlez, Molina and del Puerto [14], . . . :

Nn =

φ(Nn−1)∑

i=1

Zn,i =

φ+(Nn−1)∑

i=1

Zn,i1{φ(Nn−1)>0},

where the {Zn,i}i are i.i.d.(mZ , σ
2
Z). Consequently Yn,i(N) = Zn,i1{φ(N)>0},

ξ(N) = φ+(N) = max{φ(N), 1} and

m(N) = mZ1{φ(N)>0}, σ
2(N) = σ2

Z1{φ(N)>0}, σi,j(N) = 0.

The number of familial migrations when the size of the population is N is equal
to N − φ(N).

3. The size-dependent model with independent offsprings:

Nn =

Nn−1∑

i=1

Zn,i(Nn−1)

where the {Zn,i(N)}i are i.i.d. (mZ(N), σ2
Z(N)) with

mZ(N) = m+O(N−α); m ≥ 1, α > 0

σ2
Z(N) ≤ σ2Nβ; 0 ≤ β < 1.

Then

Nn =

Nn−1,+∑

i=1

Zn,i(Nn−1)1{Nn−1>0}

implying Yn,i(N) = Zn,i(N)1{N>0}, ξ(N) = N+ and

m(N) = mZ(N)1{N>0}, σ
2(N) = σ2

Z(N)1{N>0}, σi,j(N) = 0.

The size-dependent model which was introduced by Levina et al. [35] was studied
from its asymptotic behavior point of view by Fujimagari [11], Hopfner [18], Kle-
baner ([26], [27]), Kuester [28], Kersting ([24], [25]), Jagers ([20], [21]), Labkovskij
[29], Pierre Loti Viaud ([43], [44]), and in the particular case of the Q-PCR
(Quantitative Polymerase Chain Reaction), by Jagers and Klebaner [22]. Lalam,
Jacob and Jagers [33] gave a CLSE (Conditional Least Squares Estimator) of the
offspring mean.

We will refer to this model as the “Klebaner-Kersting” model.
4. The size-dependent model with thresholds, which is just a generalization

of the previous model. We assume that there exists a finite partition of N,
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N = ⊕I
i=1Ni, such that m(N) =

∑I
i=1mi(N)1{N∈Ni}. An example is given

by Lalam et al. [19], [33] in the frame of the Q-PCR, where they model the
amplification process first by a BGW until a threshold and then by a near-critical
size-dependent process, and they give a CLSE of the offspring mean.

5. The BGW process with migrations

Nn =

Nn−1∑

i=1

Zn,i + δEn (Nn−1)En + δIn(Nn−1)In,

where the {Zn,i}n,i}i are i.i.d (mZ , σ
2
Z), the {En}n are i.i.d. (λE , b

2
E) the {In}n are

i.i.d. (λI , b
2
I), the {δEn (N)}n are independent Bernoulli variables with E(δEn (N))=

p(N) with p(0) = 0, the {δIn(N)}n are independent Bernoulli variables with
E(δIn(N)) = q(N), p(N)+ q(N) ≤ 1 and the different kinds of variables {Zn,i}n,i,
{δEn (N)En}n,i, {δ

I
n(N)In}n,i are mutually independent. This implies

Nn =

Nn−1,+∑

i=1

Yn,i(Nn−1)

Yn,i(N) = Zn,i1{N>0} + δEn (N)
En

N+
+ δIn(N)

In

N+

m(N) = mZ1{N>0} +
p(N)λE + q(N)λI

N+

σ2(N) = σ2
Z1{N>0} +

p(N)b̃2E(N) + q(N)b̃2I(N)

N2
+

σi,j(N) =
p(N)b̃2E(N) + q(N)b̃2I(N)

N2
+

, i 6= j

b̃2E(N) = b2E + λ2
E(1 − p(N))

b̃2I(N) = b2I + λ2
I(1 − q(N))

ξ(N) = N+ = sup{N, 1}.

In the case p(.) = 0, q(.) = 1, the process is a BGW process with immigration in
every state. Its behavior was studied by Quine and Seneta [45], Pakes ([41], [42])
Heyde and Seneta [16], Heyde and Leslie [17], Yanev ([56],[57], [59]), Venkatara-
man ([50],[51]), Wei and Winnicki ([52],[53]), . . . . The process with immigration
stopped at 0 was also studied by several authors, mainly Seneta (see for example
[47]). The BGW processes with random migrations defined by p(.) = p1{N>0},
q(.) = q, p+ q ≤ 1 was studied by Nagaev [40], Yanev G. and Yanev ([62], [63],
[64]). In the frame of a Bellman-Harris process, Mitov and Yanev ([36], [37], [38])
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studied the BGW processes with immigration in the state 0 defined by p(.) = 0,
q(N) = 1{N=0} and which is a particular case of the previous BGW with random
migrations.

6. The branching process with an increasing random number of ancestors
N0,n

n→∞
→ ∞. This kind of process may be useful for studying asymptotics prop-

erties of estimators in a branching process which dies out a.s. when N0 is fixed
(subcritical or critical processes). This model has been introduced by Chauvin
([3], [4]) for studying the branching process with immigration as a branching pro-
cess without immigration. Estimators of the offspring mean have been studied
by Dion and Yanev ([6], [7],[8], [9], [10]). At time n, the number of ancestors is
N0,n. Writing Nn,(N0,n) for Nn, and Nn−1,(N0,n) for the size of the population at
time n− 1, the model is defined by

Nn = Nn,(N0,n) =

Nn−1,(N0,n)∑

i=1

Zn,i1{Nn−1,(N0,n)>0},

where the {Zn,i}i are i.i.d. (mZ , σ
2
Z). We assume here that the variations {∆n}n

defined by ∆n = N0,n−N0,n−1 are independently distributed (m∆n , σ
2
∆n

). Then if
we decompose the population of size Nn−1,(N0,n) in two subpopulations, one of size
Nn−1,(N0,n−1) and the other of size
Nn−1,(N0,n−N0,n−1), {Nn}n has the same distribution as the following process

Nn =

Nn−1,(N0,n−1)∑

i=1

Zn,i1{Nn−1,(N0,n−1)>0} +Nn,(N0,n−N0,n−1).

Consequently since we set Nn = Nn,(N0,n), for all n,

Nn =

Nn−1,+∑

i=1

[Zn,i1{Nn−1>0} +
Nn,(∆n)

Nn−1,+
]

implying

Yn,i(N) = Zn,i1{N>0} +
Nn,(∆n)

N+

m(N) = mZ1{N>0} +
mn
Zm∆n

N+
,mZ ≤ 1

σ2(N) = σ2
Z1{N>0} +

O(m2n
Z )

N2
+
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σi,j(N) =
O(m2n

Z )

N2
+

ξ(N) = N+.

7. Since the law of the offspring may depend on n, models with a branching
structure only on some time intervals could also belong to this general class.
Regenerative processes are such examples (see [39] for example).

We assume in the frame of the general model that there exists a finite partition
of N, N = ⊕I

i=1Ni, such that for N ∈ Ni, m(N) = mi(N), σ2(N) = σ2
i (N),

σ2
i′,j′(N) = σ2

i;i′,j′(N), with

mi(N) = m
(1)
i (N) +m

(2)
i (N)

σ2
i (N) ≤ σ2

iN
βi
+

σi;i′,j′(N) ≤ σ2
i ξ

−1(N)Nβi
+

where m
(1)
i (.) depends on an unknown finite dimensional parameter θi ∈

◦
Θi, Θi ⊂

Rdi , that we will estimate and m
(2)
i (.) is a nuisance part and therefore must

be assumed negligible with respect to m
(1)
i (.), as n → ∞; m

(2)
i (.) may depend

on θ = {θi}i and an unknown nuisance parameter νi that may be of infinite
dimension.

It is the case for all the examples above in which mi(.) belong to the following
class

mi(N) = mi +
f(µi, n)

Nαi
+

+Oi(N
−αi
+ ),(4)

0 < αi < αi, i = 1, 2, f(µi, n) = O(1)

where N1 = {0}, N2 = N \ {0}, and βN = βi, for N ∈ Ni.

Our aim is the estimation of θ0 from a single trajectory of the process, in the
approximate model mθ0,ν(.), where ν = {νi}i has any given value. The deriv-
ability of m(.) with respect to θ is not necessary for proving the consistency
of the estimator. We must assume that θ is identifiable from the single trajec-
tory, which is not a priori obvious especially when the chosen trajectory satisfies
limnNn = ∞ and m(.) contains a transient part which disappears as N → ∞.
For example, in the frame of (4), only mi or µi are separately identifiable on
limnNn = ∞. Therefore either θi = mi or θi = µi. In the first case the negligible

part is m
(2)
i (N) = f(µi, n)N−αi

+ +Oi(N
−αi
+ ), and in the second case, since mi is
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not negligible relatively to N−αi
n+ , i.e. miN

αi
n+ is not negligible, then either we as-

sume that mi is known, or we may replace mi by its estimator, if (m̂i;h,n−mi)N
αi
n+

is negligible as n→ ∞.
We use the conditional least square method. This method, widely used in

autoregressive processes, has many interesting properties, among them, it does
not need the knowledge of the exact law of {Yn,i(N)}i,n at the opposite of methods
based on the likelihood, it is easily generalizable to noisy obervations and it is
simply written, even when the observations are not all taken into account. In that
aim, we write the model according to a stochastic nonlinear regression model:

Nn+1 = m(Nn)ξ(Nn) + ηn+1(Nn)(5)

ηn+1(Nn) =

ξ(Nn)∑

i=1

[Yn+1,i(Nn) −m(Nn)],

where {ηn+1(Nn)}n that satisfies E(η2
n+1(N)) ≤ ξ(N)σ2NβN is a martingale dif-

ference sequence. Model (5) belongs to the class of nonlinear (but asymptotically

linear) and explosive (when ξ(Nn)N
βNn
n → ∞, as n→ ∞) autoregressive process

of order one (AR(1)). In the frame of linear autoregressive processes, many re-
sults are already available concerning the estimation problem. White [54] studied
the LSE (least squares estimator) {m̂n}n of the autoregressive parameter in an
explosive linear AR(1) process with normally i.i.d. errors under the assumption
m(N) = m, for all N . Lai and Wei [30] showed the strong consistency of the
LSE for a linear AR(p) process where the noise {ηn}n is a martingale differ-
ence sequence satisfying E(η2

n|Fn−1) = σ2 and supnE(η2+δ
n |Fn−1) <∞ for some

δ > 0. Basawa et al. [1] studied the asymptotic behavior of the standard boot-
strap for {m̂n}n for an explosive linear AR(1) model with finite error variance.
Datta [5] established consistency of the LSE in an explosive linear AR(p) model
for independent errors {ηn}n satisfying the uniform integrability of log+(|ηn|).
Estimation in stochastic nonlinear regression models for which the noise is a
martingale difference has been studied when the noise has a finite moment of
order two especially by Lai [31] and Skouras [49]. But their methods require
assumptions that are difficult to check in practice (see [32]) so that we do not
rely on those methods to establish the strong consistency.

Our estimator θ̂h,n,νn will minimize over θ the conditional least squares:

θ̂h,n,νn = arg min
θ
S̃h,n,νn(θ)(6)

S̃h,n,νn(θ) =
∑

k∈Oh,n

(Nk −mθ,νn(Nk−1)ξ(Nk−1))
2ξ−1(Nk−1)N

−βNk−1

k−1,+ ,(7)
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where mθ,νn(.) is the offspring mean in which the nuisance parameter ν is set to
any value νn, and Oh,n = [h + 1, n] ∩ Kobs, where Kobs is the set of observation
times that are taken into account for the estimation of θ. It can refer either to
non censored observation times or to non censored observations, or to observation
times on which the process has a nonnull branching structure, or to the associated
parameters that are estimated. In the last case Kobs = {k : Nk−1 ∈ ∪i∈INi},
when θ = {θi}i∈I , I being any subset of {1, . . . , I}. Since the {Ni}i are disjoint
sets, it may be convenient to estimate the {θi}i separately when they are not
identifiable together. In that case Kobs = {k : Nk−1 ∈ Ni}.

It is well-known that the CLSE built from (6) and (7) is optimal if N βN is
the exact order of σ2(N) ([13],[34]). However this general method allows to build
easily strong consistent estimators.

In the frame of submodel (4) with f(µi, n) = µi, writing Oi;h,n for Oh,n∩{k :
Nk−1 ∈ Ni}, if we set O(N−α) = 0, the CLSE of mi and µi have the explicit
form

m̂i;h,n =

∑
k∈Oi;h,n

NkN
−βi
k−1,+

∑
k∈Oi;h,n

ξ(Nk−1)N
−βi
k−1,+

− µ̂i;h,n

∑
k∈Oi;h,n

ξ(Nk−1)N
−βi−αi
k−1,+

∑
k∈Oi;h,n

ξ(Nk−1)N
−βi
k−1,+

(8)

µ̂i;h,n =

∑
k∈Oi;h,n

NkN
−βi−αi
k−1,+

∑
k∈Oi;h,n

ξ(Nk−1)N
−βi−2αi
k−1,+

− m̂i;h,n

∑
k∈Oi;h,n

ξ(Nk−1)N
−βi−αi
k−1,+

∑
k∈Oi;h,n

ξ(Nk−1)N
−βi−2αi
k−1,+

.(9)

The estimator (8) generalizes the well-known Harris estimator and the moment
estimator of the BGW frame.

The asymptotic properties of {θ̂h,n,νn}n will be studied on the set of nonex-
tinction E∞ = {limNn 6= 0} by increasing n to ∞, with either h or n−h fixed, and
we will show that they do not depend on {νn}n. In particular, when ν is of finite
dimension, νn may take the value ν̂h,n defined by (θ̂h,n, ν̂h,n) = argminθ,νS̃h,n,ν(θ);

and when ν is infinite dimensional, then m(2)(.) will be set to 0. In section 2,
we define and study the identifiability of parameters and prove the strong consis-
tency of {θ̂h,n,νn}n on E∞. The proof relies on a sufficient condition concerning
minimum contrast method (Wu [55]), on the branching structure of the process
and the martingale properties of the noise {ηn}n and do not need the differen-
tiability of m(.) in θ. Assuming that θ0 is asymptotically identifiable from the
observations at the rate NψN.

. , the proof need some general conditions on the

a.s. asymptotic behavior of {Nn}n on E∞: {
∑
k∈Oh,n

ξ(Nk−1)N
−βNk−1

−2ψNk−1

k−1,+ }

is an increasing sequence with limn→∞
∑
k∈Oh,n

ξ(Nk−1)N
−βNk−1

−2ψNk−1

k−1,+
a.s
= ∞,

and for a fixed h0,
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∑
k∈Oh0,∞

ξ(Nk−1)N
−βNk−1

−2ψNk−1

k−1,+ [
∑
l∈Oh,k

ξ(Nl−1)N
−βNl−1

−2ψNl−1

l−1,+ ]
−2

< ∞, a.s.

In the particular case ξ(N) = N+ with βN + 2ψN = 1 and h fixed, these proper-
ties are always satisfied. We see in section 2 that these properties are satisfied in
the general case under some weak conditions.

2. Identifiability and strong consistency

Let m(N) depend on (θ0, ν0), where θ0 ∈
◦
Θ, Θ being a bounded set of Rd, d ∈ N.

Denote mθ0,ν0(N) for m(N).
Let Bc

δ = {θ = (θ1, . . . , θd) ∈ Θ :
∑d
k=1 |θk − θ0,k| ≥ δ}, where δ > 0 and let ‖.‖n

be a semi-norm on the space of functions {f(k)}k≤n.
Throughout this article, we give a value to the unknown nuisance parameter

ν: when it is finite dimensional, it can be any estimator; and when it is infinite

dimensional, we set m
(2)
θ,ν(.) = 0. For simplifying the notations, we write mθ,ν(Nn)

and S̃h,n,ν(θ) even if ν depends on n and we write ψk−1, βk−1 instead of ψNk−1
,

βNk−1
.

Definition 1. (i) θ0 is identifiable in {mθ0,ν(Nk)}k≤n for the semi-norm ‖.‖n
if there exists a function v(N.) such that, for all δ > 0, infθ∈Bc

δ
‖[mθ0,ν(N.) −

mθ,ν(N.)]v(N.)‖n 6= 0 a.s..
(ii) θ0 is asymptotically identifiable in mθ0,ν(N.) for {‖.‖n}n if there exists v(N.)
such that, for all δ > 0, limn→∞ infθ∈Bc

δ
‖[mθ0 ,ν(N.) −mθ,ν(N.)]v(N.)‖n 6= 0 a.s.;

if moreover this quantity is finite, v(N.) is called the rate of identifiability of θ0.

Definition 2. gν(.) is asymptotically negligible if limn→∞‖gν(.)‖n
a.s.
= 0.

Definition 3. Let {θ̂n}n an estimator of θ0. This estimator is called a.s.
mθ0,ν(N.)-consistent for {‖.‖n}n if there exists v(N.) such that

limn→∞ ‖[mθ0,ν(N.) −m
θ̂n,ν

(N.)]v(N.)‖n
a.s.
= 0.

Lemma 1. Let Mv,ν = {{θ̂n}n : {θ̂n}n is a.s. mθ0,ν(N.)-consistent at the
rate v(N.)}. Then, θ0 is asymptotically identifiable in mθ0,ν(N.) at the rate v(N.)

for {‖.‖n}n implies that, for all {θ̂n}n ∈ Mv,ν, {θ̂n}n is consistent.
The reciprocal implication holds true if we assume in addition condition C: for all
closed set F ⊂ Θ, infθ∈F ‖(mθ0,ν(N.) −mθ,ν(N.))v(N.)‖n is attained at some θ̃.

P r o o f. Assume that there exists a sequence {θ̂n}n ∈ Mv,ν that is not a.s.

consistent. Then, for all δ > 0, there exists nδ and a subsequence {θ̂ni}ni>nδ such
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that θ̂ni ∈ Bc
δ . Since {θ̂n}n ∈ Mv,ν , limn→∞ ‖(mθ0,ν(N.)−m

θ̂n,ν
(N.))v(N.)‖n

a.s.
=

0 entailing that limn→∞ infθ∈Bc
δ
‖(mθ0,ν(N.) − mθ,ν(N.))v(N.)‖n

a.s.
= 0. Hence,

θ0 is not asymptotically identifiable at the rate v(N.). Conversely, assume that
condition C holds and that θ0 is not asymptotically identifiable in mθ0,ν(.) at
the rate v(N.). Then, there exists δ > 0 such that limn→∞ infθ∈Bc

δ
‖(mθ0,ν(N.) −

mθ,ν(N.))v(N.)‖n
a.s
= 0. Let θn = argminθ∈Bc

δ
‖(mθ0,ν(N.) − mθ,ν(N.))v(N.)‖n.

The sequence {θn}n belongs to Mv,ν but is not consistent since it belongs to Bc
δ .

�

Since S̃h,n,ν(θ) defined by (7) may be written as

S̃h,n,ν(θ) =
∑

k∈Oh,n

(
Xk

ξ(Nk−1)1/2N
−βk−1−2ψk−1

2
k−1,+

+ δk,θ,ν)
2

(10)

×ξ(Nk−1)N
−2ψk−1−βk−1

k−1,+ .

where Xk = [Nk −mθ0,ν0(Nk−1)Nk−1]ξ(Nk−1)
−1/2N

−βk−1/2
k−1,+ and

δk,θ,ν = (mθ0,ν0(Nk−1) −mθ,ν(Nk−1))N
ψk−1

k−1,+, the estimator θ̂h,n,ν also satisfies

θ̂h,n,ν = argminθ∈ΘSh,n,ν(θ), where

Sh,n,ν(θ) = S̃h,n,ν(θ)[
∑
k∈Oh,n

ξ(Nk−1)N
−2ψk−1−βk−1

k−1,+ ]−1.
This leads to the natural following semi-norm {‖.‖n}n:

‖u(N.)‖
2
n =

∑
k∈Oh,n

u2(Nk−1)ξ(Nk−1)N
−2ψk−1−βk−1

k−1,+
∑
k∈Oh,n

ξ(Nk−1)N
−2ψk−1−βk−1

k−1,+

.(11)

We then show in the following proposition that if θ0 is asymptotically identifi-

able in mθ0,ν(N.) for the sequence {‖.‖n}n at the rate Nψ.
. and if m

(2)
θ,ν(N.)N

ψ.
.

is asymptotically negligible, then the strong consistency of {θ̂h,n,ν}n is ensured
under some general conditions on the behavior of the process. Let ‖u(N.)‖n,∞ =
supk∈Oh,n |u(Nk−1)|. Denote εk = βk + 2ψk, for all k, and

Dn =
∑
k∈Oh,n

ξ(Nk−1)N
−2ψk−1−βk−1

k−1,+ .

Proposition 1. Let ‖.‖n be defined by (11). Assume the following condi-
tions:
1) θ0 is asymptotically identifiable in mθ0,ν(N.) at the exact rate v(N.) = Nψ.

. for
the semi-norm {‖.‖n}n, ie

B1: ∀δ > 0, limn→∞ infθ∈Bc
δ
‖(mθ0 ,ν.(N.) −mθ,ν.(N.))v(N.)‖n

a.s.
6= 0;

B2: limn→∞ supθ∈Bc
δ
‖(mθ0,ν(N.) −mθ,ν(N.))v(N.)‖n,∞

a.s.
< ∞ a.s.;
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2) (mθ0,ν0(N.) −mθ0,ν(N.))v(N.) is asymptotically negligible, ie

B3: limn→∞‖(mθ0,ν0(N.) −mθ0,ν(N.))v(N.)‖n
a.s.
= 0;

3) B4: (i) limn→∞Dn
a.s.
= ∞; {Dn}n is an increasing sequence;

(ii) There exists h0 such that
∑
k∈Oh0,∞

ξ(Nk−1)N
−εk−1

k−1,+D
−2
k

a.s.
< ∞;

4) B5: for all δ > 0, for all N , supθ∈Bc
δ
(mθ0,ν(N)−mθ,ν(N)) is attained for some

θ
sup
N (respectively infθ∈Bc

δ
(mθ0,ν(N) −mθ,ν(N)) is attained for some θinfN ).

Then, {θ̂h,n,ν}n is strongly consistent on E∞.

Remarks. 1. Let ξ(N) = N , for all N . Assume that there exists a random
variable W with E∞ = {W > 0} and a deterministic sequence {an}n such that
limnNna

−1
n

a.s.
= W . Then it is sufficient to check B4 in which Nk is replaced by

ak, for all k.
2. Let h fixed with (a) : ξ(N)N−εN

+ ≥ 1, for all N and either (b1) or (b2):

(b1) :
∑

l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+
a.s.
= O(card(Oh,k))

(b2) : ∃u > 0 :
∑

l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+

a.s.
≥ O(card(Oh,k))

1+u.

Then B4 (i) is satisfied under (a). As concerning B4 (ii), denote
A =

∑
k∈Oh,∞

ξ(Nk−1)N
−εk−1

k−1,+ (
∑
l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+ )−2. Then

A =
∑

kOh,∞

1

(
∑
l∈Oh,k

N
−εl−1

l−1,+ )1+xk

ξ(Nk−1)N
−εk−1

k−1,+

(
∑
l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+ )1−xk

=
∑

k∩Oh,∞

1

(
∑
l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+ )1+xk
,

where xk is defined by

xk = 1 −
ln ξ(Nk−1)N

−εk−1

k−1,+

ln
∑
l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+

.

Under (b1), since card(Oh,k) ≤
∑
l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+
a.s.
= O(card(Oh,k)), there

necessarily exists M such that ξ(Nl−1)N
−εl−1

l−1,+ ≤ M , for all l ∈ Oh,∞. This
implies, that limk→∞ xk = 1. Consequently there exists u > 0 and 0 < c < ∞
such that

∑

k∈Oh,∞

1

(
∑
l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+ )1+xk
≤ c+

∑

k∈Oh,∞

1

(card(Oh,k))1+u
<∞.(12)
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Now, assuming (b2)

∑

k∈Oh,∞

1

(
∑
l∈Oh,k

ξ(Nl−1)N
−εl−1

l−1,+ )1+xk
≤ c

∑

k∈Oh,∞

1

(card(Oh,k))1+u
<∞.(13)

Then (12) or (13) imply B4 (ii).
P r o o f. We apply Wu’s lemma [55] on the normalized contrast Sh,n,ν(θ):

if for all δ > 0, limn→∞(infθ∈Bc
δ
Sh,n,ν(θ) − Sh,n,ν(θ0)) > 0 a.s., then {θ̂h,n,ν}n is

strongly consistent (proof: assume that θ̂h,n,ν is not a.s. consistent. Then there

exist δ and an infinite subsequence {θ̂h,ni,ν}ni such that θ̂h,ni,ν ∈ Bc
δ implying

that Sh,ni,ν(θ̂h,ni,ν) > Sh,ni,ν(θ0), which is in contradiction with the definition of

θ̂h,ni,ν).
Let δ > 0. According to (10),

Sh,n,ν(θ) − Sh,n,ν(θ0) = S1n(θ) + 2S2n(θ) + 2S3n(θ),

where

S1n(θ) =
∑

k∈Oh,n

(mθ0,ν(Nk−1) −mθ,ν(Nk−1))
2N

2ψk−1

k−1,+ξ(Nk−1)N
−εk−1

k−1,+D
−1
n ,

S2n(θ) =
∑

k∈Oh,n

δk,θ0,ν(mθ0,ν(Nk−1) −mθ,ν(Nk−1))N
ψk−1

k−1,+ξ(Nk−1)N
−εk−1

k−1,+D
−1
n ,

S3n(θ) =
∑

k∈Oh,n

Xk

ξ(Nk−1)
1
2N

−εk−1
2

k−1,+

(mθ0,ν(Nk−1) −mθ,ν(Nk−1)) ×

×N
ψk−1

k−1,+ξ(Nk−1)N
−εk−1

k−1,+D
−1
n .

We study successively each term Sin(θ), i ∈ {1, 2, 3}.

• Since S1n(θ) ≥ ‖(mθ0,ν(N.) −mθ,ν(N.))v(N.)‖
2
n, then

limn→∞ inf
θ∈Bc

δ

S1n(θ) ≥ limn→∞ inf
θ∈Bc

δ

‖(mθ0,ν(N.) −mθ,ν(N.))v(N.)‖
2
n.

According to B1, the right-hand side is strictly positive yielding

limn→∞ inf
θ∈Bc

δ

S1n(θ) > 0 a.s.(14)

• According to Hölder inequality,

|S2n(θ)| ≤ ‖(mθ0,ν0(N.) −mθ0,ν(N.))v(N.)‖n ×

×‖(mθ0,ν(N.) −mθ,ν(N.))v(N.)‖n.
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Using the relationship |limn→∞ infθ∈Bc
δ
S2n(θ)| ≤ limn→∞ supθ∈Bc

δ
|S2n(θ)|,

|limn→∞ inf
θ∈Bc

δ

S2n(θ)| ≤ limn→∞‖(mθ0,ν0(N.) −mθ0,ν(N.))v(N.)‖n ×

×limn→∞ sup
θ∈Bc

δ

‖(mθ0,ν(N.) −mθ,ν(N.))v(N.)‖n.

The right-hand side is equal to 0 thanks to B2 and B3, implying

limn→∞ inf
θ∈Bc

δ

S2n(θ)
a.s.
= 0.(15)

• Let

Zk(θ, ν) =
Xk

ξ(Nk−1)
1
2N

−εk−1
2

k−1,+

(mθ0,ν(Nk−1) −mθ,ν(Nk−1)) ×

×N
ψk−1

k−1,+ξ(Nk−1)N
−εk−1

k−1,+ .

According to condition B5, denoting (θ̃k, ν) = argminθ∈Bc
δ
Zk(θ, ν) and

(θk, ν) = argmaxθ∈Bc
δ
Zk(θ, ν),

∑
k∈Oh,n

Zk(θ̃k, ν)

Dn
≤ inf

θ∈Bc
δ

S3n(θ) ≤

∑
k∈Oh,n

Zk(θk, ν)

Dn
.

Assume first h constant with h0 = h. Let us show that {
∑
k∈Oh,n

Zk(θk, ν)}n

(respectively {
∑
k∈Oh,n

Zk(θ̃k, ν)}n) is a martingale with respect to the filtra-
tion F = {Fn}n, , Fn being the σ-algebra generated by {N0, . . . , Nn}. We
will then use a strong law of large numbers for martingales (theorem 2.18 of
Hall and Heyde [15]) to show that limn[

∑
k∈Oh,n

Zk(θk, ν)]D
−1
n

a.s.
= 0 (respectively

limn[
∑
k∈Oh,n

Zk(θ̃k, ν)]D
−1
n

a.s.
= 0).

Let Ln =
∑
k∈Oh,n

Zk(θk, ν). Since E(|Zk(θk, ν)‖Fk−1) <∞, for all k, we have

E(Zn(θn, ν)|Fn−1) = E[E(Zn(θn, ν)|Fn−1, θn, ν)|Fn−1] = ξ(Nn−1)
1/2×

×N
−εk−1

2
n−1,+ E[(mθ0,ν(Nn−1) −mθn,ν

(Nn−1))E(Xn|Fn−1, θn, ν)|Fn−1].

The right-hand side equals zero since on one hand Xn is independent of θn and
ν, and E(Xn|Fn−1) = 0 on the other hand. Consequently Ln is a martingale.
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Let sk = E(Z2
k(θk, ν)|Fk−1)D

−2
k . The sequence {Dk}k increases to ∞ under

B4(i). Moreover

∑

k∈Oh,∞

sk ≤ σ2 sup
θ∈Bc

δ

sup
h+1≤k

(mθ0,ν(Nk−1) −mθ,ν(Nk−1))
2N

2ψk−1

k−1,+ .

∑

k∈Oh,∞

ξ(Nk−1)N
−εk−1

k−1,+

D2
k

that is finite according to B2 and B4 (ii).

Assume now n − h constant and denote c = n − h. Since h depends on n,
Ln is no longer a martingale. But Ln =

∑
k∈Oc,n Zk(θk, ν) −

∑
k∈Oc,h

Zk(θk, ν),
where each of the two terms of this difference is a martingale. Then assuming
B4 (i) and B4 (ii) with h0 = c, we have as previously,

lim
n→∞

[
∑

k∈Oc,n

Zk(θk, νk)]D
−1
n

a.s.
= 0,

and using Dn ≥ Dh, limn→∞[
∑
k∈Oc,h

Zk(θk, νk)]D
−1
h

a.s.
= 0. Hence we get

lim
n→∞

inf
θ∈Bc

δ

S3n(θ)
a.s.
= 0.(16)

Relationships (14), (15) and (16) entail that Wu’s lemma is satisfied. �

Remark. In the frame of (4) with f(µi, n) = µi, assume Oi(N
−αi
+ ) = 0,

for all N , and {Nn → ∞} 6= ∅. Since (m0, µ0) is not asymptotically identifiable
on {limnNn = ∞}, we have to consider separately on this set the consistency
of (8) and (9): m̂i;h,n will be strongly consistent under conditions B4, B5 of
the proposition, if (µ̂i;h,n − µi)N

−αi
+ is asymptotically negligible, which is easily

checked, and µ̂i;h,n will be strongly consistent if (m̂i;h,n−mi)N
αi
+ is asymptotically

negligible, which requires a rate of convergence for the estimator of mi sufficiently
large. Now if {limnNn → ∞} = ∅, then (m0, µ0) is asymptotically identifiable on
E∞ implying the strong consistency of (m̂i;h,n, µ̂i;h,n) under B4, B5.

3. Rate of convergence

In order to study the asymptotic distribution of θ̂h,n,ν − θ0 properly normalized,
we consider the more accurate model

mi(N) = mi +
µi

Nαi
+

+ ri(N),
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ri(N) = O(N−αi
+ ), 0 < αi < αi, sup

θ
ri(N)Nαi ≤M

σ2(N) = σ2Nβi − ri+(N), r+(N) = O(Nβi), βi < βi, ri+(.) ≥ 0

σi,j(N) = σ2N
−1+βi
+

∃{ai,n}n : lim
n:Nn∈Ni

Nna
−1
i,n

a.s.
= Wi,

where {ai,n}n is a deterministic sequence. We will assume here that θi is equal
either to mi or to µi.

Since S̃h,n,ν(θ) =
∑
i S̃i;h,n,ν(θi), we will study the rate of convergence of each

θ̃i;h,n,νi, using the Taylor’s series expansion at first order applied to S̃′
i;h,n,ν(θi),

where the ′ denotes the derivative with respect to θi:

(θ̂i;h,n,ν − θi;0) = −
S̃′
i;h,n,ν(θi;0)

S̃′′
i;h,n,ν(θ̃i;n)

,(17)

where θ̃i;n is a value between θi;0 and θ̂i;h,n,ν.

Then we will show that S̃′
i;h,n,ν(θi;0) properly normalized converges in distri-

bution, whereas S̃′′
i;h,n,ν(θ̃i;n) properly normalized converges a.s.. For simplifying

the notations, since the proof is done separately on each i ∈ I, we will forget the
subscript “i” in the following and we will assume cardOh,n = [h+ 1, n].

Define Bn =
√∑n

k=h+1 a
1−β−2ψ
k−1 and let the assumptions

B6: when h is fixed, limn→∞Bn = ∞;

B7:there exists a random variable Γ such that limn→∞B−1
n Σ1θk,i

P
= Γ, where

θk,i = E(ξk,i|Fk−1) = rθ0,ν(Nk−1)m
′
θ0,ν(Nk−1)N

−β
k−11{k≥h+1}, rθ,ν(.) = rθ0,ν0(.) −

rθ,ν(.).
B8 (Lindeberg’s condition):

∀x, lim
H→∞

lim
n→∞

sup
H+1≤k≤n

E(R2
k1{R2

k
≥B2

k,n
x2}|Fk−1)

a.s.
= 0,

where Rk = [Yk,1 −mθ0,ν0(Nk−1)]m
′
θ0,ν(Nk−1)W

−β
k−1a

1
2
(−β+2ψ)

k−1 and

Bk,n = Bna
1
2
[β+2ψ]

k−1 .
B9: (i) θ 7→ rθ,ν(.) is twice continuously differentiable in a neighborhood of

θ0 and there exist M ′ < ∞, M ′′ < ∞ such that supθ |r
′
θ,ν(N)|Nψ ≤ M ′ and

supθ |r
′′
θ,ν(N)|Nψ ≤M ′′, for all N , where ψ = α, when θ = m and ψ = α, when

θ = µ;
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(ii) for all N , supθ r
′′
θ,ν(N) is attained for some θsupN (respectively infθ r

′′
θ(N) is

attained for some θinfN ).

Then according to (17), Φ−1
h,n(θ̂h,n,ν − θ0) = Ph,n,ν[Qh,n,ν]

−1, where

Ph,n,ν = S̃′
h,n,ν(θi;0)B

−1
n = [

n∑

k=h+1

Nk−1∑

i=1

[Yk,i −mθ0,ν(Nk−1)]×

×m′
θ0,ν(Nk−1)N

−β
k−1]B

−1
n

Φh,n = BnD
−1
n , and

Qh,n,ν =
S̃′′
h,n,ν(θ̃i;n)

Dn
=

∑n
k=h+1[

∑3
i=1 Uik(θn)]W

1−2ψ−β
k−1 a

1−2ψ−β
k−1

Dn
,(18)

with U1k(θn) = m′2
θn,ν(Nk−1)N

2ψ
k−1,

U2k(θn) = −(mθ0,ν0(Nk−1) −mθn,ν(Nk−1))N
ψ
k−1m

′′
θn,ν(Nk−1)N

ψ
k−1, and

U3k(θn) = −XkN
β+2ψ−1

2
k−1,+ m′′

θn,ν(Nk−1)N
ψ
k−1,+.

Proposition 2. Assume B1 to B9. Then

lim
n→∞

Ph,n,ν
d
= P, E[exp (itP )] = E[exp(−itΓ −

t2

2
σ2W 1−β−2ψ)],(19)

lim
n→∞

Qh,n,ν
a.s.
= W 1−β−2ψ.(20)

Remark. If Γ = 0 and W 1−β−2ψ a.s.
= 1, then

limn→∞ Ph,n,ν
d
= N(0, σ2) and limn→∞Qh,n,ν

a.s.
= 1. Slutsky’s theorem entails

limn→∞ Ph,n,ν[Qh,n,ν]
−1 d

= N(0, σ2).
P r o o f.
1. Asymptotic distribution of Ph,n,ν.
We check assumptions 1.27 to 1.30 of theorem 1.3 of Rahimov [46]. Let

ξk,i = [Yk,i −mθ0,ν(Nk−1)]m
′
θ0,ν(Nk−1)N

−β
k−11{k≥h+1},

σ2
k,i = E((ξk,i − θk,i)

2|Fk−1) = σ2(Nk−1)m
′2
θ0,ν(Nk−1)N

2(−β)
k−1 1{k≥h+1} and Σ1 =

∑n
k=1

∑Nk−1

i=1 .
• condition 1.27: there exists a random variable T such that

limn→∞ P (B−2
n Σ1σ2

k,i > T ) = 0. Here,

1

B2
n

Σ1σ2
k,i =

1

B2
n

∑

k∈Oh,n

σ2(Nk−1)N
−β
k−1W

1−β−2ψ
k−1 m′2

θ0,ν(Nk−1)N
2ψ
k−1a

1−β−2ψ
k−1 .
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Thanks to B9(i) and using Toeplitz lemma and B6, we obtain
limn→∞B−2

n Σ1σ2
k,i

a.s.
= σ2W 1−β−2ψ.

• condition 1.28 : limn→∞ maxh+1≤k≤nσ
2
k,iB

−2
n

P
= 0. We have

max
h+1≤k≤n

σ2(Nk−1)N
−2β)
k−1 m′2

θ0,ν(Nk−1)

B2
n

≤

σ2 max
h+1≤k≤n

W
−β−2ψ
k−1 m′2

θ0,ν(Nk−1)N
2ψ
k−1.

maxh+1≤k≤n a
−β−2ψ
k−1

B2
n

.

We obtain limn→∞ maxh+1≤k≤nW
−β−2ψ
k−1 m′2

θ0,ν(Nk−1)N
2ψ
k−1 <∞ and

limn→∞ maxh+1≤k≤n a
−β−2ψ
k−1 B−2

n = 0, which imply

lim
n→∞

max
h+1≤k≤n

σ2(Nk−1)N
−2β
k−1m

′2
θ0,ν(Nk−1)B

−2
n

a.s.
= 0.(21)

• condition 1.29: there exists a random variable Γ such that limn→∞ B−1
n

Σ1θk,i
P
= Γ. This is the assumption B7.

• condition 1.30: there exists a function x 7→ K(x) such that, for all real x,

lim
n→∞

Σ1E([
ξk,i − θk,i

Bn
]
2

1
{
ξk,i−θk,i

Bn
<x}

|Fk−1)
P
= K(x).

We define Rk from ξk,i such that Rk has finite variance:

Rk = (ξk,1 − θk,1)a
1
2
[β+2ψ]

k−1 ; let Bk,n = Bna
1
2
[β+2ψ]

k−1 .

(i) Assume first h constant.
Denote An = Σ1B−2

n E((ξk,i − θk,i)
21{(ξk,i−θk,i)B−1

n <x}|Fk−1). Therefore An =

Σ1B−2
k,nE(R2

k1{RkB−1
k,n

<x}|Fk−1). Let us show that, for all x > 0, {An}n converges

a.s. to σ2W 1−β−2ψ and that, for all x < 0, it converges a.s. to 0.

• Let x > 0, H ∈ N, ∆n = |An − σ2Wk−1E(R2
k|Fk−1) + σ2W 1−β−2ψ|.

∆n ≤ ( sup
h+1≤k≤H

Wk−1E(R2
k|Fk−1) + σ2W 1−2ψ−β)

∑H
k=h+1 a

1−β−2ψ
k−1

B2
n

+

sup
H+1≤k≤n

|Wk−1E(R2
k1{Rk<Bk,nx}|Fk−1) − σ2W 1−β−2ψ|.
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Using E(R2
k|Fk−1) = σ2(Nk−1)N

−β
k−1W

−β−2ψ
k−1 m′2

θ0,ν(Nk−1)N
2ψ
k−1, we get

sup
h+1≤k≤H

Wk−1E(R2
k|Fk−1) <∞.

Using limnBn = ∞, the first term of the right-hand side of the inequality
converges a.s. to 0 as n→ ∞. As concerning the second term,

sup
H+1≤k≤n

|Wk−1E(R2
k1{Rk<Bk,nx}|Fk−1) − σ2W 1−β−2ψ| ≤

sup
H+1≤k≤n

Wk−1 sup
H+1≤k≤n

|E(R2
k1{Rk<Bk,nx}|Fk−1) − σ2W−β−2ψ| +

σ2W−β−2ψ sup
H+1≤k≤n

|Wk−1 −W |.

We have limH→∞ limn→∞ supH+1≤k≤nWk−1 <∞ a.s. and

limH→∞ limn→∞ supH+1≤k≤n |Wk−1 −W |
a.s.
= 0. Let us show that

limH→∞ limn→∞ supH+1≤k≤n|E(R2
k1{Rk<Bk,nx}|Fk−1) − σ2W−β−2ψ|

a.s.
= 0.

lim
H→∞

lim
n→∞

sup
H+1≤k≤n

|E(R2
k1{Rk<Bk,nx}|Fk−1) − σ2W−β−2ψ| ≤

lim
H→∞

lim
n→∞

sup
H+1≤k≤n

|E(R2
k|Fk−1) − σ2W−β−2ψ| +

lim
H→∞

lim
n→∞

sup
H+1≤k≤n

E(R2
k1{Rk≥Bk,nx}|Fk−1).

The first term of the right-hand side converges a.s. to 0 by letting first
n→ ∞ and then H → ∞ and according to B8,
limH→∞ limn→∞ supH+1≤k≤nE(R2

k1{Rk≥Bk,nx}|Fk−1)
a.s.
= 0.

• Let x < 0. Assumption B8 entails that limn→∞An
a.s.
= 0.

(ii) Consider now n− h constant.
The proof is the same as in the case h fixed. Hence, under B1 to B8, Rahi-

mov’s theorem [46] ensures that (19) holds.
2. Study now the asymptotic behavior of {Qh,n,ν}n. We first show

lim
n→∞

∑n
k=h+1[U1k(θn) + U2k(θn)]W

1−2ψ−β
k−1 a

1−2ψ−β
k−1

Dn

a.s.
= W 1−2ψ−β,(22)

and then we show

lim
n→∞

∑n
k=h+1 U3k(θn)W

1−2ψ−β
k−1 a

1−2ψ−β
k−1

Dn

a.s.
= 0.(23)
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Let us prove (22).

∣∣∣∣∣

∑n
k=h+1[U1k(θn) + U2k(θn)]W

1−2ψ−β
k−1 a

1−2ψ−β
k−1

Dn
−W 1−2ψ−β

∣∣∣∣∣ ≤

≤

∑n
k=h+1 supθ,ν [|U1k(θn)| + U2k(θn)]|W

1−2ψ−β
k−1 −W 1−2ψ−β|a1−2ψ−β

k−1

Dn
+

+

∑n
k=h+1 supθ,ν [|U1k(θn) − 1| + |U2k(θn)|]W

1−2ψ−βak−1

Dn
.

• Using m′
θ,ν(N) = N−ψ + r′θ,ν(N) and B9(i),

sup
θ,ν

|U1k(θn) − 1| ≤ 2M ′N
ψ−ψ
k−1 +M ′2N

2(ψ−ψ)
k−1 .(24)

• mθ0,ν0(N)−mθn,ν(N) = (θ0−θn)N
−ψ+rθn,ν(N), where rθ,ν(.) = rθ0,ν0(.)−

rθ,ν(.). Then there exists a constant C such that

sup
θ,ν

|U2k(θn)| ≤M ′′(C + 2MN
ψ−ψ
k−1 )Nψ−ψ

k−1 .(25)

Then (24), (25) and ψ < ψ entail (22) according to Toeplitz lemma and limn→∞Dn

= ∞ when h is fixed. Using the same reasoning as the one used in the proof of
proposition 1 while applying theorem 2.18 of Hall and Heyde, we obtain (23). �
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